Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Locations covered by the organisation and their relevant activities

Laboratory locations:

Location details		Activity	Location code
Address Metrology Division Calibration House Castings Road Derby DE23 8YL	Local contact	<u>Dimensional</u> <u>Torque</u>	A
Address 1 Pride Park View, Victoria Way, Pride Park, Derby DE24 8AN	Local contact	Electrical Humidity <u>Pressure</u> <u>Temperature</u>	В

Site activities performed away from the locations listed above:

Location details	Activity	Location code
The location must be suitable for the nature of the particular calibrations undertaken and will be the subject of contract review arrangements between the laboratory and the customer	<u>Electrical</u> <u>Pressure</u> <u>Temperature</u>	С

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK
	CoMech Metrology Ltd
0318 Accredited to ISO/IEC 17025:2017	Issue No: 046 Issue date: 22 March 2024
	Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
RANGE IN MILLIMETRES AND UNDERTAINTY IN MICROMETRES UNLESS OTHERWISE STATED				
DIMENSIONAL				
Micrometers External	BS 870:2008, 0 to 600 Traverse of micrometer screw Flatness of anvils Parallelism of anvils Alignment Setting rods	2.6 1.0 1.5 4.3 1.0 + (5.0 x length in m)		A
Internal	BS 959:2008, 0 to 600 Traverse of micrometer screw Extension Rods	2.8 1.0 + (5.0 x length in m)		
Depth	BS 6468:2008, 0 to 300 Traverse of micrometer screw Flatness Parallelism Squareness of rods Axis of rotation of rods Extension rods	4.8 1.0 2.3 7.7 7.7 1.0 + (5 x length in m)		
Vernier gauges (inc. digital and dial)				А
Caliper	BS 887:2008 0 to 600 Linear error Flatness Parallelism Squareness Coplanar of jaws	10 + (30 x length in m) 1.0 1.3 8.4 8.3		
Height	BS 1643:2008, 0 600 Linear error Flatness of measuring jaws Size of measuring jaw Flatness of base Parallelism of jaw to base	10 + (30 x length in m) 0.40 3.2 1.1 1.6		
Depth	BS 6365:2008, 0 to 300 Linear error Flatness and parallelism	10 + (30 x length in m) 4.0		
Dial gauges and dial test indicators	0 to 50 BS 907:2008 and BS 2795:1981	3.6		А
Surface texture of Gauges (excluding surface texture standards)	As BS 1134:Part 1:1988	7.0 % (minimum 1.0 μm Ra)		A

Calibration and Measurement Capability (CMC)

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK
	CoMech Metrology Ltd
0318 Accredited to ISO/IEC 17025:2017	Issue No: 046 Issue date: 22 March 2024
	Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty ($k = 2$)	Remarks	Location Code
DIMENSIONAL (cont'd) Length gauges, flat and spherical ended (excluding length bars	25 to 1200	1.0 + (5.0 x length in m)	Using a length measuring Machine or by comparison with End standards	A
Plain plug gauges parallel	0 to 100	2.1	Using a length measuring machine	
Receiver and position gauges, jigs, fixtures	Track Grinding Gauges (HB221) 0 to 1440	29	Procedure CM-C-686	A
	Autocoupler Pin Checking Gauges (HB035) 0 to 1.0	3.0	Procedure CM-C-706	
	Brake Pad Wear Gauge (HB100)	2.7	Procedure CM-C-705	
	Back to Back Gauges (HB018) 0 to 1360	8.3	Procedure CM-C-704	

cia	Schedule of Accreditation
	United Kingdom Accreditation Service
L (\★	2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK
UKAS	CoMoch Motrology Ltd
CALIBRATION	
0318	
	Issue No: 046 Issue date: 22 March 2024
Accredited to ISO/IEC 17025:2017	
	Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty $(k = 2)$	Remarks	Location Code
PRESSURE			Mothode consistent	D
Gas pressure (gauge) Calibration of pressure measuring instruments and gauges.	- 95 kPa to 0 Pa 0 Pa to 2 MPa	0.015 % + 230 Pa 0.015 % + 210 Pa	with EURAMET CG17	C
	2 MPa to 10 MPa	0.013 % + 4.0 kPa		0
Calibration of pressure measuring instruments and gauges.	70 kPa to 2 MPa	0.015 % + 210 Pa		В
<u>Hydraulic pressure (gauge)</u> Calibration of pressure measuring instruments and gauges.	500 kPa to 5.5 MPa 5 MPa to 110 MPa	0.031 % 0.030 %		В
TORQUE				А
Hand torque tools (excluding torque screwdrivers)	As BS EN ISO 6789 :2017 0.7 N⋅m to 1500 N⋅m	0.30 %	Calibrations may also be given in lbf.in and lbf.ft.	

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK
	CoMech Metrology Ltd
Accredited to ISO/IEC 17025:2017	Issue No: 046 Issue date: 22 March 2024
	Calibration performed by the Organisation at the locations specified
Management	

			Code
			В
s listed below are applicable for t is by direct comparison against l	he calibration of both measurement aboratory standards unless otherwit	t instruments and for instru se stated in the remark's o	uments with an column.
0 mV to 100 mV 100 mV to 1 V 1 V to 10 V 10 V to 100 V 100 V to 1.1 kV	7.5 μV/V + 420 nV 2.9 μV/V + 1.5 μV 2.9 μV/V + 14 μV 4.3 μV/V + 340 μV 4.4 μV/V + 10 mV		В
0 V to 90 mV 90 mV to 20 V	0.012 % + 12 μV 0.013 % + 2.3 mV	These output values can be measured	С
0 V to 100 mV 90 mV to 20 V	0.012 % + 12 μV 0.013 % + 2.3 mV	Values available for direct measurement	с
1 kV to 40 kV	0.70 % + 15 V	These output values can be measured.	В
0 μA to 10 μA 10 μA to 100 μA 100 μA to 1 mA 1 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A 1 A to 10 A 10 A to 20 A	540 pA 870 pA 9.2 μA/A + 10 nA 14 μA/A + 70 n A 57 μA/A + 1.6 μA 130 μA/A + 100 μA 230 μA/A + 580 nA 0.020 % + 4.9 mA		В
1 A to 2 A 2 A to 20 A 20 A to 120 A	82 μΑ/Α + 370 μΑ 76 μΑ/Α + 9.8 mA 50 μΑ/Α	Values available for direct measurement	В
0 A to 24 mA 0 A to 24 mA	0.031 % + 2.3 μA 0.031 % + 3.4 μA	These output values can be measured Values available for	С
1 A to 10.5 A 10.5 A to 20 A 20 A to 105 A 105 A to 525 A 525 A to 1000 A 1000 A to 2500 A	0.074 % + 1.2 mA 0.45 % + 26 mA 0.075 % + 12 mA 0.075 % + 60 mA 0.50 % + 1.3 A 0.069 % + 520 mA	direct measurement Output values above 10 A – simulation Using a multiturn coil	В
	s listed below are applicable for t is by direct comparison against l 0 mV to 100 mV 100 mV to 1 V 1 V to 10 V 100 V to 1.1 kV 0 V to 90 mV 90 mV to 20 V 0 V to 100 mV 90 mV to 20 V 1 kV to 40 kV 0 µA to 10 µA 100 µA to 100 µA 100 µA to 100 mA 100 mA to 100 mA 100 mA to 100 mA 100 mA to 100 mA 100 mA to 1 A 1 A to 20 A 1 A to 20 A 2 A to 20 A 20 A to 120 A 0 A to 24 mA 0 A to 24 mA 1 A to 10.5 A 105 A to 525 A 525 A to 1000 A 1000 A to 2500 A	S listed below are applicable for the calibration of both measuremen is by direct comparison against laboratory standards unless otherwi 0 mV to 100 mV 0 mV to 100 mV 7.5 μV/V + 420 nV 100 mV to 1 V 2.9 μV/V + 1.5 μV 1 V to 100 V 2.9 μV/V + 14 μV 100 V to 1.1 kV 4.4 μV/V + 10 mV 0 V to 90 mV 0.012 % + 12 μV 90 mV to 20 V 0.013 % + 2.3 mV 0 V to 100 mV 0.012 % + 12 μV 90 mV to 20 V 0.013 % + 2.3 mV 0 V to 100 mV 0.012 % + 12 μV 90 mV to 20 V 0.013 % + 2.3 mV 1 kV to 40 kV 0.70 % + 15 V 0 μA to 10 μA 540 pA 10 μA to 100 μA 540 pA 100 μA to 100 μA 570 pA 100 μA to 100 μA 2.9 μA/A + 10 nA 1 mA to 100 mA 14 μA/A + 70 n A 10 A to 20 A 0.020 % + 4.9 mA 1 A to 2 A 2.9 μA/A + 370 μA 2 A to 20 A 76 μA/A + 9.8 mA 2 0 A to 120 A 0.031 % + 2.3 μA 0 A to 24 mA 0.031 % + 3.4 μA 1 A to 10.5 A 0.075 % + 12 mA 105 A to 20 A <td>Jisted below are applicable for the calibration of both measurement instruments and for instricts by direct comparison against laboratory standards unless otherwise stated in the remark's of 0 mV to 100 mV 0 mV to 100 mV 7.5 µ/V/ + 420 nV 10 mV to 10 V 2.9 µ/V/ + 1.5 µ/V 10 mV to 10 V 2.9 µ/V/ + 1.5 µ/V 10 mV to 10 V 2.9 µ/V/ + 1.5 µ/V 10 mV to 10 V 2.9 µ/V/ + 14 µ/V 10 vto 100 mV 0.012 % + 12 µ/V 0 mV to 20 V 0.013 % + 2.3 mV 0 V to 100 mV 0.012 % + 12 µ/V 90 mV to 20 V 0.013 % + 2.3 mV 1 kV to 40 kV 0.70 % + 15 V 1 kV to 40 kV 0.70 % + 15 V 1 kV to 40 kV 0.70 % + 15 V 1 kV to 40 kV 0.70 % + 15 µ/ 10 µA to 100 µA 540 pA 10 µA to 100 µA 540 pA 10 µA to 100 µA 540 pA 10 µA to 100 µA 520 µA/A + 10 nA 1 A to 2 A 22 µA/A + 10 nA 1 A to 2 A 22 µA/A + 10 nA 1 A to 2 A 20 µA/A + 30 µA 20 A to 120 A 76 µA/A + 9.8 mA 20 A to 120 A 50 µA/A 0 A to 24 mA 0.031 % + 2.3 µA</td>	Jisted below are applicable for the calibration of both measurement instruments and for instricts by direct comparison against laboratory standards unless otherwise stated in the remark's of 0 mV to 100 mV 0 mV to 100 mV 7.5 µ/V/ + 420 nV 10 mV to 10 V 2.9 µ/V/ + 1.5 µ/V 10 mV to 10 V 2.9 µ/V/ + 1.5 µ/V 10 mV to 10 V 2.9 µ/V/ + 1.5 µ/V 10 mV to 10 V 2.9 µ/V/ + 14 µ/V 10 vto 100 mV 0.012 % + 12 µ/V 0 mV to 20 V 0.013 % + 2.3 mV 0 V to 100 mV 0.012 % + 12 µ/V 90 mV to 20 V 0.013 % + 2.3 mV 1 kV to 40 kV 0.70 % + 15 V 1 kV to 40 kV 0.70 % + 15 V 1 kV to 40 kV 0.70 % + 15 V 1 kV to 40 kV 0.70 % + 15 µ/ 10 µA to 100 µA 540 pA 10 µA to 100 µA 540 pA 10 µA to 100 µA 540 pA 10 µA to 100 µA 520 µA/A + 10 nA 1 A to 2 A 22 µA/A + 10 nA 1 A to 2 A 22 µA/A + 10 nA 1 A to 2 A 20 µA/A + 30 µA 20 A to 120 A 76 µA/A + 9.8 mA 20 A to 120 A 50 µA/A 0 A to 24 mA 0.031 % + 2.3 µA

	Schedule of Accreditation issued by United Kingdom Accreditation Service
	CoMech Metrology Ltd
0318 Accredited to ISO/IEC 17025:2017	Issue No: 046 Issue date: 22 March 2024
	Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
ELECTRICAL continued				
Resistance	$\begin{array}{c} 0 \ \Omega \ to \ 10 \ \Omega \\ 10 \ \Omega \ to \ 100 \ \Omega \\ 100 \ \Omega \ to \ 100 \ \Omega \\ 100 \ \Omega \ to \ 1 \ k\Omega \\ 1 \ k\Omega \ to \ 100 \ k\Omega \\ 100 \ k\Omega \ to \ 100 \ k\Omega \\ 100 \ M\Omega \ to \ 100 \ M\Omega \\ 100 \ M\Omega \ to \ 1.1 \ G\Omega \\ 1 \ G\Omega \ to \ 10 \ G\Omega \end{array}$	17 μΩ/Ω + 10 nΩ 9.0 μΩ/Ω + 50 nΩ 9.0 μΩ/Ω + 220 nΩ 9.0 μΩ/Ω + 25 μΩ 9.0 μΩ/Ω + 890 μΩ 9.0 μΩ/Ω + 10 Ω 12 μΩ/Ω + 15 kΩ 39 μΩ/Ω + 110 kΩ 650 μΩ/Ω + 120 MΩ 1300 μΩ/Ω + 210 MΩ		В
AC Voltage	1 mV to 100 mV 10 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 100 kHz	88 μV/V + 10 μV 230 μV/V + 8.2 μV 530 μV/V + 3.7 μV		В
	10 Hz to 1 kHz 1 kHz to 10 kHz 1 kHz to 10 kHz 10 kHz to 50 kHz	76 μV/V + 28 μV 230 μV/V + 64 μV 530 μV/V + 140 μV		
	1 V to 10 V 10 Hz to 1 kHz 1 kHz to 10 kHz 10 kHz to 50 kHz	76 μV/V + 560 μV 76 μV/V + 430 μV 230 μV/V + 1.5 V		
	10 V to 100 V 10 Hz to 1 kHz 1 kHz to 10 kHz 10 kHz to 50 kHz	250 μV/V + 2.6 mV 250 μV/V + 17 mV 590 μV/V + 25 mV		
	100 V to 1050 V 10 Hz to 1 kHz	250 μV/V + 25 mV		
High Voltage	1 kV to 40 kV 50 Hz to 60 Hz	1.5 % + 45 V	These output values can be measured.	В
AC Current	1 μΑ to 100 μΑ <i>40 Hz to 1 kHz</i>	0.0010 % + 7.6 nA		В
	100 μA to 1 mA <i>40 Hz to 1 kHz</i>	0.030 % + 90 nA		
	1 mA to 10 mA <i>40 Hz to 1 kHz</i>	0.030 % + 1.1 µA		
	10 mA to 100 mA 40 Hz to 1 kHz	0.030 % + 2.5 µA		

<u>at</u> a	Schedule of Accreditation issued by	
	United Kingdom Accreditation Service	
- (≯∢) -	2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK	
UKAS CALIBRATION	CoMech Metrology Ltd	
0318	Issue No: 046 Issue date: 22 March 2024	
Accredited to ISO/IEC 17025:2017		
Calibration performed by the Organisation at the locations specified		

Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
100 mA to 1 A 40 Hz to 1 kHz	0.030 % + 4.6 µA		В
10 A to 20 A 40 Hz to 1 kHz	020 % + 4.9 mA		
1 A to 3.2 A 10 Hz to 3 kHz 3 kHz to 10 kHz	0.12 % + 560 μA 0.13 % + 3.0 mA	Values available for direct measurement	
3.2 A to 10.5 A 10 Hz to 3 kHz 3 kHz to 10 kHz	0.23 % + 4.4 mA 0.58 % + 12 mA		
10.5 A to 120 A 50 Hz 51 Hz to 100 Hz	0.36 % + 140 mA 0.58 % + 110 mA	Simulation using a Multiturn coil	
10.5 A to 105 A 10 Hz to 400 Hz	0.28 % + 44 mA		
105 A to 525 A 10 Hz to 400 Hz	0.28 % + 220 mA		
500 A to 1000 A 50 Hz 51 Hz to 100 Hz	0.043 % + 130 mA 0.043 % + 310 mA		
1000 A to 2500 A 50 Hz to 100 Hz	0.043 % + 1.3 A		
0.1 nF to 1 nF 1 nF to 10 nF 10 nF to 100 nF 100 nF to 1 μF 1 μF to 10 μF 10 μF to 100 μF 100 μF to 1 mF 1 mF to 10 mF 10 mF to 100 mF	0.18 % + 10 pF 0.080 % + 4.6 pF 0.049 % + 58 pF 0.041 % + 140 pF 0.042 % + 2.5 nF 0.061 % + 28 nF 0.062 % + 0.31 µF 0.071 % + 3.3 µF	Simulated values for the calibration of capacitance meters.	В
<i>At 1 kHz</i> 10 mV to 100 mV 100 mV to 120 V	0.040 % + 27 μV 0.050 %		В
2 ns to 5 s	0.12 %		
	Range100 mA to 1 A 40 Hz to 1 kHz10 A to 20 A 40 Hz to 1 kHz1 A to 3.2 A 10 Hz to 3 kHz 3 kHz to 10 kHz3.2 A to 10.5 A 10 Hz to 3 kHz 3 kHz to 10 kHz10.5 A to 120 A 50 Hz 51 Hz to 100 Hz10.5 A to 105 A 10 Hz to 400 Hz105 A to 525 A 10 Hz to 400 Hz105 A to 525 A 10 Hz to 100 Hz1000 A to 2500 A 50 Hz 51 Hz to 100 Hz1000 A to 2500 A 50 Hz to 100 NF 100 nF to 100 nF 100 nF to 100 pF $100 \mu F to 100 \mu F100 \mu F to 100 \mu F100 \mu F to 100 m F100 m V to 100 m V100 mV to 120 V2 ns to 5 s$	RangeExpanded Measurement Uncertainty (k = 2)100 mA to 1 A 40 Hz to 1 kHz0.030 % + 4.6 µA10 A to 20 A 40 Hz to 1 kHz.200 % + 4.9 mA1 A to 3.2 A 10 Hz to 3 kHz0.12 % + 560 µA 0.13 % + 3.0 mA3.2 A to 10.5 A 10 Hz to 3 kHz0.23 % + 4.4 mA 0.58 % + 12 mA10.5 A to 100 Hz0.36 % + 140 mA 0.58 % + 110 mA10.5 A to 120 A 50 Hz0.36 % + 140 mA 0.58 % + 110 mA10.5 A to 120 A 50 Hz0.28 % + 44 mA10.5 A to 100 Hz0.28 % + 44 mA105 A to 525 A 10 Hz to 400 Hz0.28 % + 130 mA500 A to 1000 A 50 Hz0.043 % + 130 mA1000 A to 5200 A 50 Hz to 100 Hz0.043 % + 130 mA1000 A to 2500 A 50 Hz to 100 Hz0.043 % + 1.3 A0.11 F to 1 nF 10 nF to 10 nF 10 nF to 100 nF 10 mF to 100 mF0.043 % + 1.3 A0.041 % + 140 pF 100 µF to 100 µF 100 µF to 100 µF 100 µF to 100 µF 100 µF to 100 mF0.042 % + 2.5 nF 0.061 % + 28 nF 0.071 % + 3.3 µFAt 1 kHz 10 mV to 100 mV 100 mV to 120 V0.040 % + 27 µV 0.050 %2 ns to 5 s0.12 %	Range Expanded Measurement Uncertainty (k = 2) Remarks 100 mA to 1 A 40 Hz to 1 KHz 0.030 % + 4.6 µA Image: Comparison of the comparison

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK		
	CoMech Metrology Ltd		
0318 Accredited to ISO/IEC 17025:2017	Issue No: 046 Issue date: 22 March 2024		
	Calibration performed by the Organisation at the locations specified		

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty ($k = 2$)	Remarks	Location Code
17 th Edition capability				
Insulation Resistance	10 kΩ to 40 kΩ 40 kΩ to 200 kΩ 200 kΩ to 10 MΩ 10 MΩ to 1 GΩ 1 GΩ to 2 GΩ	0.020 % + 15 Ω 0.025 % + 15 Ω 0.050 % + 590 Ω 0.22 % + 120 kΩ 0.52 % + 120 kΩ		В
Insulation Resistance: test current	0 mA to 9.9 mA	76 µA		
Continuity resistance	100 mΩ to 400 mΩ 400 mΩ to 5 Ω 5 Ω to 30 Ω 30 Ω to 200 Ω 200 Ω to 2 kΩ 2 kΩ to 10 kΩ	1.0 % + 1.5 mΩ 0.80 % + 8.3 mΩ 0.12 % 0.11 % 0.11 % 0.17 %		В
Continuity resistance current	50 mA to 400 mA	21 %		В
Voltage Output	3 V to 600 V 3 V <i>50 Hz</i> to 600 V <i>50 Hz</i>	0.15 % 0.18 %		
Voltage measurement	180 mV to 1 kV 130 mV <i>50 Hz</i> to 1 kV <i>50 Hz</i>	0.060 % + 180 mV 0.10 % + 130 mV		В
High Voltage 50 Hz	1 kV to 7 kV 10 kV to 25 kV	0.25 % + 24 V 0.25 % +120 V		В
High Voltage DC	1 kV to 10 kV 10 kV to 25 kV	0.060 % + 40 V 0.060 % + 120 V		В
High Voltage Current 50 Hz	300 μA 3 mA 30 mA 300 mA	0.36 % + 3.4 μA 0.24 % + 8.5 μA 0.58 % + 27 μA 0.23 % + 180 μA		В
High Voltage Current DC	300 µA 3 mA 30 mA 300 mA	0.36 % + 3.4 μA 0.24 % + 8.5 μA 0.58 % + 25 μA 0.23 % + 180 μA		В
Loop impedance 50 Hz	10 mΩ to 90 mΩ 90 mΩ to 320 mΩ 320 mΩ to 490 mΩ 490 mΩ to 1 Ω 1 Ω to 5 Ω 5 Ω to 500 Ω 500 Ω to 1.8 kΩ	$\begin{array}{l} 3.7 \ \% + 18 \ m\Omega \\ 1.8 \ \% + 18 \ m\Omega \\ 0.90 \ \% + 23 \ m\Omega \\ 0.60 \ \% + 24 \ m\Omega \\ 0.30 \ \% + 43 \ m\Omega \\ 0.10 \ \% + 200 \ m\Omega \\ 0.10 \ \% + 24 \ \Omega \end{array}$		В
RCD Trip Current 50 Hz	1 mA to 30 mA 30 mA to 300 mA 300 mA to 3 A	0.20 % + 38 μA 0.20 % + 1.4 mA 0.20 % + 11 mA		В
RCD Trip time	0 ms to 5 s	0.10 % + 4.7 ms		В

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK		
	CoMech Metrology Ltd		
0318 Accredited to ISO/IEC 17025:2017	Issue No: 046 Issue date: 22 March 2024		
	Calibration performed by the Organisation at the locations specified		

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty ($k = 2$)	Remarks	Location Code
17 th Edition capability				
PAT Insulation resistance	10 kΩ to 40 kΩ 40 kΩ to 200 kΩ 200 kΩ to 10 MΩ 10 MΩ to 1 GΩ 1 GΩ to 2 GΩ	0.020 % + 15 Ω 0.025 % + 15 Ω 0.050 % + 590 Ω 0.22 % + 120 kΩ 0.52 % + 120 kΩ		В
Earth Bond resistance	0 Ω to 10 Ω 10 Ω to 1 kΩ	0.30 % + 40 mΩ 0.11 % + 200 mΩ		В
Earth bond current	100 μA to 100 mA 100 mA to 20 A	4.0 mA 0.53 % + 32 mA		В
Leakage current	1 µA to 30 mA	0.52 % + 20 μA		В
Temperature simulation Thermocouple type				В
к	-180 °C to 0 °C	0.16 °C	Excluding internal reference junction	
	0 °C to 1300 °C	0.14 °C	compensation	
J	-200 ℃ to 0 ℃ 0 ℃ to 1190 ℃	0.15 °C 0.13 °C		
к	-180 °C to 0 °C	0.64 °C	Including internal reference junction	
	0 °C to 1300 °C	0.63 °C	compensation	
J	-200 ℃ to 0 ℃ 0 ℃ to 1190 ℃	0.63 °C 0.63 °C		
Resistance thermometer simulation				
PT 100	-200 °C to 0 °C 0 °C to 850 °C	0.21 °C 0.21 °C		
к	-200 °C to 0 °C 0 °C to 1000 °C 1000 °C to 1362 °C	0.46 °C 0.23 °C 0.24 °C	Excluding internal reference junction compensation	С
J	-210 °C to 0 °C 0 °C to 800 °C 800 °C to 1200 °C	0.46 °C 0.30 °C 0.38 °C		
к	-200 °C to 0 °C 0 °C to 1000 °C 1000 °C to 1362 °C	0.77 °C 0.68 °C 0.65 °C	Including internal reference junction compensation	С
J	-210 °C to 0 °C 0 °C to 800 °C 800 °C to 1200 °C	0.89 °C 0.78 °C 0.82 °C		

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK
	CoMech Metrology Ltd
0318 Accredited to ISO/IEC 17025:2017	Issue No: 046 Issue date: 22 March 2024
	Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty $(k = 2)$	Remarks	Location Code
TEMPERATURE Electronic thermometers with indicators and data-loggers	-25 °C to +28 °C +28 °C to +350 °C	0.48 °C 0.43 °C 0.60 °C	By comparison with a reference thermometer in a dry block calibrator. Performed in air using a portable chamber	B&C B
Temperature controlled ovens, environmental chambers, fridges/refrigerators, freezers (inclusive of associated indicators, controllers and recorders, all with sensors, within the specified parameters and ranges)	-25 °C to 0°C 0 °C to +250 °C	0.60 °C 0.40 °C	Single and multipoint time dependent temperature profiling, also referred to as spatial temperature surveying or mapping.	С
HUMIDITY Relative Humidity	7 %rh to 95 %rh Performed at 25 °C	1.7 %rh 0.60 °C	By comparison with a reference hygrometer.	В
END				

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK	
	CoMech Metrology Ltd	
0318 Accredited to ISO/IEC 17025:2017	Issue No: 046 Issue date: 22 March 2024	
	Calibration performed by the Organisation at the locations specified	

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where q is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: $Q[a, b] = [a^2 + b^2]^{1/2}$