Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Locations covered by the organisation and their relevant activities

Laboratory locations:

Location details		Activity	Location code
Address 1 Wilson Street Thornaby Stockton-On-Tees TS17 7AR United Kingdom	Local contact Ibrahim Ibrahim	Temperature, Electrical and Pressure	A
Address Parkburn Court Burnbank Hamilton Scotland ML3 0QQ	Local contact Barry Atkins	Dimensional and Electrical	В

Site activities performed away from the locations listed above:

Location details	Activity	Location code
At customer's premises The customer's site or premises must be suitable for the nature of the particular calibrations undertaken and will be the subject of contract review arrangements between the laboratory and the customer.	Dimensional	С

Schedule of Accreditation issued by ited Kingdom Accreditation Servi

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Calibration performed by the Organisation at the locations specified

Calibration and Measurement Capability (CMC)

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	Location Code
ELECTRICAL DC RESISTANCE			All electrical calibrations are performed as a comparison against a	А
			reference standard	
Generation / Sourcing Specific Values	0 Ω 1 mΩ 10 mΩ 100 mΩ	3.4 μΩ 3.0 μΩ 6.2 μΩ 13 μΩ	Source values for the calibration of measuring Instruments.	
	1 Ω 1.9 Ω 10 Ω 19 Ω 100 Ω 190 Ω 1 kΩ 1.9 Ω 10 kΩ 19 kΩ 100 kΩ 190 kΩ 1 MΩ 1.9 MΩ 10 MΩ 19 MΩ 100 MΩ 1 GΩ	$\begin{array}{c} 110 \ \mu\Omega \\ 210 \ \mu\Omega \\ 270 \ \mu\Omega \\ 0.54 \ m\Omega \\ 1.2 \ m\Omega \\ 2.5 \ m\Omega \\ 8.7 \ m\Omega \\ 17 \ m\Omega \\ 81 \ m\Omega \\ 170 \ m\Omega \\ 1.1 \ \Omega \\ 2.4 \ \Omega \\ 16 \ \Omega \\ 48 \ \Omega \\ 0.46 \ k\Omega \\ 1.1 \ k\Omega \\ 12 \ k\Omega \\ 12 \ M\Omega \end{array}$		
Generation & Meaurement	0 Ω to 10 Ω 10 Ω to 100 Ω 100 Ω to 1 kΩ 1 kΩ to 10 kΩ 10 kΩ to 100 kΩ 100 kΩ to 100 kΩ 1 MΩ to 10 MΩ 10 MΩ to 100 MΩ 100 MΩ to 1 GΩ	17 μΩ/Ω + 59 μΩ 14 μΩ/Ω + 590 μΩ 12 μΩ/Ω + 740 μΩ 12 μΩ/Ω + 6.6 mΩ 12 μΩ/Ω + 76 mΩ 17 μΩ/Ω + 3.3 Ω 58 μΩ/Ω + 130 Ω 580 μΩ/Ω + 2.8 kΩ 0.58 % + 94 kΩ	For generating a stimulus that can be applied to measuring instruments also for measuring a stimulus provided by the device being calibrated	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
ELECTRICAL			All electrical calibrations are performed as a comparison against a reference standard	A
DC VOLTAGE				
Generation	0 mV to 220 mV 202 mV to 2.2 V 2.2 V to 11 V 11 V to 22 V 22 V to 220 V 220 V to 1100 V	9.2 μ V/V + 0.74 μ V 8.3 μ V/V + 0.99 μ V 4.0 μ V/V + 3.0 μ V 4.1 μ V/V + 4.7 μ V 5.8 μ V/V + 4.7 μ V 7.5 μ V/V + 470 μ V 14 μ V/V + 720 μ V 14 μ V/V + 2.8 mV	Values can be generated for the calibration of measuring Instruments	
Measurement	0 mV to 100 mV 100 mV to 1 V 1 V to 10 V 10 V to 100 V 100 V to 1000 V	5.8 μV/V + 390 nV 4.6 μV/V + 430 nV 4.6 μV/V + 1.2 μV 6.9 μV/V + 54 μV 15 μV/V + 1.3 mV	For measurement of instrument outputs	
DC CURRENT				А
Generation	0 μA to 220 μA 220 μA to 1 mA 1 mA to 2.2 mA 2.2m A to 22 mA 22 mA to 220 mA 220 mA to 2.2 A	120 μA/A + 12 nA 58 μA/A + 35 nA 58 μA/A + 49 nA 58 μA/A + 230 n 58 μA/A + 240 nA 58 μA/A + 2.3 μA 58 μA/A + 9.0 μA 150 μA/A + 36 μA 150 μA/A + 100 μA	Values can be generated for the calibration of measuring instruments	
	2.2 A to 10 A 10 A to 20.2 A 20.2 A to 30 A	350 μΑ/Α + 590 μΑ 350 μΑ/Α + 760 μΑ 580 μΑ/Α + 4.4 mA		
	20 A to 1500 A	0.26 % + 13 mA	Simulation with coil	
Measurement	0 μA to 1 μA 1 μA to 10 μA 10 μA to 100 μA 100 μA to 1 mA 1 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A 1 A to 3 A 3 A to 5 A 5 A to 10 A	24 μ A/A + 48 pA 23 μ A/A + 130 pA 23 μ A/A + 950 pA 23 μ A/A + 6.0 nA 23 μ A/A + 60 nA 40 μ A/A + 630 nA 130 μ A/A + 13 μ A 0.23 % + 750 μ A 0.14 % + 2.6 mA 0.27 % + 4.4 mA	For measurement of Instrument outputs	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
		All electrical calibrations are performed as a comparison against a reference standard	A
			А
20 mV to 202 mV 10 Hz to 44 Hz 45 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 100 kHz 100 kHz to 500 kHz	920 μV/V + 62 μV 190 μV/V + 62 μV 230 μV/V + 56 μV 0.12 % + 84 μV 0.46 % + 2.5 mV		
202 mV to 2.02 V 10 Hz to 44 Hz 45 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 100 kHz	580 μV/V + 320 μV 180 μV/V + 280 μV 240 μV/V + 450 μV 750 μV/V + 530 μV		
2.02 V to 20.2 V 10 Hz to 44 Hz 45 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 100 kHz	580 μV/V + 3.0 mV 180 μV/V + 2.7 mV 240 μV/V + 4.4 mV 690 μV/V + 5.3 mV		
20.2 V to 202 V 30 Hz to 44 Hz 45 Hz to 1 kHz 1 kHz to 10 kHz 10 kHz to 40 kHz	580 μV/V + 33 mV 170 μV/V + 28 mV 270 μV/V + 30 mV 350 μV/V + 53 mV		
202 V to 1020 V 30 Hz to 44 Hz 45 Hz to 1 kHz 1 kHz to 10 kHz	640 μV/V + 250 mV 230 μV/V + 110 mV 290 μV/V + 200 mV		A
0 mV to 2.2 mV 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 20 kHz 20 kHz to 50 kHz 50 kHz to 100 kHz 100 kHz to 300 kHz 300 kHz to 500 kHz 500 kHz to 1 MHz	$\begin{array}{c} 0.052 \ \% + 4.6 \ \mu V \\ 0.045 \ \% + 4.6 \ \mu V \\ 0.045 \ \% + 4.6 \ \mu V \\ 0.050 \ \% + 4.6 \ \mu V \\ 0.050 \ \% + 4.6 \ \mu V \\ 0.082 \ \% + 5.8 \ \mu V \\ 0.13 \ \% + 12 \ \mu V \\ 0.17 \ \% + 23 \ \mu V \\ 0.32 \ \% + 23 \ \mu V \end{array}$		
2.2 mV to 22 mV 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 20 kHz 20 kHz to 50 kHz 50 kHz to 100 kHz 100 kHz to 300 kHz 300 kHz to 500 kHz 500 kHz to 1 MHz	$\begin{array}{c} 0.030 \ \% + 4.6 \ \mu V \\ 0.014 \ \% + 4.6 \ \mu V \\ 0.093 \ \% + 4.6 \ \mu V \\ 0.025 \ \% + 4.6 \ \mu V \\ 0.059 \ \% + 5.8 \ \mu V \\ 0.12 \ \% + 12 \ \mu V \\ 0.16 \ \% + 23 \ \mu V \\ 0.31 \ \% + 23 \ \mu V \end{array}$		
	20 mV to 202 mV 10 Hz to 44 Hz 45 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 100 kHz 100 kHz to 500 kHz 20 kHz to 100 kHz 100 kHz to 500 kHz 202 mV to 2.02 V 10 Hz to 44 Hz 45 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 100 kHz 0 mV to 2.2 mV 10 Hz to 20 Hz 20 kHz to 500 kHz 300 kHz to 20 Hz 20 Hz to 40 Hz 20 Hz to 40 Hz 20 kHz to 50 kHz <td< td=""><td>RangeMeasurement Uncertainty $(k = 2)$20 mV to 202 mV 10 Hz to 44 Hz920 µV/V + 62 µV 190 µV/V + 62 µV 20 kHz to 100 kHz45 Hz to 1 kHz190 µV/V + 62 µV 10 Hz to 20 kHz20 mV to 202 V 10 Hz to 44 Hz230 µV/V + 56 µV 20 kHz to 100 kHz202 mV to 2.02 V 10 Hz to 44 Hz580 µV/V + 320 µV 180 µV/V + 280 µV 20 kHz to 100 kHz202 V to 2.02 V 10 Hz to 44 Hz580 µV/V + 30 µV 20 kHz to 100 kHz202 V to 20.2 V 10 Hz to 44 Hz580 µV/V + 530 µV202 V to 20.2 V 10 Hz to 44 Hz580 µV/V + 530 µV20.2 V to 202 V 30 Hz to 100 kHz580 µV/V + 3.0 mV 45 Hz to 1 100 kHz20.2 V to 202 V 30 Hz to 44 Hz580 µV/V + 3.0 mV 45 Hz to 100 kHz20.2 V to 202 V 30 Hz to 44 Hz580 µV/V + 33 mV 45 Hz to 10 kHz20.2 V to 202 V 30 Hz to 44 Hz580 µV/V + 33 mV 45 Hz to 10 kHz202 V to 1020 V 30 Hz to 44 Hz580 µV/V + 30 mV 10 kHz to 10 kHz202 V to 1020 V 30 Hz to 44 Hz640 µV/V + 250 mV 230 µV/V + 53 mV202 V to 1020 V 30 Hz to 40 Hz0.052 % + 4.6 µV 0.045 % + 4.6 µV 20 µV/V + 200 mV0 mV to 2.2 mV 10 MHz to 20 kHz0.052 % + 4.6 µV 0.045 % + 4.6 µV 0.045 % + 4.6 µV 0.045 % + 4.6 µV 0.030 % + 4.6 µV 0.032 % + 23 µV2.2 mV to 22 mV 10 Hz to 20 Hz 20 kHz to 500 kHz0.030 % + 4.6 µV 0.030 % + 4.6 µV 0.032 % + 4.6 µV 0.032 % + 4.6 µV 0.032 % + 4.6 µV 0.032 % + 4.6</td><td>RangeMeasurement Uncertainty $(k = 2)$Remarks20mV to 202 mV 10 Hz to 44 Hz920 µV/V + 62 µV 190 µV/V + 62 µV 20 Hz to 20 KHzAll electrical calibrations are performed as a comparison against a reference standard20mV to 202 mV 10 Hz to 44 Hz920 µV/V + 62 µV 20 kHz to 100 kHz230 µV/V + 66 µV 20 µV/V + 66 µV 0.12 % + 84 µV200 mV to 2.02 V 10 Hz to 500 KHz0.46 % + 2.5 mV202 mV to 2.02 V 10 Hz to 100 kHz580 µV/V + 320 µV 580 µV/V + 450 µV202 mV to 2.02 V 10 Hz to 100 kHz580 µV/V + 30 µV 750 µV/V + 530 µV202 mV to 2.02 V 10 Hz to 44 Hz580 µV/V + 3.0 mV 45 Hz to 1 KHz20 kHz to 100 kHz580 µV/V + 5.0 mV 20 kHz to 100 kHz20.2 V to 20.2 V 30 Hz to 44 Hz580 µV/V + 5.3 mV20.2 V to 202 V 30 Hz to 44 Hz580 µV/V + 3.0 mV 45 Hz to 1 kHz20.2 V to 202 V 30 Hz to 44 Hz580 µV/V + 3.0 mV 450 µV/V + 5.3 mV20.2 V to 202 V 30 Hz to 44 Hz580 µV/V + 3.0 mV 450 µV/V + 30 mV202 V to 102 V 30 Hz to 44 Hz640 µV/V + 250 mV 350 µV/V + 30 mV202 V to 102 V 30 Hz to 44 Hz640 µV/V + 250 mV 350 µV/V + 30 mV202 V to 102 V 30 Hz to 40 Hz0.045 % + 4.6 µV 20 QV/V + 200 mV0 mV to 2.2 mV 10 Hz to 20 Hz 20 AHZ to 10 AHz0.050 % + 4.6 µV 20 AHZ to 10 AHz20 WV to 22 mV 10 Hz to 20 Hz 20 AHZ to 10 AHz0.030 % + 4.6 µV 20 AHZ to 10 AHz20 WV to 22 mV 10 AHz to 20 AHz 20 AHZ to 10 AHz0.030 % + 4.6 µV 20 AHZ to 10 AHz20 Hz to 10 AHz 20 AHZ to 10 AHz0.030</br></br></br></br></br></td></td<>	RangeMeasurement Uncertainty $(k = 2)$ 20 mV to 202 mV 10 Hz to 44 Hz920 µV/V + 62 µV 190 µV/V + 62 µV 20 kHz to 100 kHz45 Hz to 1 kHz190 µV/V + 62 µV 10 Hz to 20 kHz20 mV to 202 V 10 Hz to 44 Hz230 µV/V + 56 µV 20 kHz to 100 kHz202 mV to 2.02 V 10 Hz to 44 Hz580 µV/V + 320 µV 180 µV/V + 280 µV 20 kHz to 100 kHz202 V to 2.02 V 10 Hz to 44 Hz580 µV/V + 30 µV 20 kHz to 100 kHz202 V to 20.2 V 10 Hz to 44 Hz580 µV/V + 530 µV202 V to 20.2 V 10 Hz to 44 Hz580 µV/V + 530 µV20.2 V to 202 V 30 Hz to 100 kHz580 µV/V + 3.0 mV 45 Hz to 1 100 kHz20.2 V to 202 V 30 Hz to 44 Hz580 µV/V + 3.0 mV 45 Hz to 100 kHz20.2 V to 202 V 30 Hz to 44 Hz580 µV/V + 33 mV 45 Hz to 10 kHz20.2 V to 202 V 30 Hz to 44 Hz580 µV/V + 33 mV 45 Hz to 10 kHz202 V to 1020 V 30 Hz to 44 Hz580 µV/V + 30 mV 10 kHz to 10 kHz202 V to 1020 V 30 Hz to 44 Hz640 µV/V + 250 mV 230 µV/V + 53 mV202 V to 1020 V 30 Hz to 40 Hz0.052 % + 4.6 µV 0.045 % + 4.6 µV 20 µV/V + 200 mV0 mV to 2.2 mV 10 MHz to 20 kHz0.052 % + 4.6 µV 0.045 % + 4.6 µV 0.045 % + 4.6 µV 0.045 % + 4.6 µV 0.030 % + 4.6 µV 0.032 % + 23 µV2.2 mV to 22 mV 10 Hz to 20 Hz 20 kHz to 500 kHz0.030 % + 4.6 µV 0.030 % + 4.6 µV 0.032 % + 4.6 µV 0.032 % + 4.6 µV 0.032 % + 4.6 µV 0.032 % + 4.6	RangeMeasurement Uncertainty $(k = 2)$ Remarks20mV to 202 mV 10 Hz to 44 Hz920 µV/V + 62 µV 190 µV/V + 62 µV 20 Hz to 20 KHzAll electrical calibrations are performed as a comparison against a reference standard20mV to 202 mV 10 Hz to 44 Hz920 µV/V + 62 µV 20 kHz to 100 kHz230 µV/V + 66 µV 20 µV/V + 66 µV 0.12 % + 84 µV200 mV to 2.02 V 10 Hz to 500 KHz0.46 % + 2.5 mV202 mV to 2.02 V 10 Hz to 100 kHz580 µV/V + 320 µV 580 µV/V + 450 µV202 mV to 2.02 V 10 Hz to 100 kHz580 µV/V + 30 µV

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
ELECTRICAL			All electrical calibrations are performed as a comparison against a reference standard	A
AC VOLTAGE				А
Generation	22 mV to 220 mV 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 20 kHz 20 kHz to 50 kHz 50 kHz to 100 kHz 100 kHz to 300 kHz 300 kHz to 500 kHz 500 kHz to 1 MHz	$\begin{array}{c} 0.032 \ \% + 14 \ \mu V \\ 0.012 \ \% + 8.1 \ \mu V \\ 0.0081 \ \% + 8.1 \ \mu V \\ 0.015 \ \% + 8.1 \ \mu V \\ 0.036 \ \% + 20 \ \mu V \\ 0.077 \ \% + 23 \ \mu V \\ 0.16 \ \% + 29 \ \mu V \\ 0.31 \ \% + 52 \ \mu V \end{array}$		
	220 mV to 2.2 V 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 20 kHz 20 kHz to 50 kHz 50 kHz to 100 kHz 100 kHz to 300 kHz 300 kHz to 500 kHz 500 kHz to 1 MHz	$\begin{array}{c} 0.028 \ \% + 46 \ \mu V \\ 0.011 \ \% + 17 \ \mu V \\ 0.0050 \ \% + 9.3 \ \mu V \\ 0.0079 \ \% + 12 \ \mu V \\ 0.010 \ \% + 35 \ \mu V \\ 0.039 \ \% + 92 \ \mu V \\ 0.12 \ \% + 230 \ \mu V \\ 0.20 \ \% + 350 \ \mu V \end{array}$		
	2.2 V to 22 V 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 20 kHz 20 kHz to 50 kHz 50 kHz to 100 kHz 100 kHz to 300 kHz 300 kHz to 500 kHz 500 kHz to 1 MHz	0.028 % + 460 µV 0.011 % + 170 µV 0.0052 % + 58 µV 0.0079 % + 120 µV 0.0097 % + 230 µV 0.030 % + 690 µV 0.12 % + 2.3 mV 0.17 % + 3.7 mV		
	22 V to 220 V 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 20 kHz 20 kHz to 50 kHz 50 kHz to 100 kHz	0.028 % + 4.6 mV 0.011 % + 1.7 mV 0.0064 % + 0.70 mV 0.0096 % + 1.2 mV 0.046 % + 2.9 mV		
	220 V to 1100 V 50 Hz to 1 kHz	0.012 % + 4.7 mV		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty $(k = 2)$	Remarks	Location Code
ELECTRICAL			All electrical calibrations are performed as a comparison against a reference standard	A
AC VOLTAGE				А
Measurement	10 μV to 10 mV 40 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 100 kHz	230 μV/V + 2.6 μV 350 μV/V + 2.6 μV 0.12 % + 2.6 μV	For measurement of instrument outputs	
	10 mV to 100 mV 40 Hz to 1 kHz 1 kHz to 20 kHz	82 μV/V + 3.3 μV 160 μV/V + 3.3 μV		
	100 mV to 1 V 20 Hz to 40 Hz 40 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 50 kHz 50 kHz to 100 kHz	82 μV/V + 48 μV 82 μV/V + 27 μV 160 μV/V + 28 μV 350 μV/V + 30 μV 920 μV/V + 31 μV		
	1 V to 10 V 10 Hz to 40 Hz 40 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 50 kHz 50 kHz to 100 kHz 100 kHz to 300 kHz 300 kHz to 1 MHz	82 μ V/V + 510 μ V 82 μ V/V + 270 μ V 160 μ V/V + 270 μ V 350 μ V/V + 310 μ V 920 μ V/V + 320 μ V 0.35 % + 1.2 mV 1.2 % + 3.2 mV		
	10 V to 100 V 10 Hz to 40 Hz 40 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 50 kHz 50 kHz to 100 kHz	$\begin{array}{c} 230 \; \mu V/V + 4.9 \; mV \\ 230 \; \mu V/V + 2.8 \; mV \\ 230 \; \mu V/V + 2.9 \; mV \\ 400 \; \mu V/V + 3.2 \; mV \\ 0.14 \; \% + 3.8 \; mV \end{array}$		
	100 V to 700 V 10 Hz to 40 Hz 40 Hz to 1 kHz 1 kHz to 20 kHz	460 μV/V + 52 mV 460 μV/V + 26 mV 690 μV/V + 28 mV		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
ELECTRICAL			All electrical calibrations are performed as a comparison against a reference standard	A
AC CURRENT				A
Generation	40 Hz to 1 kHz 2.2 μA to 220 μA 0.22 mA to 2.2 mA 2.2 mA to 22 mA 22 mA to 220 mA 0.22 A to 2.2 A	0.019 % + 9.3 nA 0.016 % + 41 nA 0.012 % + 410 nA 0.012 % + 2.9 μA 0.030 % + 41 μA	Values can be generated for the calibration of measuring instruments	
	1 kHz to 5 kHz 2.2 μA to 220 μA 0.22 mA to 2.2 mA 2.2 mA to 22 mA 22 mA to 220 mA 0.22 A to 2.2 A	0.039 % + 14 nA 0.028 % + 130 nA 0.023 % + 640 nA 0.023 % + 4.1 μA 0.053 % + 93 μA		
	5 kHz to 10 kHz 2.2 μA to 220 μA 0.22 mA to 2.2 mA 2.2 mA to 22 mA 22 mA to 22 mA 0.22 A to 2.2 A	0.14 % + 75 nA 0.14 % + 750 nA 0.13 % + 5.8 μA 0.13 % + 12 μA 0.81 % + 180 μA		
	2.02 A to 20 A 40 Hz to 100 Hz	650 µA/A + 6.0 mA		
	20 A to 30 A 40 Hz to 100 Hz	650 µA/A + 13 mA		
	20 A to 1500 A 40 Hz to 60 Hz	0.26 % + 13 mA	Simulation using coil	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
ELECTRICAL			All electrical calibrations are performed as a comparison against a reference standard	A
AC CURRENT				А
Measurement	50 nA to 100 μA 100 Hz to 5 kHz	700 μA/A + 46 nA	For measurement of instrument outputs	
	100 μA to 1 mA 100 Hz to 5 kHz	350 μA/A + 230 nA		
	1 mA to 10 mA <i>10 Hz to 20 Hz</i> 20 Hz to 45 Hz 45 Hz to 5 kHz	0.46 % + 2.3 μA 0.17 % + 2.3 μA 690 μA/A + 2.3 μA		
	10 mA to 100 mA <i>10 Hz to 20 Hz</i> 20 Hz to 45 Hz 45 Hz to 5 kHz	0.17 % + 24 μΑ 690 μΑ/Α + 24 μΑ 350 μΑ/Α + 24 μΑ		
	100 mA to 1 A <i>10 Hz to 20 Hz</i> 20 Hz to 45 Hz 45 Hz to 5 kHz	0.46 % + 240 μA 920 μA/A + 240 μA 0.12 % + 240 μA		
	1 A to 3 A 10 Hz to 5 kHz	0.27 % + 580 μA		
	3 A to 5 A 10 Hz to 5 kHz	0.27 % + 11 mA		
	5 A to 10 A 10 Hz to 5 kHz	0.29 % + 11 mA		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
ELECTRICAL			All electrical calibrations are performed as a comparison against a reference standard	А
CAPACITANCE				A
Generation	At 1 kHz: 1 nF 10 nF 20 nF 50 nF 100 nF 1 μF 10 μF	3.5 pF 31 pF 64 pF 150 pF 290 pF 4.6 nF 69 nF	Values can be generated for the calibration of measuring instruments	
Measurement	At 1 kHz: 1 pF to 10 pF 10 pF to 1 nF 10 nF to 10 nF 10 nF to 10 nF 0.1 μF to 1 μF 1 μF to 10 μF 10 μF to 100 μF 100 μF to 1 mF	0.045 % + 2.1 fF 0.028 % + 21 fF 0.026 % + 2.1 pF 0.026 % + 2.1 pF 0.026 % + 2.1 nF 0.026 % + 2.1 nF 0.026 % + 2.1 nF 0.036 % + 210 nF	Comparison against LCR bridge	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
ELECTRICAL			All electrical calibrations are performed as a comparison against a reference standard	А
INDUCTANCE	At 1 kHz:		Values can be	A
Generation	1 mH 10 mH 100 mH 1 H	5.9 μH 58 μH 580 μH 5.8 mH	generated for the calibration of measuring instruments	
Measurement	<i>At 1 kHz:</i> 0.1 mH to 1 mH 1 mH to 10 mH 10 mH to 100 mH 100 mH to 1 H	0.026 % + 0.21 μH 0.026 % + 2.1 μH 0.026 % + 21 μH 0.026 % + 210 μH	Comparison against LCR bridge	
FREQUENCY Value can be generated for the calibration of measuring instruments	10 MHz reference	1.0 part in to 10 ¹²	Frequency may also be expressed as time; 1/f for repetitive signals, in terms of seconds or other units such as RPM.	A
For generating a stimulus that can be applied to measuring instruments also for measuring a stimulus provided by the device being calibrated	1 Hz to 30 MHz 30 MHz to 4 GHz	1.5 parts in to 10 ¹² + 0.60 μHz 2.0 parts in to 10 ¹²		
Rotational speed - Optical				
Measurement	10 RPM to 99.99 RPM 100 RPM to 999.9 RPM 1000 RPM to 99999 RPM	2.3 RPM 2.4 RPM 3.3 RPM		
Generation	60 RPM to 3000 RPM 3000 RPM to 60000 RPM	0.12 RPM 1.2 RPM		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
TEMPERATURE SIMULATION				A
PT 100	-200 °C to +800 °C	0.065 °C		
Ambient	17 °C to 23 °C	0.20 °C	Calibration of Cold Junction	
Reference (CJC) juncton compensation INCLUDED				
Base Thermocouples				
Туре Е	-200 °C to -100 °C -100 °C to 0 °C 0 °C to 1000 °C	0.22 °C 0.21 °C 0.22 °C		
Туре Ј	-200 °C to -100 °C -100 °C to 0 °C 0 °C to 1200 °C	0.24 °C 0.21 °C 0.22 °C		
Туре К	-200 °C to -100 °C -100 °C to 0 °C 0 °C to 1372 °C	0.27 °C 0.22 °C 0.24 °C		
Туре N	-200 °C to -100 °C -100 °C to 0 °C 0 °C to 1300 °C	0.35 °C 0.24 °C 0.24 °C		
Туре Т	-200 °C to -100 °C -100 °C to 0 °C 0 °C to 400 °C	0.27 °C 0.23 °C 0.21 °C		
Noble thermocouples				
Туре В	600 °C to 1820 °C	0.52 °C		
Type R	-50 °C to 0 °C 0 °C to 400 °C 400 °C to 1767 °C	0.78 °C 0.57 °C 0.36 °C		
Type S	-50 °C to 0 °C 0 °C to 400 °C 400 °C to 1767 °C	0.65 °C 0.55 °C 0.40 °C		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
Temperature indicators and calibrators by electrical simulation				А
Reference (CJC) junction compensation EXCLUDED				
Base Thermocouples				
Туре Е	-200 °C to -100 °C -100 °C to 0 °C 0 °C to 1000 °C	0.22 °C 0.19 °C 0.20 °C		
Туре Ј	-200 °C to -100 °C -100 °C to 0 °C 0 °C to 1200 °C	0.24 °C 0.19 °C 0.20 °C		
Туре К	-200 °C to -100 °C -100 °C to 0 °C 0 °C to 1372 °C	0.26 °C 0.21 °C 0.22 °C		
Туре N	-200 °C to -100 °C -100 °C to 0 °C 0 °C to 1300 °C	0.35 °C 0.22 °C 0.22 °C		
Туре Т	-200 °C to -100 °C -100 °C to 0 °C 0 °C to 400 °C	0.26 °C 0.21 °C 0.20 °C		
Noble thermocouples				
Туре В	600 °C to 1820 °C	0.52 °C		
Type R	-50 °C to 0 °C 0 °C to 400 °C 400 °C to 1767 °C	0.77 °C 0.56 °C 0.35 °C		
Type S	-50 °C to 0 °C 0 °C to 400 °C 400 °C to 1767 °C	0.65 °C 0.55 °C 0.39 °C		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

8239 Accredited to ISO/IEC 17025:2017 Issue No: 016 Issue date: 10 April 2025

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
EQUIPMENT FOR IEE 17 TH / 18 TH E	DITION WIRING TESTIN	G		
LOOP TESTERS	Nominal applied			A
AC Resistance at 50 Hz	resistances 0.05Ω 0.10Ω 0.21Ω 0.32Ω 0.5Ω 1Ω 5Ω 10Ω 100Ω $1 k\Omega$	4.7 mΩ 4.8 mΩ 4.9 mΩ 5.1 mΩ 5.6 mΩ 8.6 mΩ 31 mΩ 59 mΩ 580 mΩ 5.9 Ω		
CONTINUITY TESTERS				А
DC Resistance	20 mΩ 200 mΩ to 2 Ω 4 Ω 6 Ω 8 Ω 10 Ω 20 Ω 100 Ω 1 kΩ	29 mΩ 29 mΩ 31 mΩ 34 mΩ 37 mΩ 41 mΩ 65 mΩ 290 mΩ 2.9 Ω		
Continuity Current				
Measurement	10 mA 100 mA 200 mA 300 mA	1.1 mA 1.7 mA 3.1 mA 4.6 mA		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty $(k = 2)$	Remarks	Location Code
INSULATION TESTERS				А
DC Resistance	10 kΩ 20 kΩ 30 kΩ 40 kΩ 60 kΩ 100 kΩ 200 kΩ 400 kΩ 600 kΩ 1 MΩ 2 MΩ 3 MΩ 4 MΩ 5 MΩ 6 MΩ 7 MΩ 8 MΩ 9 MΩ 10 MΩ 20 MΩ 30 MΩ 40 MΩ 50 MΩ 50 MΩ 60 MΩ 70 MΩ 80 MΩ 90 MΩ 100 MΩ 200 MΩ	12 Ω 23 Ω 35 Ω 46 Ω 69 Ω 120 Ω 230 Ω 460 Ω 690 Ω 1.2 k Ω 2.3 k Ω 3.5 k Ω 4.6 k Ω 58 k Ω 69 k Ω 81 k Ω 92 k Ω 100 k Ω 120 k Ω 230 k Ω 350 k Ω 460 k Ω 580 k Ω 690 k Ω 810 k Ω 930 k Ω 1.0 MΩ 1.2 MΩ 2.8 M Ω 5.6 M Ω 8.5 M Ω 11 M Ω 14 M Ω 580 M Ω		
DC Voltage	50 V 100 V 150 V 200 V 250 V 500 V 1000 V	1.1 V 1.5 V 2.0 V 2.5 V 3.0 V 5.9 V 12 V		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016

Accredited to ISO/IEC 17025:2017

Issue date: 10 April 2025

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
EARTH BOND TESTERS				А
AC Resistance at 50 Hz	Nominal applied resistance 0.04Ω 0.1Ω 0.15Ω 0.27Ω 0.38Ω 0.55Ω 1Ω 5Ω 10Ω 100Ω $1 k\Omega$	4.7 mΩ 4.8 mΩ 4.8 mΩ 5.0 mΩ 5.2 mΩ 5.8 mΩ 7.8 mΩ 30 mΩ 59 mΩ 580 mΩ 5.8 Ω		
AC Current at 50 Hz	100 mA 200 mA 400 mA 4 A 8 A 10 A 20 A	7.3 mA 7.9 mA 9.9 mA 100 mA 160 mA 190 mA 440 mA		
LEAKAGE TESTERS				А
DC Current	2 mA 5 mA 10 mA	36 μΑ 82 μΑ 130 μΑ		
RCD TESTERS				А
RCD Trip Time	20 ms 40 ms 100 ms 200 ms 390 ms 900 ms	680 µs 680 µs 680 µs 680 µs 680 µs 8.1 ms		
RCD Trip Current at 50 Hz	10 mA 30 mA 90 mA 100 mA 110 mA 150 mA 300 mA 1 A 2 A	620 μA 1.7 mA 5.2 mA 5.8 mA 6.4 mA 17 mA 17 mA 58 mA 120 mA		
AC Voltage Source at 50 Hz	100 V 200 V 230 V 300 V 400 V	0.37 V 0.45 V 0.65 V 0.82 V 0.99 V		
Line Voltage Measurement	200 V to 260 V	2.4 V		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
PRESSURE			Methods consistent with	A
Gas Pressure (Gauge)			EURAMET CG17. Calibration of devices with an electrical output may be undertaken.	
Calibration of pressure indicating instruments and gauges	-95 kPa to -3.5 kPa 3.5 kPa to 100 kPa 100 kPa to 2.5 MPa 2.5 MPa to 12 MPa	0.0073 % 0.0044 % 0.0044 % 0.0057 %	Calibration using deadweight testers. Absolute pressures can be generated over these ranges attracting an additional uncertainty of 7.5 Pa.	
Calibration of pressure indicating instruments and gauges	-2.4 kPa to +2.4 kPa 3.5 kPa to 100 kPa 100 kPa to 2.1 MPa -95 kPa to 0 Pa 0 Pa to 21 MPa	0.078 % + 1.3 Pa 0.004 6 % + 13 Pa 0.002 5 % + 90 Pa 0.018% + 1.9 kPa 0.014 % + 1.9 kPa	Calibration using pressure controllers.	
Gas Pressure (Absolute)				
Calibration of pressure indicating instruments and gauges	75 kPa to 115 kPa 3.5 kPa to 100 kPa 3.5 kPa to 200 kPa 3.5 kPa to 800 kPa 3.5 kPa to 2.1 MPa 3.5 kPa to 7 MPa 100 kPa to 41.4 MPa	7.5 Pa 0.0034 % + 9.5 Pa 0.0034 % + 10 Pa 0.0031 % + 140 Pa 0.0030 % + 77 Pa 0.0030 % + 840 Pa 0.0031 % + 4.8 kPa	Calibration using pressure controllers.	
Hydraulic Pressure (Gauge)				
Calibration of pressure indicating instruments and gauges	0.6 MPa to 6.0 MPa 6 MPa to 70 MPa 70 MPa to 138 MPa 138 MPa to 344 MPa	0.0062 % 0.0075 % 0.0073 % 0.0086 %	Calibration using deadweight testers. Absolute pressures can be generated over these ranges attracting an additional uncertainty of 7.5 Pa.	
TEMPERATURE				A
PRTs and Sensors with indicators	-95 °C to 140 °C 140 °C to 660 °C	0.056 °C 0.15 °C	Calibrations performed in a Metal block	
	140 °C to 660 °C	0.10 °C		
	-80 °C to 100 °C	0.019 °C	Calibrations performed in liquid	
	100 °C to 150 °C 150 °C to 250 °C	0.031 °C 0.040 °C	bath	
	0°C	0.010 °C	Ice point	
	0.01 °C	0.0050 °C	Triple point of water	
Metal block calibrators and portable liquid baths	-95 °C to +660 °C	Uncertainty as for sensor and indicator		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

8239 Accredited to ISO/IEC 17025:2017 Issue No: 016 Issue date: 10 April 2025

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
HUMIDITY				А
Dew point	-20 °C to 60 °C	0.20 °C	By comparison with a chilled mirror hygrometer	
Relative humidity	Example conditions At 0 °C 5 %rh 50 %rh 90 %rh	Corresponding to dew-point and temperature range and uncertainties 0.16 %rh 0.85 %rh 1.5 %rh	By comparison with a chilled mirror hygrometer and PRTs	
	At 23 °C 5 %rh to 10 %rh 10 %rh to 50 %rh 50 %rh to 95 %rh	0.15 %rh 0.72 %rh 1.2 %rh		
Relative humidity	At 60 °C 5 %rh 50 %rh 90 %rh	0.14 %rh 0.61 %rh 1.0 %rh		
TEMPERATURE IN AIR	0 °C to 60 °C	0.15 °C		A

Accredited to ISO/IEC 17025:2017

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
DIMENSIONAL CALIBRATIONS	RANGE IN MILLI	 METRES AND UNCERTAINTY UNLESS OTHERWISE STATE 		
LENGTH			NOTES 1 All linear calibrations i inch units.	may be given in
Plain Plug Gauges (Parallel)	1 to 50 diameter 50 to 100 100 to 200 200 to 300	0.80 1.5 2.0 3.0 0 0 0 0 0 0 0 0 0 0 0 0 0	Comparison to gauge blocks using a length measuring machine.	В
Length Gauges, Flat and Spherical Ended (excluding Length Bars)	25 to 1000	1.0 + (8.0 x length in m)	Comparison to gauge blocks using a length measuring machine.	В
ANGLE			2 The uncertainty quote departure from flatness, st parallelism or squareness, separating the two parallel enclose the surface under	raightness, i.e., the distance I planes which just
Squares Blade Type	50 to 300 300 to 450	3.0on squareness5.0See Note 2	BS 939:2007 Comparison to master square.	В
MEASURING INSTRUMENTS AND MACHINES				
Micrometers			Comparison to length	
External	0 to 1000	Heads 2.0 between any	standards BS 870:2008	В
Internal Micrometers	0 to 900	two points Setting and extension rods	BS 959:2008	В
Depth Micrometers	0 to 300	1.0 + (8.0 x length in m)	BS 6468:2008	В
Vernier, dial and digital type gauges			Comparison to length standards.	В
Calliper	0 to 1000	Overall performance 10 + (30 x length in m)	As BS 887:2008	
Height	0 to 1000	Overall performance 10 + (10 x length in m)	ISO13225:2012 and BS 1643:2008	
Depth	0 to 600	Overall performance 10 + (30 x length in m)	As BS 6365:2008	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
MEASURING INSTRUMENTS AND MACHINES (continued)				
Dial Gauges and Dial Test Indicators	0 to 50	1.0	BS 907:2008 and BS 2795:1981 using a length measuring machine.	В
Surface Plates Granite Cast Iron	160 x 100 to 4000 x 4000 Flatness of working surface:	1.5 + (0.80 x diagonal in m) See Note 2 2.7	BS 817:2008 and above using an electronic level and variation gauge.	B and C
	Local variation of working surface:	2.1		
Feeler Gauges	0.025 to 1.0	2.0	BS 957:2008 using a length measuring machine.	В
ELECTRICAL CALIBRATION				
DC RESISTANCE Specific values				В
Measurement	10 Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ 1 MΩ 10 MΩ 100 MΩ 1 GΩ 10 GΩ 100 GΩ 1 T Ω	14 μΩ/Ω 9.6 μΩ/Ω 8.0 μΩ/Ω 9.6 μΩ/Ω 24 μΩ/Ω 110 μΩ/Ω 440 μΩ/Ω 0.40 % 0.59 % 2.0 % 1.4 %	Using digital multimeter.	
Other values Measurement	0 Ω to 1 Ω 1 Ω to 10 Ω 10 Ω to 100 Ω 100 Ω to 1 kΩ 1 kΩ to 10 kΩ 10 kΩ to 100 kΩ 100 kΩ to 1 MΩ 1 MΩ to 10 MΩ 10 MΩ to 100 MΩ 100 MΩ to 1 GΩ	66 $\mu\Omega/\Omega$ + 2.0 $\mu\Omega$ 73 $\mu\Omega/\Omega$ + 2.0 $\mu\Omega$ 200 $\mu\Omega/\Omega$ + 2.0 $\mu\Omega$ 13 $\mu\Omega/\Omega$ + 2.0 $\mu\Omega$ 14 $\mu\Omega/\Omega$ 76 $\mu\Omega/\Omega$ 37 $\mu\Omega/\Omega$ 150 $\mu\Omega/\Omega$ 0.13 % 0.14 %	Using digital multimeter.	В

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty ($k = 2$)	Remarks	Location Code
DC RESISTANCE (continued)				в
Generation Specific values	10 Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ 1 MΩ 10 MΩ 100 MΩ	6.2 mΩ 8.0 mΩ 28 mΩ 160 mΩ 2.9 Ω 45 Ω 1.3 kΩ 260 kΩ	Using multifunction calibrator or decade resistance box.	
DC VOLTAGE				В
Measurement Specific values	100 mV 1 V 10 V 100 V 100 V	11 μV/V 9.4 μV/V 9.4 μV/V 12 μV/V 12 μV/V	Using digital multimeter.	
Other values	0 mV to 100 mV 100 mV to 1 V 1 V to 10 V 10 V to 100 V 100 V to 1000 V	72 μV/V + 2.0 μV 10 μV/V + 2.0 μV 9.5 μV/V + 2.0 μV 19 μV/V 12 μV/V	Using digital multimeter.	
	1 kV to 20 kV 20 kV to 30 kV	0.47 kV 0.35 %	Using high voltage divider.	
Generation	0 mV to 200 mV 200 mV to 2 V 2 V to 20 V 20 V to 200 V	18 μV/V + 3.0 μV 11 μV/V + 5.0 μV 10 μV/V + 50 μV 14 μV/V + 530 μV	Using multifunction calibrator.	
	200 V to 1025 V	14 µV/V + 4.0 mV		
DC CURRENT				В
Measurement Specific values	1 μA 10 μA 100 μA 1 mA 10 mA 100 mA 1 A	45 μΑ/Α 25 μΑ/Α 24 μΑ/Α 24 μΑ/Α 24 μΑ/Α 41 μΑ/Α 87 μΑ/Α	Using digital multimeter.	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

8239 Accredited to ISO/IEC 17025:2017 Issue No: 016 Issue date: 10 April 2025

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
DC CURRENT (continued)				В
Measurement (continued) Other values	0 μA to 1 μA 1 μA to 10 μA 10 μA to 100 μA 100 μA to 1 mA 1 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A	470 pA 120 μΑ/Α 96 μΑ/Α 63 μΑ/Α 64 μΑ/Α 71 μΑ/Α 180 μΑ/Α	Using digital multimeter.	
Generation	0 µA to 200 µA 200 µA to 2 mA 2 mA to 20 mA 20 mA to 200 mA 200 mA to 2 A 2 A to 20 A 20 A to 30 A	0.020 % + 12 nA 0.010 % + 1.2 μA 0.010 % + 12 μA 0.040 % + 3.3 μA 0.020 % + 120 μA 0.040 % + 2.0 mA 0.060 % + 2.0 mA	Using multifunction calibrator.	В
	30 to 1000 A	0.75 % + 1.4 mA	For the calibration of clamp on ammeters and similar devices, using multi-turn method.	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
AC VOLTAGE				в
Measurement Specific values	<i>At 1 kHz</i> 10 mV 100 mV	190 μV/V 73 μV/V	Using digital multimeter.	
	40 Hz to 1 kHz 1 V 10 V 100 V 700 V	64 μV/V 65 μV/V 160 μV/V 310 μV/V		
	1 kHz to 100 kHz 1 V 10 V 100 V	620 μV/V 620 μV/V 930 μV/V		
Other values	At 1 kHz 1 mV to 10 mV 10 mV to 100 mV 100 mV to 1 V	0.090 % 0.020 % 0.020 %	Using digital multimeter.	В
	40 Hz to 1 kHz 1 mV to 10 mV 10 mV to 100 mV 100 mV to 1 V 1 V to 10 V 10 V to 100 V 100 V to 700 V	0.13 % 0.025 % 0.025 % 0.025 % 0.033 % 0.052 %		
	1 kHz to 100 kHz 1 V to 10 V 10 V to 100 V	0.095 % 0.14 %		

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
AC VOLTAGE (continued)				В
Measurement (continued)	<i>At 50 Hz</i> 700 V to 20 kV 20 kV to 28 kV	1.2 kV 1.6 kV	Using high voltage divider.	
Generation	45 Hz to 20 kHz 10 mV to 200 mV 200 mV to 2 V 2 V to 20 V 20 V to 200 V 200 V to 1020 V	0.023 % + 20 µV 0.024 % + 260 µV 0.024 % + 2.2 mV 0.035 % + 37 mV 0.35 % + 250 mV	Using multifunction calibrator.	
AC CURRENT				В
Measurement Specific Values	<i>At 1 kHz</i> 100 μA 1 mA	0.056 % 0.051 %	Using digital multimeter.	
	<i>45 Hz to 1 kHz</i> 10 mA 100 mA 1 A	0.050 % 0.050 % 0.080 %		
Other values	<i>At 1 kHz</i> 5 μA to 100 μA 100 μA to 1 mA	0.24 % 0.16 %	Using digital multimeter.	
	45 Hz to 1 kHz 5 μA to 100 μA 100 μA to 1 mA 1 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A	0.36 % 0.25 % 0.24 % 0.24 % 0.26 %		
Generation			Using multifunction calibrator.	
	45 Hz to 1 kHz 20 μA to 200 μA 200 μA to 2 mA 2 mA to 20 mA 20 mA to 200 mA 200 mA to 2 A 2 A to 30 A	0.090 % + 180 nA 0.070 % + 490 μA 0.50 % + 4.0 μA 0.50 % + 36 μA 0.070 % + 340 μA 0.35 % + 6.8 mA		
	30 A to 1000 A	0.83 % + 6.8 mA	For the calibration of clamp on ammeters and similar devices, using multi-turn method.	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
FREQUENCY	1 Hz to 1 MHz 1 MHz to 2.1 GHz	21 in 10 ⁸ + 2.0 mHz 21 in 10 ⁸	Using frequency counter.	В
Tachometer calibration	10 rpm to 50000 rpm	1.2 rpm	Using optical technique.	
Elapsed time	0 ms to 390 ms 391 ms to 100 s	1.0 ms 8.0 ms	Using counter timer.	В
17 [™] EDITION TYPE EQUIPMENT Earth Loop	0.05 Ω 0.1 Ω 0.22 Ω 0.33 Ω 0.5 Ω 1 Ω 5 Ω 10 Ω 100 Ω 1 kΩ	10 mΩ 11 mΩ 8.0 mΩ 8.0 mΩ 8.0 mΩ 10 mΩ 30 mΩ 59 mΩ 580 mΩ 5.8 mΩ	Using dedicated calibrator.	В
RCD testers				В
Trip current	At 50 Hz 3 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A 1 A to 3 A	620 μA 5.8 mA 59 mA 120 mA	Up to 5 seconds.	
Trip Time	<i>At 30 mA, 50 Hz</i> 10 ms to 390 ms 390 ms to 1 s	1.0 ms 8.1 ms		
Earth leakage current	0.2 mA to 7.7 mA	15 μΑ		В
PAT Testers Earth bond current	<i>At 50 Hz</i> 100 mA 100 mA to 10 A 10 A to 30 A	8.0 mA 190 mA 520 mA		В
Earth Bond resistance Nominal values	0.05 Ω 0.1 Ω 0.22 Ω 0.33 Ω 0.5 Ω 1 Ω 5 Ω 10 Ω 100 Ω 1 kΩ	7.5 m Ω 7.5 m Ω 7.6 m Ω 7.7 m Ω 8.0 m Ω 9.5 m Ω 30 m Ω 58 m Ω 580 m Ω 5.8 Ω		В

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
17 TH EDITION TYPE EQUIPMENT (continued)			В
Insulation resistance Nominal source values	100 kΩ 500 kΩ 1 MΩ 5 MΩ 10 MΩ 20 MΩ 50 MΩ 100 MΩ	12 kΩ 12 kΩ 12 kΩ 21 kΩ 37 kΩ 72 kΩ 180 kΩ 350 kΩ		
Load Tests	3 kVA	2.5 %		В
Flash tests	<i>At 50 Hz</i> 700 V to 1.9 kV	1.5 % + 5.0 V		
ELECTRICAL SIMULATION OF TEI	MPERATURE			В
Ambient temperature CJC source CJC measurement	17 °C to 23 °C	0.11 °C 0.32 °C	In support of cold junction measurements.	
Temperature simulators and indicators, calibration by electrical simulation				
Base metal thermocouples				
Туре К	-200 °C to -100 °C -100 °C to +1300 °C	0.32 °C 0.30 °C	Excluding cold junction compensation.	
	-200 °C to -100 °C -100 °C to +1300 °C	0.39 °C 0.38 °C	Including cold junction compensation.	
Туре Ј	-210 °C to -100 °C -100 °C to +1200 °C	0.32 °C 0.32 °C	Excluding cold junction compensation.	
	-210 °C to -100 °C -100 °C to +1200 °C	0.37 °C 0.39 °C	Including cold junction compensation.	
Туре N	-200 °C to -100 °C -100 °C to +1300 °C	0.49 °C 0.29 °C	Excluding cold junction compensation.	
	-200 °C to -100 °C -100 °C to +1300 °C	0.54 °C 0.37 °C	Including cold junction compensation.	
Туре Т	-250 °C to -150 °C -150 °C to +400 °C	0.71 °C 0.14 °C	Excluding cold junction compensation.	
	-250 °C to -150 °C -150 °C to +400 °C	0.75 °C 0.27 °C	Including cold junction compensation.	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
Noble metal thermocouples				
Туре В	600 °C to 800 °C 800 °C to 1820 °C	0.85 °C 0.76 °C	Excluding cold junction compensation.	
	600 °C to 800 °C 800 °C to 1820 °C	0.88 °C 0.79 °C	Including cold junction compensation.	
Type R, Type S	0 °C to 250 °C 250 °C to 1760 °C	0.93 °C 0.60 °C	Excluding cold junction compensation.	
	0 °C to 250 °C 250 °C to 1760 °C	0.96 °C 0.64 °C	Including cold junction compensation.	
		END	1	1

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

PASS (Portable Appliance Safety Services) Ltd

Issue No: 016 Issue date: 10 April 2025

Accredited to ISO/IEC 17025:2017

Calibration performed by the Organisation at the locations specified

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where *q* is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: $Q[a, b] = [a^2 + b^2]^{1/2}$