Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

0785

Accredited to ISO/IEC 17025:2017

GU46 6GT

Trescal Limited

Issue No: 036 Issue date: 29 September 2023

Saxony Way Contact: Mr Matt Gypps

Blackbushe Business Park
Yateley
Tel: + 44 (0)1438 212500
E-Mail: ukcal@trescal.com
Website: www.trescal.com

Calibration performed by the Organisations at the locations specified below

Locations covered by the organisation and their relevant activities

Laboratory locations:

Location details		Activity	Location code
Address Trescal EMS - Collins Aerospace Stafford Road Fordhouses Wolverhampton West Midlands WV10 7EH	Local contact Brett Morris Tel +44 (0) 1902 624 644 Email: brett.morris@trescal.com	Capabilities: Electrical DC and LF Dimensional Temperature simulation	Wolverhampton
Address Trescal EMS - BAE Systems Warton Aerodrome Lytham Road Preston Lancashire PR4 1AX	Local contact Damion Potts Tel +44 (0) 161 406 7878 Email: damion.potts@trescal.com	Capabilities: Dimensional	Warton
Address Trescal EMS - Airbus Broughton Building 10 Chester Road Broughton CH4 0DR	Local contact Damion Potts Tel +44 (0) 161 406 7878 Email: damion.potts@trescal.com	Capabilities: Dimensional	Broughton

Site activities performed away from the locations listed above:

The site or premises must be suitable for the nature of the particular calibrations undertaken and will be the subject of contract review arrangements between the laboratory and the customer.	Local contact Brett Morris Tel: +44 (0) 1902 624 644 Email: brett.morris@trescal.com	Temperature Electrical (Timers)	Site
---	--	---------------------------------	------

Assessment Manager: PC Page 1 of 10

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Trescal Limited

Issue No: 036 Issue date: 29 September 2023

Calibration performed by the Organisation at the locations specified

Calibration and Measurement Capability (CMC)

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
	_	S AND UNCERTAINTY IN MICRO S OTHERWISE STATED	DMETRES	
ELECTRICAL MEASUREMENTS			Electrical Calibrations are performed as a comparison against a reference standard unless otherwise stated	
DC RESISTANCE Measurement	0 Ω to 20 Ω 20 Ω to 200 Ω 200 Ω to 200 k Ω 200 k Ω to 2 M Ω 2 M Ω to 20 M Ω 20 M Ω to 200 M Ω 200 M Ω to 1 G Ω	30 $\mu\Omega/\Omega$ + 20 $\mu\Omega$ 13 $\mu\Omega/\Omega$ 14 $\mu\Omega/\Omega$ 24 $\mu\Omega/\Omega$ 55 $\mu\Omega/\Omega$ 450 $\mu\Omega/\Omega$ 0.5 %		
DC VOLTAGE Measurement	0 mV to 200 mV 200 mV to 2 V 2 V to 20 V 20 V to 200 V 200 V to 1 kV	6.5 μV/V + 1.3 μV 5.1 μV/V 6.1 μV/V 9.4 μV/V 9.6 μV/V		
DC CURRENT Measurement	0 μA to 200 μA 200 μA to 200 mA 200 mA to 2 A 2 A to 10 A 10 A to 100 A	100 μA/A 100 μA/A 170 μA/A 0.060 % 0.14 %		Wolverhampton
AC VOLTAGE Measurement	10 mV to 200 mV 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 2 kHz 2 kHz to 10 kHz 200 mV to 2 V 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 2 kHz 2 kHz to 10 kHz	130 µV/V + 4.0 µV 100 µV/V + 4.0 µV 110 µV/V + 2.0 µV 100 µV/V + 4.0 µV 110 µV/V + 20 µV 85 µV/V + 20 µV 72 µV/V + 20 µV 85 µV/V + 20 µV		

Assessment Manager: PC Page 2 of 10

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Trescal Limited

Issue No: 036 Issue date: 29 September 2023

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
		ES AND UNCERTAINTY IN MICRO	DMETRES	
AC VOLTAGE Measurement continued	2 V to 20 V 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 2 kHz 2 kHz to 10 kHz 20 V to 200 V 10 Hz to 40 Hz 40 Hz to 100 Hz 100 Hz to 2 kHz 2 kHz to 10 kHz 40 Hz to 10 kHz 2 kHz to 10 kHz 200 V to 300 V 300 V to 400 V 400 V to 500 V 500 V to 600 V 600 V to 700 V 700 V to 800 V 800 V to 900 V 900 V to 1000 V 1000 V to 1100 V	110 µV/V + 20 µV 85 µV/V + 20 µV 72 µV/V + 20 µV 85 µV/V + 20 µV 100 µV/V + 2.0 mV 84 µV/V + 2.0 mV 72 µV/V + 2.0 mV 87 µV/V + 2.0 mV 87 µV/V + 2.0 mV 87 µV/V + 20 mV 87 µV/V + 44 mV 87 µV/V + 440 mV 87 µV/V + 200 mV 87 µV/V + 200 mV 87 µV/V + 200 mV 87 µV/V + 100 mV 87 µV/V + 100 mV 87 µV/V + 880 mV 87 µV/V + 1.2 mV 87 µV/V + 1.6 mV		Wolverhampton
AC CURRENT Measurement	10 Hz to 5 kHz 10 μA to 200 μA 200 μA to 2 mA 2 mA to 20 mA 20 mA to 200 mA 10 Hz to 1 kHz 200 mA to 2 A	310 µA/A + 20 nA 310 µA/A + 200 nA 310 µA/A + 2.0 µA 310 µA/A + 20 µA		
DC RESISTANCE Generation	0 Ω to 11 Ω 11 Ω to 33 Ω 33 Ω to 110 Ω 110 Ω to 330 Ω 330 Ω to 1.1 k Ω 1.1 k Ω to 3.3 k Ω 3.3 k Ω to 11 k Ω 11 k Ω to 33 k Ω 33 k Ω to 110 k Ω	180 $\mu\Omega/\Omega$ + 11 mΩ 150 $\mu\Omega/\Omega$ + 19 mΩ 110 $\mu\Omega/\Omega$ + 19 mΩ 110 $\mu\Omega/\Omega$ + 19 mΩ 110 $\mu\Omega/\Omega$ + 90 mΩ 110 $\mu\Omega/\Omega$ + 90 mΩ 110 $\mu\Omega/\Omega$ + 900 mΩ 110 $\mu\Omega/\Omega$ + 900 mΩ 110 $\mu\Omega/\Omega$ + 900 mΩ		Wolverhampton

Assessment Manager: PC Page 3 of 10

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Trescal Limited

Issue No: 036 Issue date: 29 September 2023

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
		S AND UNCERTAINTY IN MICRO S OTHERWISE STATED	DMETRES	
DC RESISTANCE Generation continued	110 kΩ to 330 kΩ 330 kΩ to 1.1 MΩ 1.1 MΩ to 3.3 MΩ 3.3 MΩ to 11 MΩ 11 MΩ to 33 MΩ 33 MΩ to 110 MΩ 110 MΩ to 330 MΩ	150 $\mu\Omega/\Omega$ + 9.0 Ω 180 $\mu\Omega/\Omega$ + 80 Ω 200 $\mu\Omega/\Omega$ + 80 Ω 710 $\mu\Omega/\Omega$ + 800 Ω 0.14 % + 800 Ω 0.60 % + 8.0 $k\Omega$ 0.60 % + 21 $k\Omega$		
DC VOLTAGE Generation	0 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V 330 V to 1 kV	75 µV/V + 6.0 µV 60 µV/V + 13 µV 60 µV/V + 130 µV 70 µV/V + 1.3 mV 70 µV/V + 11 mV		
DC CURRENT Generation	0 mA to 3.3 mA 3.3 mA to 33 mA 33 mA to 330 mA 330 mA to 2.2 A 2.2 A to 10 A 10 A to 100 A	160 μA/A + 130 nA 130 μA/A + 1.1 μA 130 μA/A + 12 μA 370 μA/A + 120 μA 0.060 % 0.14 %		Wolverhampton
AC VOLTAGE Generation	1 mV to 33 mV 45 Hz to 10 kHz 33 mV to 330 mV 45 Hz to 10 kHz	1650 μV/V + 27 μV 600 μV/V + 29 μV		
	330 mV to 3.3 V 45 Hz to 10 kHz 3.3 V to 33 V 45 Hz to 10 kHz	360 μV/V + 130 μV 470 μV/V + 1.3 mV		
	33 V to 330 V 45 Hz to 1 kHz 1 kHz to 10 kHz 330 V to 1 kV 45 Hz to 1 kHz 1 kHz to 5 kHz 5 kHz to 10 kHz	600 μV/V + 14 mV 900 μV/V + 22 mV 600 μV/V + 150 mV 2100 μV/V + 170 mV 2100 μV/V + 600 mV		Wolverhampton

Assessment Manager: PC Page 4 of 10

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Trescal Limited

Issue No: 036 Issue date: 29 September 2023

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
		S AND UNCERTAINTY IN MICRO S OTHERWISE STATED	DMETRES	
AC CURRENT				
Generation	29 μA to 0.33 mA 45 Hz to 1 kHz	0.18 % + 320 nA		
	0.33 mA to 3.3 mA 45 Hz to 1 kHz	0.12 % + 380 nA		
	3.3 mA to 33 mA 45 Hz to 1 kHz	0.11 % + 3.8 µA		
	33 mA to 330 mA 45 Hz to 1 kHz	0.11 % + 38 μA		
	330 mA to 2.2 A 45 Hz to 1 kHz	0.12 % + 380 μA		
	2.2 A to 11 A 45 Hz to 500 Hz 500 Hz to 1 kHz	0.13 % + 2.7 mA 0.38 % + 2.7 mA		
CAPACITANCE	10 μF to 1 mF 100 Hz 10 pF to 1 μF 1 kHz 100 pF to 1 μF 10 kHz	1.5 % 0.060 % 0.080 %		Wolverhampton
INDUCTANCE	10 μH to 100 μH 1 <i>kHz</i> 100 μH to 10 H 1 <i>kHz</i>	0.50 % 0.10 %		
FREQUENCY	0.1 Hz to 10 Hz 10 Hz to 100 Hz 100 Hz to 1 kHz 1 kHz to 10 kHz 10 kHz to 10 MHz	35 parts in 10 ⁶ 3.5 parts in 10 ⁶ 0.70 parts in 10 ⁶ 8.0 parts in 10 ⁸ 2.0 parts in 10 ⁸		Wolverhampton

Assessment Manager: PC Page 5 of 10

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Trescal Limited

Issue No: 036 Issue date: 29 September 2023

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Measu	anded irement nty (k = 2)	Remarks	Location Code
	RANGE IN MILLIMETRES	S AND UNCERT S OTHERWISE		DMETRES	
TEMPERATURE SIMULATION				Temperature simulators, calibration by electrical	
Base metal thermocouples		Marie and Olo	W/:#- 0.10	simulation	
Type J	-210 °C to -100 °C -100 °C to -30 °C -30 °C to +150 °C 150 °C to 760 °C 760 °C to 1200 °C -210 °C to +1200 °C	Without CJC 0.22 °C 0.15 °C 0.14 °C 0.15 °C 0.19 °C 0.070 °C	With CJC 0.21 °C 0.17 °C 0.16 °C 0.17 °C 0.21 °C 0.12 °C	Source	
Туре К	-200 °C to -100 °C -100 °C to -25 °C -25 °C to +120 °C 120 °C to 1000 °C 1000 °C to 1372 °C	0.27 °C 0.16 °C 0.14 °C 0.22 °C 0.32 °C	0.20 °C 0.18 °C 0.17 °C 0.20 °C 0.20 °C	Source	
	-200 °C to +1372 °C	0.070 °C	0.12 ℃	Measure	
Type N	-200 °C to -100 °C -100 °C to -25 °C -25 °C to +120 °C 120 °C to 410 °C 410 °C to 1300 °C -200 °C to +1300 °C	0.32 °C 0.17 °C 0.16 °C 0.16 °C 0.22 °C 0.070 °C	0.20 °C 0.20 °C 0.18 °C 0.18 °C 0.20 °C 0.12 °C	Source Measure	
Туре Т	-250 °C to -150 °C -150 °C to 0 °C 0 °C to +120 °C 120 °C to 400 °C -250 °C to +400 °C	0.50 °C 0.20 °C 0.14 °C 0.13 °C 0.070 °C	0.50 °C 0.20 °C 0.17 °C 0.16 °C	Source	Wolverhampton
Noble metal thermocouples Type R	0 °C to 250 °C 250 °C to 400 °C 400 °C to 1000 °C 1000 °C to 1767 °C 0 °C to 1767 °C	0.45 °C 0.28 °C 0.27 °C 0.32 °C 0.079 °C	0.11 °C 0.46 °C 0.20 °C 0.20 °C 0.21 °C 0.14 °C	Measure Source Measure	
Type S	0 °C to 250 °C 250 °C to 1000 °C 1000 °C to 1400 °C 1400 °C to 1767 °C 0 °C to 1767 °C	0.38 °C 0.29 °C 0.30 °C 0.37 °C 0.079 °C	0.39 °C 0.20 °C 0.32 °C 0.38 °C 0.13 °C	Source	
RTD Pt100	-250 °C to 850 °C	0.22 °C		Source and measure	

Assessment Manager: PC Page 6 of 10

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Trescal Limited

Issue No: 036 Issue date: 29 September 2023

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
		S AND UNCERTAINTY IN MICRO S OTHERWISE STATED	METRES	
DIMENSIONAL MEASUREMENTS				
LENGTH				
Plain plug gauges (parallel) cylindrical setting standards and rollers	1 to 50 diameter 50 to 100 100 to 150	0.80 1.0 1.2	By comparison with end standards using a length measuring machine	Wolverhampton and Warton
Plain ring gauges (parallel)	6 to 50 diameter 50 to 100 100 to 150	1.0 1.6 2.0	By comparison with master rings using a length measuring machine	Warton
Screw plug gauges (parallel) including check and setting plugs See Note 3	3 to 100 diameter	3.0 on pitch diameter	By comparison with end standards using a length measuring machine	Warton
Pitch: 1.5Flank angle: 2.0 + ((800/ <i>MxP)</i>) Minutes of arc Who	ere <i>M</i> is the projector magnification	and <i>P</i> is pitch in mm	
Parallels	As BS 906:1972	Dependent on size and grade 1.5 to 5.0		Wolverhampton
ANGLE				
Squares Blade type	As BS 939:2007 up to 300 300 up to 600	3.0 on squareness 5.0 See note 2		Warton
External Internal	0 to 350 diameter 3 to 350 diameter	0.050 on radius 0.050 on radius		

Assessment Manager: PC Page 7 of 10

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Trescal Limited

Issue No: 036 Issue date: 29 September 2023

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code			
	_	S AND UNCERTAINTY IN MICRO S OTHERWISE STATED	METRES				
MEASURING INSTRUMENTS A	MEASURING INSTRUMENTS AND MACHINES						
Micrometers							
External Internal Depth	As BS 870:2008 and above As BS 959:2008 As BS 6468:2008	Heads: 2.0 between any two points Setting and extension rods: 1.0 + 5.0 x length in m	Note: Internal micrometers not covered at Airbus.	Wolverhampton, Broughton and Warton			
Bore micrometers (3 point)	0 mm to 100mm	Overall performance 5.0	Using master rings or adjustable setting gauge.	Wolverhampton and Broughton			
Micrometer heads	As BS 1734:1951	1.3		Warton			
Bench micrometer		Overall performance 2.0	In-house method based on MOY/SCMI/22	Walton			
Height setting micrometer	0 to 300	Heads: 1.5 between any two points stepped column 2.5 Overall performance: 3.0	By comparison with end standards using surface table, indicator and length standards.	Warton			
Riser blocks for above	150 300	2.5 5.0	By comparison with end standards				
Vernier gauges Caliper Height Depth Dial gauges and dial test	As BS 887:2008 As BS 1643:2008 As BS 6365:2008 As BS 907:2008 and BS	Overall performance: 10 + (30 x length in m)		Wolverhampton, Broughton and Warton			
indicators	2795:1981	1.0					
Bevel protractors	As BS 1685:2008	1.0 min of arc + 1.0 vernier division		Wolverhampton			

Assessment Manager: PC Page 8 of 10

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Trescal Limited

Issue No: 036 Issue date: 29 September 2023

Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code

RANGE IN MILLIMETRES AND UNCERTAINTY IN MICROMETRES UNLESS OTHERWISE STATED

NOTES

- 1. In addition to the items listed above, other similar items, including parts of measuring instruments and machines, may be calibrated to the uncertainties stated. Where the item or part calibrated is of lower quality due to wear, errors in geometry or form, or poor surface texture, or where any other factor adversely affects the measurement capability, greater uncertainties must be quoted.
- 2. The uncertainty quoted if for the departure from flatness, straightness, or squareness, i.e. the distance separating the two parallel planes, which just enclose the surface under consideration.
- 3. Single start, symmetrical thread forms only.

TEMPERATURE				
Temperature controlled, ovens, environmental chambers, fridges and freezers.	-80 °C to +400 °C 400 °C to 1000 °C 1000 °C to 1300 °C	1.8 °C 2.0 °C 2.3 °C	Single and multipoint time dependent temperature profiling, also referred to as spatial temperature surveying or mapping using procedures: QCL/111/700 and 806	SITE
Frequency / Timers	1 s to 24 Hr	1.7 s	Real time timers measurement	

END

Assessment Manager: PC Page 9 of 10

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Trescal Limited

Issue No: 036 Issue date: 29 September 2023

Calibration performed by the Organisation at the locations specified

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand.

Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where q is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$

Assessment Manager: PC Page 10 of 10