Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

0381

Accredited to ISO/IEC 17025:2017

WS12 4TR

Sercal Non Destructive Test Equipment Limited

Issue No: 029 Issue date: 30 January 2025

Unit 1 Contact: Dennis Ball

Littleton Business Park Tel: +44 (0)1543 570074
Littleton Drive Fax: +44 (0)1543 570074

Off Cocksparrow Lane E-Mail: dball@sercal.co.uk

Huntington Website: www.sercal.co.uk
Cannock
Staffordshire

Calibration performed at the above address only

Calibration and Measurement Capability (CMC)

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
ELECTRICAL VERIFICATION of ULTRASONIC FLAW DETECTION EQUIPMENT	As BS EN ISO 22232-1:2020 Group 2 tests and including the following calibrations and quantities: Pulser Voltage V ₅₀ Pulser Risetime Pulse duration Frequency response 0.2 MHz to 30 MHz	4.0 % 2.3 ns 2.3 ns 3.0 % at -3 dB point	For instruments designed to comply with BS EN 12668-1:2010, the centre frequency f_0 is calculated using $f_0 = \sqrt{(f_u \times f_l)}$, otherwise the expression $f_0 = (f_u + f_l)/2$ is used.
ELECTRICAL VERIFICATION of ULTRASONIC FLAW	Equivalent input noise Calibrated attenuator Gain linearity Vertical Linearity As Electrical Supply Industry Standard ESI 98-9:Issue 1:1985	5.0 % 0.033 dB to 0.48 dB 0.50 % 0.50 % of screen height See Page 2	Using Method B as described in Section 9.4.3.3 of BS EN ISO 22232-1:2020.
DETECTION EQUIPMENT ELECTRICAL VERIFICATION of ULTRASONIC THICKNESS MEASURING EQUIPMENT	DIHM based on BS EN 15317:2013	See Page 2	Determination of resolution is conducted using a different method to that described in the standard however the outcome is identical.

Assessment Manager: NAM Page 1 of 4

0381 Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Sercal Non Destructive Test Equipment Limited

Issue No: 029 Issue date: 30 January 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty $(k = 2)$	Remarks
ELECTRICAL VERIFICATION of ULTRASONIC PROBES:			
Nominal 0° compression wave probes for contact testing	As Electrical Supply Industry Standard ESI 98-7:Issue 1:1982	See below	
Low frequency single crystal shear wave, angle probes	As Electrical Supply Industry Standard ESI 98-8:Issue 1:1982	See below	
Single and twin crystal probes	As Electrical Supply Industry Standard ESI 98-2:Issue 1:1979	See below	
EVALUATION OF PERFORMANCE CHARACTERISTICS OF ULTRASONIC PULSE-ECHO TESTING INSTRUMENTS WITHOUT THE USE OF ELECTRONIC MEASUREMENT STANDARDS			
	As ASTM E317-11, paragraphs 6.2 to 6.6	See below	
QUANTITIES			
The capabilities above are limited to			
DC Resistance	10 Ω to 1 k Ω	0.44 %	
DC Current	10 mA to 1 A	1.6 %	
DC Voltage	100 mV to 100 V 100 V to 1000 V	0.46 % 2.5 %	
AC Voltage	100 V to 150 V at 50 Hz 150 V to 240 V at 50 Hz 240 V to 1000 V at 50 Hz	2.6 % 0.51 % 2.6 %	
Frequency	10 Hz to 10 kHz 10 kHz to 20 MHz	2.6 % 1.2 %	
Attenuation	0 dB to 100 dB at 15 MHz and 20 MHz	0.68 dB	Using calibrated attenuator
Pulse Parameter	Risetime Pulse Duration Pulsar Voltage V ₅₀	2.3 ns 2.3 ns 4 %	Using oscilloscope
Dimensional	70° nominal 1 mm, 25 mm, 50 mm, 90 mm, 100 mm, 150 mm and 200 mm	0.14°	
	nominal	0.032 mm	

Assessment Manager: NAM Page 2 of 4

0381 Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Sercal Non Destructive Test Equipment Limited

Issue No: 029 Issue date: 30 January 2025

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks		
PHASED ARRAY SETS	As BS EN ISO 18563-1:2022 including the following calibrations and quantities.		Ranges and methods are as defined in BS EN ISO 18563-1:2022		
	Pulse Amplitude Pulse Width Pulse risetime	4.0 % of screen height 2.3 ns 2.3 ns			
	Time delay linearity Frequency response 200 kHz to 30 MHz	1.0 % of screen width 3.0 % at -3 dB point			
	Channel gain variation Equivalent input noise Gain linearity Linearity of vertical display Linearity of time delay	1.0 % 4.0 % 0.51 % 0.50 % of screen height 1.0 % of screen width			
CALIBRATION OF ULTRASONIC TEST BLOCKS					
Linear dimensions	0 mm to 25 mm 25 mm to 200 mm 200 mm to 300 mm 300 mm to 305 mm	10 μm 20 μm 30 μm 40 μm	using micrometers using optical projector using height gauge using height gauge		
Hole diameter	1.5 mm to 50 mm	20 μm	using optical projector		
External radius	10 mm to 100 mm	30 µm	using optical projector		
Slot width	1 mm to 8 mm	30 μm	using optical projector		
END					

Assessment Manager: NAM Page 3 of 4

0381 Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Sercal Non Destructive Test Equipment Limited

Issue No: 029 Issue date: 30 January 2025

Calibration performed at main address only

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where q is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$

Assessment Manager: NAM Page 4 of 4