Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

0149

Accredited to ISO/IEC 17025:2017

Testo Industrial Services Ltd

Issue No: 039 Issue date: 30 May 2025

Unit 1 Armstrong Point Swan Lane Hindley Green

Wigan WN2 4AU

Contact: Mr Paul Millar
Tel: +44 (0)1942-882275
E-Mail: info@testois.co.uk
Website: www.testois.co.uk

Calibration performed at the above address only

Calibration and Measurement Capability (CMC)

Г					
Measured Quantity	6	Expanded Measurement	Б		
Instrument or Gauge	Range	Uncertainty	Remarks		
		(k=2)			
		of both measurement instruments an ess otherwise stated in the remarks of			
EL FOTDIO AL					
ELECTRICAL MEASUREMENTS					
WEASUREWENTS					
DC RESISTANCE					
Specific values (sourcing)	1 mΩ	35 μΩ/Ω			
, ,	10 mΩ	12 μΩ/Ω			
	100 mΩ	8.0 μΩ/Ω			
	1 Ω	2.0 μΩ/Ω			
	10 Ω	2.5 μΩ/Ω			
	100 Ω	3.0 μΩ/Ω			
	1 kΩ	2.0 μΩ/Ω			
	10 kΩ	1.5 μΩ/Ω			
	100 kΩ	3.0 μΩ/Ω			
	1 ΜΩ	10 μΩ/Ω			
	10 MΩ	20 μΩ/Ω			
	100 ΜΩ	20 μΩ/Ω			
	1 GΩ	250 μΩ/Ω			
	10 GΩ	0.15 %			
Specific values (measurement)	1 mΩ	40 μΩ/Ω			
Opeoino values (measarement)	10 mΩ	20 μΩ/Ω			
	100 mΩ	20 μΩ/Ω			
	1 Ω	4.0 μΩ/Ω			
	10 Ω	5.0 μΩ/Ω			
	100.0	3.0 μΩ/Ω			
	100 Ω 1 kΩ	2.0 μΩ/Ω			
	10 kΩ	2.0 μΩ/Ω			
	100 kΩ	5.0 μΩ/Ω			
	100 142	0.0 µ222			
	1 ΜΩ	7.0 μΩ/Ω			
	10 ΜΩ	15 μΩ/Ω			
	100 ΜΩ	28 μΩ/Ω			
	1 GΩ	220 μΩ/Ω			
	10 GΩ	0.14 %			

Assessment Manager: PC Page 1 of 10

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Testo Industrial Services Ltd

Issue No: 039 Issue date: 30 May 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
DC RESISTANCE (continued)			
Other values (measurement)	0 μ Ω to 200 μ Ω 200 μ Ω to 2 m Ω 2 m Ω to 20 m Ω 20 m Ω to 200 m Ω 200 m Ω to 2 Ω	40 nΩ 200 μΩ/Ω 180 μΩ/Ω 180 μΩ/Ω 25 μΩ/Ω	
	2 Ω to 20 Ω 20 Ω to 200 Ω 200 Ω to 2 k Ω 2 k Ω to 20 K Ω 20 K Ω to 200 k Ω	20 $\mu\Omega/\Omega$ 6.0 $\mu\Omega/\Omega$ 3.5 $\mu\Omega/\Omega$ 4.0 $\mu\Omega/\Omega$ 6.0 $\mu\Omega/\Omega$	
	200 k Ω to 2 M Ω 2 M Ω to 20 M Ω 20 M Ω to 200 M Ω 200 M Ω to 2 G Ω 2 G Ω to 20 G Ω	10 μΩ/Ω 60 μΩ/Ω 65 μΩ/Ω 700 μΩ/Ω 0.60 %	
DC VOLTAGE			
Specific values	100 mV 200 mV 1 V 2 V 10 V 20 V 100 V 200 V 1 kV	6.0 μV/V 6.0 μV/V 3.0 μV/V 4.0 μV/V 4.0 μV/V 4.0 μV/V 5.0 μV/V 6.0 μV/V	
Other values	0 mV to 20 mV 20 mV to 200 mV 200 mV to 2 V 2 V to 20 V 20 V to 200 V 200 V to 1 kV 1 kV to 30 kV 30 kV to 90 kV	0.60 μV 8.5 μV/V 5.0 μV/V 7.0 μV/V 7.0 μV/V 0.12 % 0.15 %	
DC VOLTAGE RATIO 100 mV to 10 V reference	0.1 to unity	0.5 μV/V	
DC Voltage linearity	0 V to 10 mV 0 V to 100 mV	0.40 μV 0.60 μV	

Assessment Manager: PC Page 2 of 10

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Testo Industrial Services Ltd

Issue No: 039 Issue date: 30 May 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
DC CURRENT	0 μA to 1 μA 1 μA to 10 μA 10 μA to 100 μA 100 μA to 1 mA 1 mA and 10 mA 1 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A 1 A to 10 A	100 μA/A + 80 pA 120 μA/A 35 μA/A 30 μA/A 20 μA/A 30 μA/A 20 μA/A 30 μA/A 60 μA/A 500 μA/A	
DC Current linearity	0 A to 1 μA 0 A to 10 μA	7.5 pA 12 pA	
DC POWER	1 W to 20 kW	The arithmetic sum of the individual uncertainties of the corresponding voltages and current measurements	
AC VOLTAGE Specific values at specific frequencies	10 mV at 1 kHz	100 μV/V	
	100 mV 20 Hz, 55 Hz 305 Hz, 1 kHz, 10 kHz 30 kHz 60 kHz 100 kHz 1 V 100 Hz 20 Hz, 55 Hz, 305 Hz 1 kHz 3 kHz, 10 kHz 30 kHz 60 kHz 100 kHz 1 MHz 10 V 20 Hz, 55 Hz, 100 Hz, 305 Hz, 1kHz 3 kHz, 10 kHz 1 MHz 10 V 20 Hz, 55 Hz, 100 Hz, 305 Hz, 1kHz 3 kHz, 10 kHz 30 kHz 100 kHz 100 kHz 100 kHz 100 kHz	100 μV/V 90 μV/V 100 μV/V 180 μV/V 190 μV/V 55 μV/V 50 μV/V 60 μV/V 60 μV/V 0.135 % 0.30 % 50 μV/V 180 μV/V 180 μV/V 180 μV/V 180 μV/V 180 μV/V 190 μV/V 0.135 % 0.30 %	

Assessment Manager: PC Page 3 of 10

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Testo Industrial Services Ltd

Issue No: 039 Issue date: 30 May 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
AC VOLTAGE (continued) Specific values at specific Frequencies (continued)	100 V 20 Hz, 55 Hz, 305 Hz 100 Hz, 1 kHz 3 kHz, 10 kHz 30 kHz 60 kHz 100 kHz	60 μV/V 55 μV/V 60 μV/V 80 μV/V 180 μV/V 200 μV/V	
	500 V 55 Hz 100 Hz 305 Hz 1 kHz 3 kHz, 10 kHz 30 kHz	80 μV/V 90 μV/V 80 μV/V 70 μV/V 80 μV/V 150 μV/V	
	1 kV 55 Hz 305 Hz, 1 kHz, 3 kHz, 10 kHz 30 kHz	80 μV/V 80 μV/V 200 μV/V	
Specific values at other frequencies	1 V 20 Hz to 30 kHz 30 kHz to 100 kHz 100 kHz to 1MHz	70 μV/V 160 μV/V 0.30 %	
	10 V 20 Hz to 30 kHz 30 kHz to 100 kHz 100 kHz to 1MHz	90 μV/V 180 μV/V 0.30 %	
	100 V 20 Hz to 30 kHz 30 kHz to 100 kHz	85 μV/V 150 μV/V	
	1 kV 55 Hz to 10 kHz 10 kHz to 30 kHz	100 μV/V 200 μV/V	
Other values	50 Hz to 2 kHz 100 μV to 1 mV 1 mV to 10 mV 10 mV to 100 mV	0.75 % 750 μV/V 100 μV/V	
	100 mV to 200 mV 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz	150 μV/V 360 μV/V 850 μV/V	
	200 mV to 1 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz	160 μV/V 250 μV/V 0.13 %	

Assessment Manager: PC Page 4 of 10

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Testo Industrial Services Ltd

Issue No: 039 Issue date: 30 May 2025

Calibration performed at main address only

Range	Expanded Measurement Uncertainty (k = 2)	Remarks
1 V to 2 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 2 V to 10 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 10 V to 20 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 20 V to 200 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 20 V to 200 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 10 kHz to 30 kHz 10 kHz to 10 kHz 10 kHz to 10 kHz 11 kV to 40 kV	120 μV/V 250 μV/V 650 μV/V 160 μV/V 350 μV/V 0.13 % 160 μV/V 300 μV/V 150 μV/V 150 μV/V 150 μV/V	
3 μV to 300 V 20 Hz to 76 kHz	5.0 % of FSD*	* 15 ranges of 30 μV to 300 V FSD in 1-3-10 sequence
100 µA 55 Hz, 305 Hz 1 kHz 5 kHz 1 mA 55 Hz, 305 Hz 1 kHz 5 kHz 10 kHz 10 mA 55 Hz, 305 Hz 1 kHz, 5 kHz, 10 kHz 100 mA 55 Hz, 305 Hz 1 kHz, 5 kHz, 10 kHz 100 kHz 1 kHz, 5 kHz, 10 kHz	150 μΑ/Α 150 μΑ/Α 200 μΑ/Α 150 μΑ/Α 150 μΑ/Α 150 μΑ/Α 150 μΑ/Α 150 μΑ/Α 150 μΑ/Α 150 μΑ/Α 150 μΑ/Α	FSD in 1-3-10 sequence
	1 V to 2 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 2 V to 10 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 10 V to 20 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 20 V to 200 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 20 V to 1000 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 200 V to 1000 V 40 Hz to 10 kHz 10 kHz to 30 kHz 10 kHz to 30 kHz 1 kV to 40 kV 50 Hz 3 µV to 300 V 20 Hz to 76 kHz 1 mA 55 Hz, 305 Hz 1 kHz 5 kHz 10 kHz 10 mA 55 Hz, 305 Hz 1 kHz, 5 kHz, 10 kHz 100 mA 55 Hz, 305 Hz 1 kHz, 5 kHz, 10 kHz	1 V to 2 V 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 10 hZ to 10 hZ 30 hZ to 100 hZ 10 V to 20 V 40 Hz to 10 hZ 10 hZ to 30 hZ 10 hZ to 10 hZ 10 hZ to 30 hZ 10 hZ to 10 hZ 10 hZ to 76 hZ 100 µZ

Assessment Manager: PC Page 5 of 10

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Testo Industrial Services Ltd

Issue No: 039 Issue date: 30 May 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
AC CURRENT (continued) Other Values (continued) Other Values	10 A 55 Hz, 305 Hz, 1 kHz 5 kHz, 10 kHz	170 μA/A 200 μA/A	
Officer values	20 μA to 100 μA 50 Hz to 5 kHz	0.12 %	
	100 μA to 200 μA 50 Hz to 5 kHz	400 μA/A	
	200 μA to 1 mA 55 Hz to 5 kHz	0.12 %	
	1 mA to 2 mA 50 Hz to 10 kHz	400 μA/A	
	2 mA to 10 mA 50 Hz to 10 kHz	0.12 %	
	10 mA to 20 mA 50 Hz to 10 kHz	400 μA/A	
	20 mA to 100 mA 50 Hz to 10 kHz	0.12 %	
	100 mA to 200 mA 40 Ha to 10 kHz	400 μA/A	
	200 mA to 1 A 1 kHz to 10 kHz	0.15 %	
	1 A to 2 A 55 Hz, 305 Hz, 1 kHz	750 μA/A	
	2 A to 10 A 50 Hz to 1 kHz 1 kHz to 10 kHz	0.15 % 0.32 %	
	10 A to 20 A 50 Hz to 1 kHz 1 kHz to 10 kHz	0.10 % 0.30 %	
	10 A to 150 A 50 Hz to 60 Hz	0.10 %	
AC RESISTANCE	At 40 Hz to 60 Hz 10 m Ω to 100 m Ω 100 m Ω to 1 Ω 1 Ω to 100 k Ω 100 k Ω to 10 M Ω	300 μΩ/Ω 300 μΩ/Ω 75 μΩ/Ω 0.10 %	

Assessment Manager: PC Page 6 of 10

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Testo Industrial Services Ltd

Issue No: 039 Issue date: 30 May 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
FREQUENCY			
Generation			
Specific values	100 kHz, 1 MHz, 5 MHz and 10 MHz	2.0 in 10 ¹⁰	Sine wave generation
	0.02 Hz to 10 MHz in 2-5-10 sequence	2.0 in 10 ¹⁰	Square wave generation
Range values	1 Hz to 100 kHz 100 kHz to 10 MHz	2.0 in 10 ¹⁰ 5.0 in 10 ¹¹	Sine wave generation
	1 Hz to 10 kHz 10 kHz to 100 kHz 100 kHz to 100 MHz 100 MHz to 1 GHz	1.2 in 10 ⁸ 1.2 in 10 ⁹ 1.2 in 10 ⁹ 1.2 in 10 ¹⁰	Measurement of sources These values may also be reported as the reciprocal; seconds, for repetative signals.
TIME INTERVAL	0 s to 500s 0 s to 500s	1.0 us 50 ms	Electronically triggered devices Mechanically triggered devices
Pulse period	1 µs to 1 s	5.0 ns	
Rise time	1 ns to 1 ms	3.0 ns	Into 50 Ω
RCD testers			
Trip time	10 ms to 5 s	0.25 ms	
Trip Current	3 mA to 3 A	1.0 %	
Earth Loop	8 mΩ to 330 mΩ 330 mΩ to 500 mΩ 500 mΩ 10 1.8 Ω 1.8 Ω to 5 Ω 5 Ω to 10 Ω 10 Ω to 18 Ω 18 Ω 50 Ω 50 Ω to 100 Ω 100 Ω to 180 Ω 180 Ω to 500 Ω 500 Ω to 100 Ω 1 kΩ 1 kΩ to 1.8 kΩ	8.0 mΩ 10 mΩ 12 mΩ 36 mΩ 70 mΩ 120 mΩ 350 mΩ 600 mΩ 1.2 Ω 3.0 Ω 6.0 Ω 12 Ω	

Assessment Manager: PC Page 7 of 10

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Testo Industrial Services Ltd

Issue No: 039 Issue date: 30 May 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty $(k=2)$	Remarks
Temperature indicators, calibration by electrical simulation			The claims below cover test itmes with a resolutiuion of 10 m°C
1:2013. Other Thermocouple types	low are given for type K Base and Ty	I /pe S Noble, using EMF sensitivity vail will correspond to the appropriate ser N, T, E, R, S, B & C	alues as listed in BS EN 60584- nsitivities listed. Calibrations which
Base Metal Thermocouples	-200 °C to -100 °C -100 °C to -50 °C -50 °C to 0 °C 0 °C to 100 °C 100 °C to 700 °C 700 °C to 900 °C 900 °C to 1370 °C	0.20 °C 0.15 °C 0.14 °C 0.14 °C 0.19 °C 0.18 °C 0.21 °C	Excluding automatic CJC
Noble Metal Thermocouples	0 °C to 1500 °C	0.35 °C	
Base Metal Thermocouples	-200 °C to -100 °C -100 °C to 120 °C 120 °C to 1000 °C 1000 °C to 1372 °C	0.40 °C 0.24 °C 0.31 °C 0.43 °C	Including automatic CJC
Noble Metal Thermocouples	0 °C to 1500 °C	0.50 °C	
Cold Junction Compensation	0 °C to 30 °C	0.10 °C	
Resistance thermometer (Pt 100)	- 200 °C to + 800 °C	0.020 °C	
Supporting temperature measurements for electrical simulation and cold junction verification	At Nominal 0 °C Nominal ambient between 17 °C to 23 °C	0.050 °C 0.30 °C	

Assessment Manager: PC Page 8 of 10

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Testo Industrial Services Ltd

Issue No: 039 Issue date: 30 May 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
PRESSURE			
Hydraulic pressure (gauge)	600 kPa to 120 MPa	0.010 %	Methods consistent with EURAMET CG17
Calibration of pressure indicating instruments and gauges	120 MPa to 280 MPa	340 kPa	Calibration of pressure measuring devices with an electrical output may be undertaken.
Gas pressure (gauge)			Absolute pressure calibrations may be undertaken by
Calibration of pressure indicating instruments and gauges	-95 kPa to -70 kPa -70 kPa to 40 kPa 40 kPa to 27.5 MPa	23 Pa 12 Pa 0.0065 %	associated barometric pressure measurement with an additional uncertainty of \pm 20 Pa
Gas pressure (absolute)			
Calibration of pressure indicating instruments and gauges	3.5 kPa to 131 kPa	20 Pa	
END			

Assessment Manager: PC Page 9 of 10

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Testo Industrial Services Ltd

Issue No: 039 Issue date: 30 May 2025

Calibration performed at main address only

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where q is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$

Assessment Manager: PC Page 10 of 10