Schedule of Accreditation issued by ## **United Kingdom Accreditation Service** 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 23 Brindley Road **Bayton Road Ind Estate** Exhall Coventry **West Midlands** CV7 9EP Tel: +44 (0) 2476 644661 E-Mail: enquiries@mqs.co.uk Website: www.mqs-shop.co.uk **Contact: Mr Luke Purkiss** Accredited to ISO/IEC 17025:2017 Calibration performed by the Organisation at the locations specified below #### Locations covered by the organisation and their relevant activities #### **Laboratory locations:** | Location details | | Activity | Location code | |--|---|--|---------------| | Address 23 Brindley Road Bayton Road Ind Estate Exhall Coventry West Midlands | Local contact
Mr Luke Purkiss
Tel: 02476 644661 | Dimensional Electrical Force Torque Pressure | А | | Address 37 Western Parkway Business Centre Lower Ballymount Road Dublin 12 Ireland | Local contact
Mr P Roche
Tel: +353 [0] 1 4502 666 | Dimensional | В | #### Site activities performed away from the locations listed above: | Location details | | Activity | Location code | |-----------------------------------|--|-------------|---------------| | At customer's premises
UK | Local contact
Mr Luke Purkiss
Tel: 02476 644661 | Dimensional | С | | At customer's premises
Ireland | Local contact
Mr Paul Roche
Tel: +353 (0) 1 4502 666 | Dimensional | О | Assessment Manager: BC4 Page 1 of 18 Accredited to ISO/IEC 17025:2017 # Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 Calibration performed by the Organisation at the locations specified Calibration and Measurement Capability (CMC) | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |---|---|--|---|------------------| | | | S AND UNCERTAINTY IN MIC | ROMETRES | | | LENGTH | | | NOTES | | | Gauge blocks
Inch (Steel, Ceramic and
tungsten carbide) | As BS 4311:Part 1 2007
0.05 Inch to 0.4 inch
0.4 Inch to 1 inch
2 inch
3 inch
4 inch | Class (see Notes) C 3.0 4.0 5.0 6.0 7.0 | Class C uncertainties apply to
the measurement of steel,
ceramic and tungsten carbide
gauges by comparison with
grade K standards of length of a
similar material. Class C
uncertainties apply to grade 0, 1
and 2 gauges to BS EN ISO | A | | Millimetre (Steel, Ceramic and tungsten carbide) | As BS EN ISO 3650: 1999 0.5 to 10 10 to 25 30, 40, 50 60, 70, 75 80, 90, 100 | C
0.080
0.10
0.12
0.15
0.18 | 3650:1999 and BS 4311:Part
1:2007 All linear calibrations may be
given in inch units. | A | | Thread measuring cylinders | 0.1 to 5.0 diameter | 0.25 | As BS 16239:2013, or BS 5590:1978 or BS3777:1964 and specials. Calibration performed using a length measuring machine and length standards | A & B | | Precision pin gauges (parallel) | 0.1 to 10 diameter | 0.25 | Calibration performed using a length measuring machine and length standards | A & B | | Plain plug gauges
(parallel) | 1 to 50 diameter
50 to 100
100 to 150
150 to 200
200 to 300 | 0.50
0.80
1.0
1.2
2.0 | Calibration performed using a length measuring machine and length standards | A & B | | Plain plug gauges (taper) including check plugs | | | | | | Taper up to 1 in 8 on diameter | 5 to 50 diameter
50 to 100
100 to 200 | 3.0 on diameter
4.0
10 | Calibration performed using a length measuring machine and length standards | A & B
A
A | | Tapers above 1 in 8 | 5 to 50 diameter
50 to 100
100 to 200 | 5.0 on diameter
6.0
12 | Calibration performed using a length measuring machine and length standards | A & B
A
A | Assessment Manager: BC4 Page 2 of 18 Accredited to ISO/IEC 17025:2017 ## Schedule of Accreditation issued by ## United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 #### Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |--|---|--|---|----------------------| | | - | S AND UNCERTAINTY IN MIC | ROMETRES | | | LENGTH (cont'd) | | | | | | Plain ring gauges
(parallel) and setting
standards | 1 to 10 diameter
10 to 25
25 to 50
50 to 100
100 to 150
150 to 250 | 0.80
0.50
0.80
1.0
1.5
2.5 | Calibration performed using a length measuring machine and length standards | А | | Plain ring gauges
(parallel) and setting
standards | 2 to 10 diameter
10 to 25
25 to 50
50 to 100
100 to 150 | 1.2
1.0
1.2
1.5
2.0 | Calibration performed using a length measuring machine and length standards | В | | Plain ring gauges (taper) | | | | | | Taper up to 1 in 8 on diameter | 2 to 5 diameter
5 to 50
50 to 100
100 to 200 | 4.0 on diameter
4.0
5.0
6.0 | Calibration performed using a length measuring machine and length standards | A
A & B
A
A | | Tapers above 1 in 8 on diameter | 5 to 50 diameter
50 to 100
100 to 200 | 6.0 on diameter
7.0
8.0 | Calibration performed using a length measuring machine and length standards | A & B
A
A | | Length gauges, flat and spherical ended | 25 to 1000 | 1.0 + (8.0 x length in m) | Calibration performed by comparison to length standards | A & B | | Plain gap gauges
(parallel) | 0.5 to 100
100 to 200
200 to 300 | 3.0
5.0
8.0 | Calibration performed by comparison to length standards | A & B | | Parallels | 0 to 50 x 100 x 400 | 1.5 to 5.0 | Calibration as
BS 906:1972 | A & B | | Vee blocks | 20 to 150 diameter, vee capacity | 1.5 to 5.0 | Calibration as
BS 3731:1987 | A & B | | Screw plug gauges
(parallel) including check
and setting plugs
diameter, pitch and flank
angle
See Note 2 | 1 to 100
100 to 150
150 to 300 | 2.5 on pitch diameter 5.0 on pitch diameter 8.0 on pitch diameter 1.5 on pitch 5.0 minutes of arc on flank angle | Note 2. Single & multi-start, symmetrical thread forms only. Calibration performed using screw thread diameter machine and thread measuring cylinders | A & B
A
A | Assessment Manager: BC4 Page 3 of 18 Accredited to ISO/IEC 17025:2017 ## Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded
Measurement
Uncertainty (<i>k</i> = 2) | Remarks | Location
Code | | |--|--|--|--|------------------|--| | | RANGE IN MILLIMETRES AND UNCERTAINTY IN MICROMETRES UNLESS OTHERWISE STATED | | | | | | LENGTH (cont'd) | | | | | | | Screw plug gauges
(taper) including check
plugs but excluding API
gauges
See Note 10 | 5 to 100 diameter | 5.0 on pitch diameter | Note 10. Single start,
symmetrical thread forms only.
Calibration performed using
screw thread diameter machine
and thread measuring cylinders | A | | | Screw ring gauges
(parallel)
See Note 2 | 1 to 12
10 to 100
100 to 150
150 to 250 | See note 3 5.0 on pitch diameter 6.0 on pitch diameter 10.0 on pitch diameter 1.5 on pitch 5.0 minutes of arc on flank angle | Note 3. Functional test of size using check plugs. Note 2. Single & multi-start, symmetrical thread forms only. Calibration performed using length measuring machine and styli | A | | | | 1 to 12 | See note 3 | Note 3. Functional test of size using check plugs. | В | | | | 5 to 100 | 5.0 on pitch diameter | Note 2. Single & multi-start, symmetrical thread forms only. Calibration performed using length measuring machine and styli | В | | | Screw ring gauges (taper) - Ground Threads only and excluding API gauges See Note 10 | 6 to 75 diameter
75 to 150 diameter | 5.0 on
7.0 pitch
diameter | Note 10. Single start,
symmetrical thread forms only.
Calibration performed using
length measuring machine and
styli | A | | | Screw thread adjustable caliper gauges (parallel) | 1 to 100 diameter | See note 11 | Note 11. Functional test of size using setting plugs calibrated with a CMC of 2.5 µm | А | | | Receiver, position and profile gauges, jigs and fixtures | 0 to 1000 x 750 x 500 | 3.0 + (10 x length in m)
See note 7 | Note 7. Features and associated parts of these gauges / fixtures can be measured to the uncertainties given for equivalent items and methods listed in this schedule. | A | | | | | | | | | | | | | | | | Assessment Manager: BC4 Page 4 of 18 Accredited to ISO/IEC 17025:2017 #### **Schedule of Accreditation** issued by ## United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 #### Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |--|--|---|--|------------------| | | | S AND UNCERTAINTY IN MIC | ROMETRES | | | | ONLLS | | | | | LENGTH (cont'd) | | | | | | Orifice Plates | BS EN ISO 5167-1:2003 | | BS EN ISO 5167-1:2003
Calibration performed by
comparison to length standards | А | | | Bore diameter (d)
12.5 to 200
200 to 500 | 7.0
10 | companson to length standards | | | | Perpendicularity of bore Plate thickness (E) Edge thickness (e) Surface roughness - Ra Flatness of face Bevel angle (α) Edge radius (G) Plate eccentricity Drain hole diameter | 0.050 degrees of arc 10 40 10 % of tolerance 5.0 1.0 degree of arc 20 20 5.0 | | | | ANGLE | | | Note 1. The uncertainty quoted is for the departure from flatness, straightness, parallelism or squareness, i.e. the distance separating the parallel planes which just enclose the surface under consideration. | | | Squares | | | | | | Blade type | 50 to 300
300 to 600
600 to 900 | 3.0 On
5.0 squareness
8.0
See Note 1 | Calibration performed as
BS 939:2007 | A & B
A
A | | Cylindrical type | 0 to 300
300 to 600 | 2.0 On
4.0 squareness
See Note 1 | Calibration performed as
BS 939:2007 | А | | Block type | 0 to 600 | 3.0 On squareness
See Note 1 | Calibration performed as
BS 939:2007 | А | | Angle plates and box angle plates | 50 to 600 | Squareness
3.0 + (1.0 per 100 mm)
Parallelism
1.0 + (1.0 per 100 mm)
See Note 1 | Calibration performed as
BS 5535:1978 | A & B | | Bevel protractors | 0° to 360° | 6.0 minutes of arc | Calibration performed as
BS 1685:2008 | A & B | Assessment Manager: BC4 Page 5 of 18 Accredited to ISO/IEC 17025:2017 ## Schedule of Accreditation issued by ## United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 #### Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded
Measurement
Uncertainty (<i>k</i> = 2) | Remarks | Location
Code | |---|-------------------------------|---|--|------------------| | | | S AND UNCERTAINTY IN MICS OTHERWISE STATED | ROMETRES | | | LENGTH (cont'd) | | | | | | Sine bars | 100 to 300 | 1.0 + (10 x length in m)
3.0 Seconds of arc | Calibration performed as BS 3064:1978 | А | | Sine tables | 100 to 500 | 1.0 + (10 x length in m)
3.0 Seconds of arc | Calibration performed as BS 3064:1978 | A | | FORM | | | Note 1. The uncertainty quoted is for the departure from flatness, straightness, parallelism or squareness, i.e. the distance separating the parallel planes which just enclose the surface under consideration. | | | Surface plates
Granite / Cast iron | 160 x 100 to 4000 x 4000 | 1.5 + (0.80 x diagonal in m)
See Note 1 | Calibration performed as
BS 817:2008 | A & B & C
& D | | Straightedges Cast iron Steel / Granite | 200 to 4000
200 to 2000 | 1.0 + (2.0 x length in m) See Note 1 1.0 + (2.0 x length in m) See Note 1 | Calibration performed as
BS 5204:Part 1:1975
Calibration performed as
BS 5204:Part 2:1977 | А | | Straightedges
Cast iron
Steel / Granite | 200 to 1000
200 to 1000 | 2.0 + (2.0 x length in m) See Note 1 2.0 + (2.0 x length in m) See Note 1 | Calibration performed as
BS 5204:Part 1:1975
Calibration performed as
BS 5204:Part 2:1977 | В | | Precision balls- various materials | 1 to 50 diameter | 0.80 on diameter | Calibration performed using a length measuring machine and length standards | A | | Roundness
External
Internal | 1 to 350 diameter
3 to 350 | 0.050 on radius | Calibration performed as
BS 3730 using a roundness
machine | А | | Surface texture
(excluding measurement
standards and roughness
comparison specimens) | Ra 0.02 µm to 80 µm | 10 % of measured value | Calibration performed as BS 1134:Part 1:1988 using a surface texture measuring instrument | A | | | | | | | Assessment Manager: BC4 Page 6 of 18 Accredited to ISO/IEC 17025:2017 ## Schedule of Accreditation issued by ## United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |--|--|---|---|------------------| | | | S AND UNCERTAINTY IN MIC
S OTHERWISE STATED | ROMETRES | | | MEASURING INSTRUMEN | ITS AND MACHINES | | | | | Micrometers | | | | | | External micrometer | 0 to 1500
0 to 150 | Heads 2.0 between any two points. | Calibrated as
BS 870:2008 | A
B | | Internal micrometer | 0 to 900 | Setting and extension rods | Calibrated as
BS 959:2008 | A & B | | Depth | 0 to 300 | 1.0 + (8.0 x length in m) | Calibrated as
BS 6468:2008 | A & B | | Indicating micrometers | 0 to 100 | Indicators 0.50
Overall performance 1.5 | Calibration performed using length standards | A & B | | Bore micrometers (three- point) | 1 to 5
5 to 100
100 to 250 | 3.0
3.0
8.0 | Calibration performed by comparison to master setting ring gauges | A
A & B
A | | Bench micrometer | 0 to 100 | Overall performance 2.0 | Calibration as
NPL MOY/SCMI 22 | А | | Combination sets | 0° to 360° (Protractor)
0 to 500 (Rule) | 30 minutes of arc
5.0 + (10 x length in m) | Calibration performed by comparison to length measuring machine and angle gauges | A | | Calliper gauges including vernier, dial and digital types | ISO 13385-1 2019 Partial surface contact error (E) | | By comparison to length standards | А | | ·ypoo | 0 to 50mm
50 to 200mm
200 to 400mm
400 to 600mm
600 to 800mm
800 to 1000mm
Shift Error (S) Internal Jaws
3 to 50 mm
Shift Error (S) Step/Depth
3 to 50 mm | 1.0
2.0
4.0
4.0
6.0
7.0
3.0 | The stated uncertainty has been calculated in accordance With ISO 14253-5 and relates to the test value uncertainty. | | | Height gauges - (Simple) including vernier, dial and digital types (See note 8 and note 9) | 0 to 1000 | Length measurement error (E):
5.0 + (10 x length in m) | Calibration as BS EN ISO 13225:2012 Note 8. Simple height gauges - vernier, dial and digital instruments designed only for measuring distances parallel to the beam | A & B | Assessment Manager: BC4 Page 7 of 18 Accredited to ISO/IEC 17025:2017 # Schedule of Accreditation issued by d. Kingdom, Accreditation, Serve ## United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |--|--|--|--|------------------| | | | S AND UNCERTAINTY IN MIC | ROMETRES | | | MEASURING INSTRUMEN | ITS AND MACHINES (cont'd) | | | | | Vernier type gauges including dial and digital | | | | | | Caliper | 0 to 1000
1000 to 2000 | Overall performance
10 + (30 x length in m) | Calibration as
BS 887:2008 | A & B | | Height | 0 to 1000 | Overall performance
10 + (30 x length in m) | Calibration as
BS 1643:2008 withdrawn | A & B | | Depth | 0 to 600 | Overall performance
10 + (30 x length in m) | Calibration as
BS 6365:2008 | A & B | | Dial gauges and dial test indicators | 0 to 50 | 1.0 | Calibration as
BS 907:2008 and
BS 2795:1981 | A & B | | Comparators (external) | 250 to 20 000 magnifications | 1.0 % of range
Minimum 0.10 | Calibration as BS 1054:1975 | A & B | | Displacement transducers | 0 to 100 | 0.30 + (4.0 x length in m) | Calibration performed by comparison to length standards | A & B | | Thread diameter measuring | 0 to 300 capacity | Overall performance 1.5 | Calibration as NPL
MOY/SCMI/9 | А | | Plain taper diameter measuring | 0 to 100 | Overall performance on diameter 1.5 | Calibration as NPL
MOY/SCMI/48 | A | | Toolmakers Microscopes | Linear 0 to 150 x 150
Angular 0 to 360° | 3.0
3 minutes of arc | Calibration as NPL
MOY/SCMI/2 | A & C | | Universal microscopes | Linear 0 to 300 x 300
Angular 0 to 360° | 3.0
3 minutes of arc | Calibration by comparison to reference scale | A & C | | Air gauging units
(See Note 5) | 0 to 5000 magnifications | 0.50 % of range | Brown & Sharpe PMI Ltd products only. Calibrated using length transducer | A | | Radius Gauges | 0 to 300 mm | 10 | By optical projection | А | | Feeler Gauges | 0.03 to 1.00 | 3.0 | Calibration as BS 957:2008 | A & B | | Internal and External
Caliper Gauges | 0 to 150 | 1.0 | Calibration performed by comparison to length standards | A & B | | | | | | | Assessment Manager: BC4 Page 8 of 18 Accredited to ISO/IEC 17025:2017 ## Schedule of Accreditation issued by ## United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 #### Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |---|---|--|---|-------------------------| | | | S AND UNCERTAINTY IN MICS OTHERWISE STATED | ROMETRES | | | MEASURING INSTRUMEN | TS AND MACHINES (cont'd) | | | | | Clinometers | 0 to 360 degrees | 10 seconds of arc | Calibration performed by comparison to a rotary table | А | | Electronic indicating levels | 0 to 20 minutes of arc | 1.0 % of range
Minimum 0.50 seconds of
arc | Calibration performed by comparison to known angle deflection | A & B | | Spirit levels | 5 seconds of arc to 60 minutes of arc nominal sensitivity | Mean sensitivity:
10 % of nominal
Minimum 0.50 seconds of
arc | Calibration as
BS 3509:1962 and
BS 958:1968 | A & B | | Micrometer heads | 0 to 100 | 1.0 | Calibration as
BS 1734:1951 | A & B | | Height setting micrometer | 300 | Heads 1.20
Stepped column 2.0
Overall performance 2.5 | Calibration performed by comparison to length standards | A | | Riser blocks for above | 150
300 | 2.0
4.0 | Calibration performed by comparison to length standards | А | | Precision scales (linear) | 0 to 300 | 1.5 + (3.0 x length in m) | Calibration performed by comparison to length measuring machine | A | | Graticules | 0 to 300 | 1.5 + (3.0 x length in m) | Calibration performed by comparison to length measuring machine | A | | Steel rules | 0 to 500
500 to 1000 | 5.0 + (10 x length in m)
10 + (10 x length in m) | Calibration as BS 4372:1968 performed by comparison to length measuring machine | А | | Dividing heads
Rotary tables
Inclinable rotary tables | 100 to 450 capacity
100 to 450
100 to 450 | Overall angular performance 3.0 seconds of arc | Calibration performed by comparison to reference polygon | A & C
A & C
A & C | | Profile projectors | 10 to 100 magnifications | 125 at the screen
2.5 linear scales
1.5 minutes of arc | Calibrated using reference scales | A & B & C
& D | Assessment Manager: BC4 Page 9 of 18 Accredited to ISO/IEC 17025:2017 ## Schedule of Accreditation issued by ## United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 Calibration performed by the Organisation at the locations specified | | Γ | T | T | 1 | |--|--------------------------|---|---|------------------| | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | | | | S AND UNCERTAINTY IN MICSS OTHERWISE STATED | ROMETRES | | | | | | | | | MEASURING INSTRUMEN | TS AND MACHINES (cont'd) | | | | | Height gauges –
(Complex)
(See note 9) | 0 to 1 m | Length measurement error (E): 1.0 + (5.0 x length in m) Length measurement error (B): 1.0 + (5.0 x length in m) | Calibration as BS EN ISO
13225:2012
performed by comparison to
length standards | A & C | | Electronic microprocessor controlled height gauges | 0 to 1 m | 1.0 + (5.0 x length in m) | Calibration performed by comparison to length standards | A & B & C
& D | | Horizontal & vertical measuring machines | 0 to 100 | 0.30 | Calibration performed by comparison to end standards | A & C | | Horizontal & vertical measuring machines | 0 to 3 m | 0.20 + (1.0 x length in m) | Calibration performed using a laser measuring sysem and environmental compensation unit | A&C | | Evaluation of electrical contact unit for internal measurement | | Overall performance 1.0 on diameter. | | A & C | | ANCILLERY
MEASUREMENTS | | | | | | Flatness
Parallelism
Squareness
Straightness
Angular | | 0.3
1.0
2.2
1.3 + (0.8 × length in m)
5 seconds of arc | Ancillery measurements made for completeness of calibration. Best CMC's are dependent on methodology and range. | A | | | | | | | | | | | | | | | | | | | Assessment Manager: BC4 Page 10 of 18 Accredited to ISO/IEC 17025:2017 ## Schedule of Accreditation issued by ## United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |--|--|--|--|------------------| | ELECTRICAL | | | All electrical calibrations are performed as a direct comparison against a reference standard unless otherwise stated | | | DC Voltage
Generation | 0 V to 300 mV
300 mV to 3 V
3 V to 30 V
30 V to 300 V
300 V to 1000 V | 17 μV/V + 1.7 μV
16 μV/V + 2.9 μV
16 μV/V + 26 μV
17 μV/V + 210 μV
18 μV/V + 2.1 mV | These values can be generated for the calibration of measuring instruments | A | | Measurement | 0 V to 100 mV
100 mV to 1 V
1 V to 10 V
10 V to 100 V
100 V to 1000 V | 25 μV/V + 1.5 μV
10 μV/V + 2.6 μV
10 μV/V + 12 μV
10 μV/V + 230 μV
10 μV/V + 2.4 μV | Outputs of instruments within these values can be measured to the stated uncertainties | A | | DC Current
Generation | 0 μA to 300 μA
300 μA to 3 mA
3 mA to 30 mA
30 mA to 300 mA
300 mA to 1 A
1 A to 3 A
3 A to 11 A
11 A to 20 A | 58 μΑ/A + 24 nA
37 μΑ/A + 59 nA
33 μΑ/A + 320 nA
42 μΑ/A + 3.2 μΑ
120 μΑ/A + 48 μΑ
220 μΑ/A + 48 μΑ
200 μΑ/A + 590 μΑ
390 μΑ/A + 1.8 mA | These values can be generated for the calibration of measuring instruments | А | | Measurement | 20 A to 100 A
100 A to 550 A
10 μA to 100 μA
100 μA to 1 mA
1 mA to 10 mA
10 mA to 100 mA
100 mA to 2 A
2 A to 10 A | 0.15 %
0.18 %
130 µA/A + 2.4 nA
100 µA/A + 0.024 µA
70 µA/A + 0.24 µA
80 µA/A + 2.4 µA
100 µA/A + 47 µA
0.05 % + 2 mA | Simulated current using multi
turn coil, for the calibration of
clamp-on ammeters.
Outputs of instruments within
these values can be measured
to the stated uncertainties | A | | AC Voltage
Generation | 10 mV to 300 mV
45 Hz to 1 kHz
1 kHz to 10 kHz
10 kHz to 100 kHz
300 mV to 3 V
45 Hz to 1 kHz
1 kHz to 10 kHz | 0.012 % + 9.4 μV
0.012 % + 9.4 μV
0.033 % + 58 μV
0.0097 % + 71 μV
0.0099 % + 71 μV | These values can be generated for the calibration of measuring instruments | А | | | 10 kHz to 100 kHz 3 V to 30 V 45 Hz to 1 kHz 1 kHz to 10 kHz 10 kHz to 100 kHz 30 V to 300 V 45 Hz to 1 kHz 1 kHz to 10 kHz | 0.094 % + 97 μV
0.019 % + 0.71 mV
0.016 % + 0.71 mV
0.017 % + 1.9 mV
0.013 % + 2.6 mV
0.013 % + 7.1 mV | | | Assessment Manager: BC4 Page 11 of 18 Accredited to ISO/IEC 17025:2017 ## **Schedule of Accreditation** issued by United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |--|---|--|--|------------------| | ELECTRICAL (cont'd) | | | | | | AC Voltage
Generation (cont'd)
Measurement | 300 V to 1000 V
45 Hz to 1 kHz
1 kHz to 10 kHz | 0.029 % + 17 mV
0.028 % + 17 mV | | | | | 10 mV to 100 mV
20 Hz to 1 kHz
1 kHz to 10 kHz
100 mV to 1 V | 0.030 % + 2.4 μV
0.026 % + 2.4 μV | Outputs of instruments within these values can be measured to the stated uncertainties | A | | | 20 Hz to 1 kHz
1 kHz to 10 kHz | 0.025 % + 12 μV
0.025 % + 12 μV | | | | | 20 Hz to 1 kHz
1 kHz to 10 kHz | 0.025 % + 0.12 mV
0.025 % + 0.12 mV | | | | AC Current | 10 V to 100 V
20 Hz to 1 kHz
1 kHz to 10 kHz | 0.025 % + 1.2 mV
0.025 % + 1.2 mV | | | | | 100 V to 1000 V
55 Hz to 1 kHz
1 kHz to 10 kHz | 0.020 % + 24 mV
0.070 % + 24 mV | | | | Generation | 10 μA to 300 μA
45 Hz to 1 kHz
1 kHz to 5 kHz | 0.10 % + 0.12 μA
0.012 % + 0.18 μA | These values can be generated for the calibration of measuring instruments | А | | | 300 μA to 3 mA
45 Hz to 1 kHz
1 kHz to 5 kHz | 0.030 % + 0.18 μA
0.032 % + 0.24 μA | | | | | 3 mA to 30 mA
45 Hz to 1 kHz
1 kHz to 5 kHz | 0.037 % + 2.4 μA
0.042 % + 2.4 μA | | | | | 30 mA to 300 mA
45 Hz to 1 kHz
1 kHz to 5 kHz | 0.048 % + 24 μA
0.059 % + 58 μA | | | | | 300 mA to 1 A
45 Hz to 1 kHz
1 kHz to 5 kHz | 0.061% + 0.12 mA
0.135 % + 1.2 mA | | | | | 1 A to 3 A
45 Hz to 1 kHz
1 kHz to 5 kHz | 0.038 % + 0.12 mA
0.25 % + 1.2 mA | | | | | | | | | Assessment Manager: BC4 Page 12 of 18 Accredited to ISO/IEC 17025:2017 # Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |--|--|--|--|------------------| | ELECTRICAL (cont'd) | | | | | | AC Current
Generation (cont'd) | 3 A to 11 A
45 Hz to 1 kHz
1 kHz to 5 kHz | 0.074 % + 2.4 mA
0.83 % + 2.4 mA | | A | | | 11 A to 20 A
45 Hz to 1 kHz
1 kHz to 5 kHz | 0.091 % + 5.8 mA
0.70 % + 5.8 mA | | | | | 20 A to 100 A
45 Hz to 1 kHz | 0.30 % | Simulated current using multi turn coil, for the calibration of clamp-on ammeters. | | | | 100 A to 550 A
45 Hz to 65 Hz
65 Hz to 500 Hz | 0.30 %
0.50 % | | | | Measurement | 10 μA to 100 μA
55 Hz to 1 kHz
1 kHz to 5 kHz | 0.050 % + 0.012 μA
0.10 % + 0.012 μA | Outputs of instruments within these values can be measured to the stated uncertainties | A | | | 100 μA to 1 mA
55 Hz to 1 kHz
1 kHz to 5 kHz | 0.045 % + 0.12 μA
0.080 % + 0.12 μA | | | | | 1 mA to 10 mA
55 Hz to 1 kHz
1 kHz to 5 kHz | 0.050 % + 1.2 μA
0.090 % + 1.2 μA | | | | | 10 mA to 100 mA
55 Hz to 1 kHz
1 kHz to 5 kHz | 0.050 % + 12 μA
0.090 % + 12 μA | | | | | 100 mA to 2 A
55 Hz to 1 kHz
1 kHz to 5 kHz | 0.085 % + 0.47 mA
0.35 % + 1.2 mA | | | | DC Resistance
Generation | 2 A to 10 A
40 Hz to 400 Hz | 0.40 % + 20 mA | | | | Constant | $\begin{array}{c} 0~\Omega~to~1\Omega\\ 1~\Omega~to~11~\Omega\\ 11~\Omega~to~33~\Omega\\ 33~\Omega~to~110~\Omega\\ 110~\Omega~to~330~\Omega\\ 330~\Omega~to~1.1~k\Omega\\ \end{array}$ | $\begin{array}{c} 0.076~\% + 12~\text{m}\Omega \\ 89~\mu\Omega/\Omega + 1.2~\text{m}\Omega \\ 140~\mu\Omega/\Omega + 1.8~\text{m}\Omega \\ 85~\mu\Omega/\Omega + 1.7~\text{m}\Omega \\ 39~\mu\Omega/\Omega + 2.4~\text{m}\Omega \\ 20~\mu\Omega/\Omega + 1.2~\text{m}\Omega \end{array}$ | These values can be generated for the calibration of measuring instruments | A | | | 1.1 kΩ to 3.3 kΩ
3.3 kΩ to 11 kΩ
11 kΩ to 33 kΩ
33 kΩ to 110 kΩ
110 kΩ to 330 kΩ
330 kΩ to 1.1 MΩ | 29 $\mu\Omega/\Omega$ + 24 mΩ
22 $\mu\Omega/\Omega$ + 26 mΩ
20 $\mu\Omega/\Omega$ + 0.26 Ω
17 $\mu\Omega/\Omega$ + 0.26 Ω
24 $\mu\Omega/\Omega$ + 2.4 Ω
71 $\mu\Omega/\Omega$ + 2.6 Ω | | | Assessment Manager: BC4 Page 13 of 18 #### Accredited to ISO/IEC 17025:2017 ## **Schedule of Accreditation** issued by United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 #### Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |--|---|---|--|------------------| | DC Resistance
Generation (contd.) | 1.1 MΩ to 3.3 MΩ
3.3 MΩ to 11 MΩ
11 MΩ to 33 MΩ
33 MΩ to 110 MΩ
110 MΩ to 330 MΩ
330 MΩ to 1.100 GΩ | 97 $\mu\Omega/\Omega$ + 35 Ω
220 $\mu\Omega/\Omega$ + 59 Ω
240 $\mu\Omega/\Omega$ + 2.9 $k\Omega$
390 $\mu\Omega/\Omega$ + 3.5 $k\Omega$
0.11% + 120 $k\Omega$
0.43% + 580 $k\Omega$ | | А | | DC Resistance
Measurement | 0 Ω to 1 Ω
1 Ω to 10 Ω
10 Ω to 100 Ω
100 Ω to 1 $k\Omega$
1 $k\Omega$ to 10 $k\Omega$
10 $k\Omega$ to 100 $k\Omega$
100 $k\Omega$ to 1 $M\Omega$
1 $M\Omega$ to 10 $M\Omega$
10 $M\Omega$ to 100 $M\Omega$ | $20 \ \mu\Omega/\Omega + 26 \ \mu\Omega \\ 40 \ \mu\Omega/\Omega + 26 \ \mu\Omega \\ 20 \ \mu\Omega/\Omega + 42 \ \mu\Omega \\ 20 \ \mu\Omega/\Omega + 350 \ \mu\Omega \\ 20 \ \mu\Omega/\Omega + 3.5 \ m\Omega \\ 20 \ \mu\Omega/\Omega + 35 \ m\Omega \\ 30 \ \mu\Omega/\Omega + 810 \ m\Omega \\ 40 \ \mu\Omega/\Omega + 120 \ m\Omega \\ 200 \ \mu\Omega/\Omega + 5.2 \ \Omega \\ 950 \ \mu\Omega/\Omega + 520 \ k\Omega$ | Outputs of instruments within these values can be measured to the stated uncertainties | A | | Temperature indicators, calibration by electrical simulation | | | | А | | Base metal thermocouple
K Type | -200 °C to -100 °C
-100 °C to -25 °C
-25 °C to 0 °C
0 °C
0 °C to +120 °C
120 °C to 1000 °C
1000 °C to 1370 °C | 0.53 °C
0.24 °C
0.20 °C
0.19 °C
0.30 °C
0.90 °C
1.4 °C | excluding cold junction compensation | | | J Type | 100 °C
-200 °C to +1200 °C | 0.19 °C
1.2 °C | | | | N Type | 200 °C
-200 °C to +1300 °C | 0.28 °C
1.4 °C | | | | Е Туре | 200 °C
-250 °C to +1000 °C | 0.22 °C
1.2 °C | | | | Т Туре | 200 °C
-250 °C to +400 °C | 0.23 °C
1.1 °C | | | | Noble metal thermocouple | | | | | | В Туре | 1750 °C
600 °C to 1800 °C | 0.98 °C
1.3 °C | excluding cold junction compensation | | | R Type | 500 °C
0 °C to 1760 °C | 0.57 °C
1.9 °C | | | | S Type | 1200 °C
0 °C to 1760 °C | 0.9 °C
1.7 °C | | | Assessment Manager: BC4 Page 14 of 18 Accredited to ISO/IEC 17025:2017 ## **Schedule of Accreditation** issued by United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 #### Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |---|--|--|----------------------------------|------------------| | ELECTRICAL (cont'd) Cold junction | At ambient temperature of | 0.20 °C | | A | | compensation | 20 °C | 0.20 C | | | | Temperature indicators, calibration by electrical simulation (contd.) | | | | | | Resistance sensors | -200 °C to 0 °C
0 °C to 850 °C | 0.25 °C
0.250 °C | | | | Frequency | 1 Hz to 1.35 GHz | 5.0 in 10 ⁸ | Calibrated using a time counter | A | | Time Interval | 0.05 s to 60 min | 0.10 s | Calibrated using an oscilloscope | ^ | | Tachometers (Optical) | 100 rpm to 50000 rpm | 2.0 rpm | Calibrated using a time counter | | | Equipment For lee | 1 kHz
1 nF
3 nF
10 nF
30 nF
100 nF
300 nF
100 Hz
1 μF
3 μF
10 μF
30 μF
50 Hz
100 μF | 0.70 % + 13 pF
0.28 % + 14 pF
0.15 % + 15 pF
0.11 % + 21 pF
0.16 % + 41 pF
0.09 % + 130 pF
0.15 % + 1.5 nF
0.13 % + 4.4 nF
0.19 % + 15 nF
0.26 % + 49 nF
0.15 % + 170 nF | | A | | Testing Insulation resistance Insulation voltage | 100 k Ω , 1 M Ω , 2 M Ω
5 M Ω
10 M Ω
20 M Ω , 50 M Ω
100 M Ω
200 M Ω , 400 M Ω , 600 M Ω , 800 M Ω
1 G Ω , 2 G Ω
4 G Ω , 6 G Ω , 8 G Ω , 10 G Ω | $\begin{array}{c} 0.25~\% + 0.10~\text{k}\Omega \\ 0.50~\% + 0.10~\text{k}\Omega \\ 0.60~\% + 0.10~\text{k}\Omega \\ 0.50~\% + 0.10~\text{k}\Omega \\ 0.50~\% + 1.2~\text{k}\Omega \\ \\ 1.0~\% + 1.2~\text{k}\Omega \\ 1.5~\% + 2.0~\text{M}\Omega \\ 0.66~\% \\ \end{array}$ | At 1 kV | | Assessment Manager: BC4 Page 15 of 18 Accredited to ISO/IEC 17025:2017 ## **Schedule of Accreditation** issued by United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |---|---|--|---------|------------------| | ELECTRICAL (cont'd) | | | | | | Continuity resistance | 1 Ω, 2 Ω
10 Ω, 20 Ω, 100 Ω, 1 kΩ | 1.0 %
0.50 | | А | | Continuity current | 100 mA, 200 mA, 300 mA | 0.80 % | | | | Earth bond resistance
50 Hz | Nominal applied resistance 0.04 Ω 0.1 Ω 0.15 Ω 0.27 Ω 0.38 Ω 0.55 Ω 1 Ω 10 Ω | 8.0 %
3.8 %
3.0 %
2.0 %
1.3 %
0.75 %
0.75 %
0.75 %
3.8 %
0.60 % | | | | Earth bond current
50 Hz | 400 mA, 4 A, 8 A
10 A, 12 A
20 A, 25 A | 1.0 %
2.0 %
1.0 % | | | | Earth leakage
DC Current | 2 mA, 5 mA, 8 mA | 1.0 % | | | | Loop Resistance
AC Resistance at 50 Hz | Nominal applied resistances 0.05 Ω 0.1 Ω 0.2 Ω , 0.3 Ω , 0.5 Ω , 1 Ω , 5 Ω 10 Ω 100 Ω , 1 k Ω , | 7.0 %
5.1 %
3.0 %
6.0 %
3.0 % | | | | RCD Current 50 Hz | 10 mA, 30 mA, 100 mA
300 mA, 1 A, 3 A | 1.0 %
1.0 % | | | | RCD Trip Time | 20 ms, 30 ms
40 ms
100 ms, 200 ms, 390 ms
900 ms | 3.0 %
2.0 %
1.0 %
1.0 % | Assessment Manager: BC4 Page 16 of 18 Accredited to ISO/IEC 17025:2017 ### **Schedule of Accreditation** issued by United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK ### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 #### Calibration performed by the Organisation at the locations specified | Measured Quantity
Instrument or Gauge | Range | Expanded Measurement Uncertainty (k = 2) | Remarks | Location
Code | |---|--|--|---|------------------| | FORCE Calibration of force push pull devices in tension and compression | Compression 1 N to 500 N Tension 1 N to 500 N | 0.41%
0.41%
see note 12 | 12 The calibration may be performed in the following units: Newton (N) or other force units 13 Calibrations may also be given in units of electrical signal output 14 Calibration results may also be given in units of lbf in and lbf ft 15 The uncertainty quoted is for both the application of the calibration torque and the characteristics of the device being calibrated | A | | TORQUE Torque Wrenches (Including Drivers) Hand Torque Tools | 0.1 N·m to 1000 N·m 1 N·m to 1000 N·m | 0.40%
See Note 13, 14 and 15
1.6 % of maximum reading
See Notes 14 and 15 | BS EN ISO 6789-2:2017 BS EN ISO 6789:2003 (withdrawn) | A
A | | PRESSURE Gas Pressure Gauge Calibration of pressure indicating instruments and gauges | -95 kPa to 0 Pa
0 Pa to 700 kPa
700 kPa to 7 MPa | 66 Pa
1.9 kPa
1.7 kPa | By comparison with a pressure calibrator | A | | END | | | | | Assessment Manager: BC4 Page 17 of 18 Accredited to ISO/IEC 17025:2017 #### Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees , Chertsey Lane, Staines-upon-Thames , TW18 3HR, UK #### **Metrology and Quality Services Ltd** Issue No: 056 Issue date: 25 April 2025 Calibration performed by the Organisation at the locations specified #### Appendix - Calibration and Measurement Capabilities #### Introduction The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation. #### **Calibration and Measurement Capabilities (CMCs)** The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors. The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation. #### Expression of CMCs - symbols and units It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means 1.5 \times 0.01 \times q, where q is the quantity value. The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$ Assessment Manager: BC4 Page 18 of 18