Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Locations covered by the organisation and their relevant activities

Laboratory locations:

Location details		Activity	Location code
Address 32 Leeds Old Road Bradford West Yorkshire BD3 8HU	Local contact Mr Yaseen Mussa	Dimensional	A

Site activities performed away from the locations listed above:

Location details		Activity	Location code
Address Customers site or premises	Local contact Mr Yaseen Mussa	Profile projectors	В
The customer's sites or premises must be suitable for the nature of the particular calibrations undertaken and will be subject of contract review arrangements between the laboratory and the customer			

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code			
RANGE IN MILLIMETRES AND UNCERTAINTY IN MICROMETRES UNLESS OTHERWISE STATED							
LENGTH							
Plain ring gauges (parallel) and setting standards	1.5 to 25 25 to 64 64 to 100 100 to 150 150 to 300	0.80 1.0 1.5 2.0 2.5	By comparison to master setting ring gauges using a length measuring machine	A			
MEASURING INSTRUMENTS							
Micrometers Micrometers, 3 point bore (including 2 point bore)	2 to 50 Above 50 to 100 Above 100 to 308	3.0 4.0 5.0	By comparison to master setting ring gauges	A			
External micrometers (digital)	0 to 305	Heads 2.0 between any two points. Setting 2.0 + (12.0 x length in m)	Based on BS 870:2008 by comparison to length standards	A			
	Flatness of anvils Parallelism of anvils0 to 100 100 to 300	0.36 1.0 3.0	Using Optical Methods and length standards				
Profile projectors	5 to 100 magnifications Linear 0 mm to 300 mm Angular 0° to 360°	100 μm at the screen Linear: 5.0 Angular: 5.0 minutes of arc	By comparison to line standards and angle artefacts	В			
END							

Calibration and Measurement Capability (CMC)

Schedule of Accreditation issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Bowers Metrology Limited

Issue No: 040 Issue date: 07 May 2024

Accredited to ISO/IEC 17025:2017

Calibration performed by the Organisation at the locations specified

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where *q* is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: $Q[a, b] = [a^2 + b^2]^{1/2}$