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Preface

Measurement uncertainty evaluation is at the heart of science and industry as a cross-cutting dis-
cipline, impacting on all areas of measurement. Consistent evaluation and use of measurement
uncertainty is vital to the implementation of trade agreements, legislation, directives and regu-
lations. The Joint Committee on Guides in Metrology (JCGM) provides authoritative guidance
documents to address the needs of the measurement community. The evaluation and expression
of measurement uncertainty are essential for the interpretation of measurement data. Even if
not explicitly expressed, knowledge about the dispersion of measurement results is important to
distinguish between effects from the measurement procedure and effects from other causes.

This suite of examples illustrates the use of the methods described in the Guide to the expres-
sion of Uncertainty in Measurement (GUM), and several other methods that have not yet been
included in this suite of documents. The examples address issues such as the choice of the mecha-
nism for propagating measurement uncertainty from the input quantities to the output quantities,
the evaluation of standard uncertainty, modelling, reporting, and conformity assessment.

This suite of examples illustrates good practice in evaluating measurement uncertainty in a va-
riety of fields including calibration, testing, comparison and conformity, and relate to sectors
that include environment, energy, quality of life, industry and society. Where useful, reference is
made to software that supports the reproduction and implementation of the examples in practice.

As many practitioners benefit more quickly from worked examples than from guidance docu-
ments, the provided set of carefully selected comprehensive examples facilitates the take up of
uncertainty principles as well as improving the state of the art in measurement uncertainty eval-
uation in the respective disciplines.

All examples have been peer-reviewed and assessed for internal consistency and compliance with
guidance in the GUM suite of documents.
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Disclaimer

This suite of examples has been developed as a joint effort by experts in the field of measurement.
Greatest care has been exercised in the selection and development of the examples. The consor-
tium developing this compendium uses its best efforts to deliver a high-quality compendium
illustrating best practice in evaluating measurement uncertainty as described in the Guide to the
expression of uncertainty in measurement. Neither the consortium, its members, nor Euramet
makes any warranty with regard to the material provided, however. The examples are provided
“as is”. No liability is assumed for any use that is made of the Compendium.

Software, equipment and other resources identified in the examples are not necessarily the best
available for the purpose. The project consortium feels however that these resources are adequate
for the context in which they have been used.

Any mention of commercial products is for information only; it does not imply a recommendation
or endorsement by the authors, nor by Euramet or its members.

Feedback

The consortium seeks actively feedback on this Compendium from readers. Any feedback can be
sent to the editors Adriaan van der Veen (avdveen@vsl.nl) and/or Maurice Cox
(maurice.cox@npl.co.uk).
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Chapter 1

Introduction

A.M.H. van der Veen, M.G. Cox

The evaluation of measurement uncertainty is an essential part of the experimenter’s task to
obtain for the quantity of interest, the measurand, a value and a stated uncertainty. The JCGM
published a suite of documents covering various aspects of measurement uncertainty evaluation,
expression and use [[1-6]]. In many areas, measurement results are used to assess compliance
with regulatory limits. To understand the risks associated with decision taking, and to apply
this knowledge in conformity assessment, it is essential that the stated uncertainty is taken into
account [|6]].

Many laboratories implement ISO/IEC 17025 [|7] to underpin their competence. Producers of
(certified) reference materials implement in many cases both ISO/IEC 17025 and ISO 17034 [18]]
for the same purpose. In proficiency testing, the requirements for demonstrating competence are
laid down in ISO/IEC 17043 [9]]. These standards have in common, among others, that mea-
surement uncertainty shall be evaluated and as appropriate be expressed. Issuing CRMs (certi-
fied reference materials) with property values without uncertainty is not permitted according to
ISO 17034, as it would for the user be impossible to make a proper assessment of the quality of
its result when using the CRM for quality control, nor would it be possible to propagate it when
using the CRM in calibration [|10]].

In this document, the examples illustrate various aspects of uncertainty evaluation and the use
of uncertainty statements in conformity assessment. These aspects include, but are not limited
to

choice of the mechanism for propagating measurement uncertainty,

reporting measurement results and measurement uncertainty,

conformity assessment, and

evaluating covariances between input quantities.

Most examples cover multiple aspects. The index aids the reader to locate such aspects in the
examples.

The first part of this compendium is devoted to generic aspects, which are presented in the form
of tutorials that aim at helping the reader to get started with the various methods and examples
presented in this compendium. They do not replace the guidance provided in the GUM suite of
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documents, but rather supplement the general guidance given there. The use of Bayes’ rule is
not (yet) contained in the GUM, yet it is recognised as one of the ways to evaluate measurement
uncertainty, consistent with the spirit of the GUM, and the best mechanism to combine prior
knowledge about one or more model parameters with data.

The use of software is essential for anyone performing uncertainty calculations. Most profession-
als rely on “off the shelf” spreadsheet software or laboratory information management system
(LIMS) to perform the bulk of the relevant calculations. Such software systems have largely not
been designed for the calculations necessary to evaluate, propagate and express measurement
uncertainty. Some examples can nonetheless be implemented readily in this general purpose
software, whereas others describe the use of other software. Some of the tutorials describe the
use of R [|11]], which is an open source software package for statistical computing and data vi-
sualisation. Other examples describe the use of MATLAB or other commercial software. In all
cases, these choices have been made for illustration only. If an example describes how to perform
the calculation in one software package, it does not imply that it could not have been done in
another. The same holds for the selection of libraries and other resources.
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Chapter 2

Overview

M.G. Cox, A.M.H. van der Veen

Table 2.1 provides an overview of the examples contained in this document, their key words and,
if available, a pointer to the dataset.

Table 2.1: Overview of examples

Example Description Key words Dataset
E1.1 Two-point and multipoint calibration — appli-  calibration; bracketing; polynomial regres-
cation to pH measurement sion; correlation
E1.2 Straight-line calibration in errors-in-variables ~ See[E4.3} [E5.3|and [E6.2|
models
E1.3 Bayesian approach applied to the mass cali- Bayesian inference; prior; mass; calibration [12]
bration example in JCGM 101:2008
E1.4 Evaluation of measurement uncertainty in SBI  fire testing; single burning item [13]
— Single Burning Item reaction to fire test
1.5 Statistical reassessment of calibration and key comparison; gauge block; CMC; Bayesian [14]
measurement capabilities based on key com- inference
parison results
E1.6 Model-based unilateral degrees of equiva- key comparison; degree of equivalence
lence in analysis of a regional metrology or-
ganization key comparison
[E1.7] Measurement uncertainty when using quan- calibration function; covariance; reference
tities that change at a linear rate — use of leak
quartz He reference leaks to calibrate an un-
known leak
E1.8 Factoring effects such as calibration correc- poor practice; errors; conformance probabil-
tions and drift into uncertainty evaluations ity
E2.1 Conformity assessment of an influenza medi- conformity assessment; multicomponent ma- [15]
cation as a multicomponent material terial; risk of false decision; correlated test re-
sults
E2.2 Measurement models involving additive or calibration correction; errors; conformance [16]
multiplicative corrections probability; pressure
E2.3 Conformity assessment of mass concentration conformity assessment; producer’s and con- [17]
of total suspended particulate matter in air sumer’s risk; total suspended particulates in
air; mass concentration; log-normal prior dis-
tribution
E2.4 Uncertainty evaluation of nanoparticle sizeby ~AFM; mixed model; Bayesian inference; de- [18]
AFM, by means of an optimised Design of Ex-  sign of experiment
periment for a hierarchical mixed model in a
Bayesian framework approach

Continued on next page




Chapter 2. Overview 4
Table 2.1 — continued from previous page
Example Description Key words Dataset
E2.5 GUM-LPU uncertainty evaluation — import- metrological traceability; conformity state- fio]
ing measurement traceability from a confor- ment; OIML classification; Geometrical Prod-
mity statement uct Specification (GPS)
E3.1 Evaluation of measurement uncertainty in av-  rain fall; GUM uncertainty framework; Monte
erage areal rainfall — uncertainty propagation  Carlo method
for three methods
E3.2 Uncertainty evaluation for the quantification Monte Carlo method; GUM uncertainty [20]
of low masses of benzo[a]pyrene framework; ploycyclic aromatic hydrocarbon;
mass
E3.3 Calibration of an analyser for NO, using gas Gas mixtures; nitrogen oxides; dynamic di- [21]
mixtures prepared with mass flow controllers lution; mass flow controllers; chemilumi-
nescence analyser; calibration; correlation;
Weighted Total Least-Squares
E3.4] Measurement uncertainty for routine testing soil; trace elements; acid extraction; atomic [22]
of metals in soil emssion spectroscopy
[E3.5| Comparison of methods for flow measure- flow measurement; GUM uncertainty frame-
ment in closed conduits based on measure- work; “Monte Carlo method
ment uncertainty
E3.6 Greenhouse gas emission inventories greenhouse gases; inventory; correlation
E3.7| Greenhouse gas emission inventories — emis-  greenhouse gases; inventory; emisson; in-
sion estimates calculated by measurement of verse modelling
ambient mixing ratios combined with inverse
modelling
E3.8 Preparation of calibration gas mixtures of NH; ~ GUM uncertainty framework; finite resolu- [23]
in nitrogen using permeation tion; purity; validation of OLS
E4.1 Evaluation of measurement uncertainty in to-  flow measurement; water supply; totalisation [24]
talization of volume measurements in drink-
ing water supply networks
E4.2 Uncertainty of the orifice-plate discharge flow measureement; orifice plate; discharge [25]
coefficient coefficient
E4.3 Calibration of a sonic nozzle as an example measurement model; GUM; Monte Carlo [26]
for quantifying all uncertainties involved in method; straight-line regression; correlation;
straight-line regression weighted total least-squares
E4.4 Measurement uncertainty evaluation of the electrical power; transformer; load loss; alter- [27]
load loss of power transformers nating current
[E4.5| Evaluation of measurement uncertainty in thermal comfort; implicit model formulation; [128]]
thermal comfort Monte Carlo method
E4.6] Bayesian evaluation of a between-bottle ho- Bayesian inference; ANOVA; between-bottle
mogeneity study in the production of refer- homogeneity; reference material; proficiency
ence materials test
E4.7] Flow meter calibration using the master meter  flow measurement; calibration; master meter [29]
method method
E4.8 Pressure drop due to gas leakage in a pressur-  pressure drop; leak test; correlation [30]
ized vessel
ES.1 2D or 3D image as a set of pixels or voxels to  pixellation; image metrology; SPECT imag- [31]
compute a quantity ing; adsorbed dose; nanoparticle; AFM
E5.2 Magnetic resonance-based electric properties electric properties tomography; magnetic res- [32]
tomography onance imaging; covariance matrix; shrink-
age estimation; law of propagation of uncer-
tainty
E5.3 Quantifying uncertainty when comparing measurement model; GUM; straight-line re- [33]
measurement methods — Haemoglobin con-  gression; correlation; weighted total least
centration as an example of correlation in squares; method comparison; haemoglobin;
straight-line regression AHD; HiCN
E5.4 Suitability of a Monte Carlo approach for un- rheology; viscosity; GUM uncertainty frame-
certainty evaluation in rheology problems work; Monte Carlo method

Continued on next page
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Table 2.1 — continued from previous page
Example Description Key words Dataset
ES.5 Uncertainty calculation methodologies in mi- microflow; GUM uncertainty framework;
croflow measurements: comparison of GUM, Monte Carlo method; Bayesian inference
GUM-S1 and Bayesian approach
ES5.6 Specification requirements of temperature in  conformity; decisison rule; accuracy [34]
medical applications
E6.1 Measurement uncertainty evaluation for inflight thrust; complex step method; finite
turbofan nozzle thrust derived from non- differences method; Monte Carlo method;
intrusive flow measurements correlation
E6.2 Calibration of a torque measuring system — measurement model; GUM; Bayesian infer- [35]
GUM uncertainty evaluation for least-squares  ence; calibration; straight-line regression;
versus Bayesian inference least squares estimation; torque; VDI/VDE
2600 Blatt 2
E6.3 Calibration and measurement uncertainty in  Vickers-; Knoop-; Rockwell-; Brinell-; Instru-
hardness verification mented Indentation- hardness test; correlated
quantities; effective degrees of freedom; con-
formity assessment
E6.4 Evaluation of measurement uncertainty in the  calibration; coordinate measurement ma- [136]]
calibration of a mobile optical measurement chine
system
[E6.5| Evaluation of measurement uncertainty asso- top-down approach; CRM; proficiency testing
ciated with the quantification of ephedrine in
anti-doping testing
E6.6 Measurement uncertainty in a multiplexed data acquisition system; electrical quantity [37]]
data-acquisition system
E6.7| Temperature measurement with a micro- temperature; microcontroller boeard; dither- [38]
controller based board ing

Examples of evaluating measurement uncertainty
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Chapter 3

Using the Monte Carlo method

A.M.H. van der Veen, M.G. Cox

3.1 Preamble

One of the complicating factors in the evaluation and propagation of measurement uncertainty
is the competence in mathematics and statistics required to perform the calculations. Never-
theless, standards such as ISO/IEC 17025 [7]], ISO 15189 [139]] and ISO 17034 [|8] that specify
requirements for laboratories to enable them to demonstrate they operate competently, and are
able to generate valid results, require that measurement uncertainty is evaluated and reported.
The well-known law of propagation of uncertainty (LPU) from the Guide to the expression of
uncertainty in measurement (GUM) [2]] requires the calculation of the partial derivatives of the
measurement model with respect to each of the input variables.

In this tutorial, we (re)introduce the Monte Carlo method of GUM Supplement 1 (GUM-S1) [3]],
which takes the same measurement model and the probability density functions assigned to the
input variables to obtain (an approximation to) the output probability density function. We show,
based on some well-known examples illustrating the evaluation of measurement uncertainty, how
this method can be implemented for a single measurand and how key summary output, such as
the estimate (measured value), the associated standard uncertainty, the expanded uncertainty,
and a coverage interval for a specified coverage probability, can be obtained. The Monte Carlo
method of GUM-S1 [3]] is a versatile method for propagating measurement uncertainty using a
measurement model. It performs generally well for any measurement model, as it does not —
unlike the law of propagation of uncertainty — depend on a linearisation of the model.

The use of probability density functions is well covered in the GUM [2]] and further elaborated in
GUM-S1 [3]]. In this tutorial, the emphasis is on setting up an uncertainty evaluation using the
Monte Carlo method for a measurement model with one output quantity (a “univariate” mea-
surement model). GUM Supplement 2 (GUM-S2) [|4] provides an extension of the Monte Carlo
method to measurement models with two or more output quantities (“multivariate” measure-
ment models) as well as giving a generalisation of LPU to the multivariate case.

The vast majority of the uncertainty evaluations in calibration and testing laboratories are per-
formed using the LPU [|2]]. This mechanism takes the estimates (values) and associated standard
uncertainties of the input quantities as input to obtain an estimate for the output quantity and the
associated standard uncertainty. The measurement model is used to compute (1) the value of the
output quantity and (2) the sensitivity coefficients, i.e., the first partial derivatives of the output

7
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quantity with respect to each of the input quantities. The second part of the calculation involving
the partial derivatives is perceived as being cumbersome and requires skills that are often beyond
the capabilities of laboratory staff and researchers. The computation of the sensitivity coefficients
can also be performed numerically [40,/41[]]. One of the advantages of the Monte Carlo method
is that no sensitivity coefficients are required. All that is needed is a measurement model, which
can be in the form of a computer algorithm, and a specification of the probability distributions
for the input quantities. These probability distributions (normal, rectangular, etc.) are typically
already specified in uncertainty budgets when the LPU is used.

In this tutorial, we show how the Monte Carlo method of GUM-S1 can be implemented in R [[11]].
This environment is open source software and specifically developed for statistical and scientific
computing. Most of the calculations in laboratories, science and elsewhere are still performed
using mainstream spreadsheet software. An example of using the Monte Carlo method of GUM-
S1 with MS Excel is given in the Eurachem/CITAC Guide on measurement uncertainty [42]]. It
is anticipated that this tutorial will also be useful for those readers who would like to get started
using other software tools or other languages.

3.2 Monte Carlo method

The heart of the Monte Carlo method of GUM-S1 can be summarised as follows [|3, clause 7].
Given a measurement model of the form

Y=f(X1,...,XN)

and probability density functions assigned to each of the input quantities X, ..., Xy, generate M
sets of input quantities X ,,...,Xy , (r =1,..., M) and use the measurement model to compute
the corresponding value for Y,. M, the number of sets of input quantities should be chosen to
be sufficiently large so that a representative sample of the probability density function of the
output quantity Y is obtained. The approach here applies to independent input quantities and a
scalar output quantity Y. For its extension to dependent input quantities, see GUM-S1 [3]], and
a multivariate output quantity, see GUM-S2 [[4].

GUM-S1 [3, clause 6.4] describes the selection of appropriate probability density functions for the
input quantities, thereby supplementing the guidance given in the GUM [2, clause 4.3]. GUM-S1
also provides guidance on the generation of pseudo-random numbers. Pseudo-random numbers
rather than random numbers are generated by contemporary software since the latter are almost
impossible to obtain. However, comprehensive statistical tests indicate that the pseudo-random
numbers generated cannot be distinguished in behaviour from truly random numbers.

Considerable confidence has been gained by the authors over many years concerning the per-
formance of the Monte Carlo method of uncertainty evaluation from a practical viewpoint. For
measurement models that are linear in the input quantities, for which the law of propagation
of uncertainty produces exact results, agreement with results from the Monte Carlo method to
the numerical accuracy expected has always been obtained. Thus, weight is added to the above
point: there is evidence that the effects of working with pseudo-random numbers and truly ran-
dom numbers are identical.

If needed, the performance of a random number generator can be verified [|43,44]. For the
purpose of this tutorial, it is assumed that the built-in random number generator in R is fit for
purpose.
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A refinement of the Monte Carlo method concerns selecting the number of trials automatically
so as to to achieve a degree of assurance in the numerical accuracy of the results obtained. An
adaptive Monte Carlo procedure for this purpose involves carrying out an increasing number
of Monte Carlo trials until the various results of interest have stabilised in a statistical sense.
Details are provided in [[3} clause 7.9] and since then an improved method has been developed
and published [45]].

In many software environments, random number generators for most common probability den-
sity functions are already available; if not, they can be readily developed using random numbers
from a rectangular distribution [3}, annex C]. (The rectangular distribution is also known as the
uniform distribution.) Should even a random number generator for the rectangular distribution
not be available in the software environment, then the one described in GUM-S1 can be imple-
mented as a basis for generating random numbers. The default random number generator in
R is the Mersenne Twister [46]], which is also implemented in many other programming envi-
ronments, including MATLAB and MicroSoft Excel (since version 2010, see [47]]). Based on this
random number generator, there are generators available for a number of probability distribu-
tions [|11]].

The output of applying the Monte Carlo method is an array (vector) Yi,...,Y),, characterising
the probability density function of the output quantity. This sample is however not the form in
which a measurement result is typically communicated (reported). From the output Y;,...,Yy,,
the following can be computed:

— the measured value, usually taken as the arithmetic mean of Y7,...,Yy

the standard uncertainty, usually computed as the standard deviation of Y;,...,Y),

a coverage interval containing the value of the output quantity with a stated probability,
obtained as outlined below

— the expanded uncertainty

the coverage factor

The last two items apply when the coverage interval can be reasonably approximated by a sym-
metric probability density function.

The most general way of representing a coverage interval is by specifying its upper and lower
limits. This representation is always appropriate whether the output distribution is symmetric
or not. In many instances however, the output probability density function is (approximately)
symmetric, and then the expanded uncertainty can be computed as the half-width of the coverage
interval. The coverage factor can be computed from the expanded uncertainty U(y) and the
standard uncertainty u(y), i.e., k = U(y)/u(y). The symmetry of the output probability density
function can be verified by examining a histogram of Yi,...,Y,,, or obtaining a kernel density
plot, a smooth approximation to the probability density function.

3.3 Software environment

R is an open source language and environment for statistical computing and graphics. It is a
GNU project, similar to the S language and environment, which was developed at Bell Labora-
tories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be
considered as a different implementation of S [[11]]. It is available for Windows, MacOS and a
variety of UNIX platforms (including FreeBSD and Linux) [48]].
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Users of Windows, MacOS, and a number of Linux distributions may also wish to download and
install RStudio [49], which provides an integrated development environment, in which code can
be written, the values of variables can be monitored, and separate windows for the console and
graphics output are available. The R code provided in this primer has been developed in RStudio
(version 1.2.1335, build 1379 (flac3452)).

3.4 Generating random numbers

In R, it is straightforward to generate a sample of random numbers from most common probability
density functions. For example, the following code generates a sample of a normal distribution
with mean y = 10.0 and standard deviation o = 0.2 and a sample size M = 10000:

M = 10000
mu = 10.0
sigma = 0.2

set.seed(2926)
X1 = rnorm(M,mu,sigma)

The function to be called to generate an array (vector) of random numbers with the normal distri-
bution and mean mu and standard deviation sigma is called rnorm. The line set.seed(2926)
is useful for debugging purposes, as it ensures that the random number generator starts at the
same point every time. Any other value for the seed would also ensure the exact reproduction of
the series of numbers obtained from the random number generator. If that is not required, the
line can be omitted. In this tutorial, the seed is set, so that the reader can exactly reproduce the
output. The output is collected in a variable named X1. It is an array with 10000 elements.

The following code snippet shows the mean and standard deviation of the 10000 generated
numbers, using R’s built in functions mean and sd respectively.

mean (X1)

## [1] 10.00131
sd(X1)

## [1] 0.2006594

Using R’s functions plot and density, the kernel density of variable X1 can be plotted (see
figure(3.1)). The code to generate the figure is as follows:

plot(density(X1),xlab = "X1",ylab = "density",main = "")

where density calculates the kernel density from the array X1 and plot generates the figure.
The plotted density resembles that of a normal distribution. The larger the number of samples
drawn from the random number generator, the closer the resemblance with the normal distribu-
tion will be.

From the first code fragment in this section, it is readily seen that R has a function for generating
random numbers with a normal distribution. It also has functions for generating random numbers
with a rectangular distribution (runif), the t distribution (rt), exponential distribution (rexp)
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Figure 3.1: Density plot of the random variable X1 having a normal distribution with mean 10.0
and standard deviation 0.2

and gamma distribution (rgamma). There exists a package (extension) called “trapezoid” [50]]
implementing among others the trapezoidal distribution, a package called “mvtnorm” [51]] im-
plementing the multivariate normal distribution (useful when some of the input quantities are
dependent [3]]), and a package called “triangle” [|52]] implementing the triangular distribution.
So, apart from the curvilinear trapezoidal distribution and the arc sine distribution, random num-
bers for all probability density functions mentioned in GUM-S1 [[3, table 1] are available in R.

The arc sine distribution can be implemented as follows in R. According to GUM-S1 [13} clause 6.4.6.1],
a U-shaped random variable X on the interval [a, b] can be obtained through

a+b b—a
X = +
2

sin ®

where & is a random variable with a rectangular distribution on [0, 27t]. In R, a function rarcsin
that provides such a random variable, and a call to that function, can be coded as follows:

rarcsin <- function(n,a,b) {
X = (atb)/2 + (b-a)/2 * sin(runif(n,0,2*pi))
return (X)

}

X2 = rarcsin(M,-1.0,1.0)

The argument n determines the number of random numbers returned; a and b denote the lower
and upper limits respectively of the interval over which the arcsine distribution has a non-zero
density. If n > 1, the function returns an array; if n = 1 it returns a single number. This behaviour
mimics the behaviour of the other functions implemented in R to generate random numbers.

The last line in the code snippet creates an array X2 of M elements (M = 10000 in this instance)
of a random variable having an arcsine distribution over the interval [—1,1]. A histogram (ob-
tained through the R function hist) is shown in figure
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Figure 3.2: Histogram of the random variable X2 containing M = 10000 samples
having an arcsine distribution between -1 and 1

3.5 Simple additive model: calculation of the molar mass of phenol

In this example, the molar mass of phenol (molecular formula C¢H;OH) is computed. The ex-
ample shows how an output quantity with an uncertainty is obtained from input quantities with
uncertainty. There is no experiment involved. The example is pivotal for many calculations
involving reference data, such as atomic weights, molar masses and enthalpies of formation.

The molar mass is computed from the atomic masses and the coefficients appearing the molecular
formula, which for the elements involved are 6 for carbon, 6 (5+1) for hydrogen and 1 for oxygen.
The current relative atomic masses are used as published by IUPAC (International Union of Pure
and Applied Chemistry) [53[]. The relative atomic masses that apply to “normal materials” are
called standard atomic weights [|53}/54]]. Their interpretation is described in an IUPAC technical
report [[55]].

The molar mass of phenol (chemical formula CgHsOH) is computed as

M,(C¢H5;0H) = 6A,(C) + 6A,(H) +A,(O)

The Monte Carlo method is implemented in R using M = 100 000 trials. The R code that performs
the evaluation reads as

M = 100000

C = runif(M, 12.0096, 12.0116)

H = runif(M, 1.00784, 1.00811)

0 = runif (M, 15.99903, 15.99977)

MW = 6xC + 6%xH + 0

MW.val = mean(MW)

MW.unc = sd(MW)

MW.Unc = (quantile(MW,probs = 0.975) -

quantile (MW,probs = 0.025))/2.0
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Figure 3.3: Output probability density function of the molar mass of phenol and superimposed
a normal distribution with the same mean and standard deviation

The first line declares a variable M that holds the number of trials to be carried out by the Monte
Carlo method. Then, for each of the elements, M samples are drawn using the rectangular dis-
tribution (using R’s function runif) and the lower and upper limits provided by the standard
atomic weights of IUPAC [|53]]. These arrays have respectively the names C, H and O for the atomic
masses of carbon, hydrogen and oxygen. The molar mass is then computed in the line defining
MW. R is very efficient with vectors (arrays) and matrices (tables) [56]]. The value of the molar
mass (MW.val) is computed by taking the average of MW, the standard uncertainty by taking
the standard deviation of MW and the expanded uncertainty by taking the half-width of the 95 %
coverage interval. The latter is obtained by calculating the 0.025 and 0.975 quantiles (which
provides a probabilistically-symmetric coverage interval).

The code to plot the output probability density function of the molar mass (MW) and to superim-
pose a normal distribution with the same mean and standard deviation is given below:

x = seq(from = MW.val-4*MW.unc,to=MW.val+4*MW.unc,by=8%MW.unc/100)
hx = dnorm(x,MW.val,MW.unc)
{

plot(density(MW),xlab = "Molar mass (g/mol)",
ylab = "Density (mol/g)",main="",
xlim=c(min(x) ,max(x)) ,ylim=c(0,max (hx)))
lines(x,hx,lwd=2,1ty=2,col="red")
}

The first two lines compute the relevant part of the normal distribution around the mean + 4
standard deviations. The subsequent lines plot the output probability density function and the
normal distribution respectively.
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The figure is shown as figure It is obvious that the normal distribution is not an appro-
priate approximation of the probability density function of the output quantity, which is much
narrower than the normal distribution. The molar mass is 94.1108 gmol~! with standard un-
certainty 0.0035gmol™!. The expanded uncertainty is 0.0059 gmol ™. The coverage factor is
1.67.

3.6 Mass example from EA 4/02

In most instances, the Monte Carlo method is implemented using a measurement model (or
measurement equation). In this section, the mass calibration example of EA 4/02 [57]] is taken
and the implementation of the Monte Carlo method is described. The evaluation using the Monte
Carlo method rests on the same assumptions for the input quantities as in that example. The
example is developed in such a way that for any measurement model having one output quantity
the same steps can be followed. The measurement model is coded in the form of a function,
which promotes writing tidy code. It also allows iterative calculations to be readily implemented
when the measurement model is defined implicitly [4]]. This example describes the calibration
of a 10kg weight by comparison with a standard 10 kg weight. The weighings are performed
using the substitution method. This method is implemented in such a way that three mutually
independent observations for the mass difference between the two weights are obtained.

The measurement model is given by [[57, S2]:
myg = mg + dmp + dm + dmc + 8B, 3.1

where the symbols have the following meaning

myx  conventional mass of the weight being calibrated,

mg  conventional mass of the standard,

dmyp  drift of the value of the standard since its last calibration,

dm  observed difference in mass between the unknown mass and the standard,

dm¢ correction for eccentricity and magnetic effects,

OB correction for air buoyancy.
For using the Monte Carlo method, probability density functions are assigned to each of the five
input quantities [3]]. These probability density functions are described in the original example
[571.

The conventional mass of the standard mg is modelled using the normal distribution with mean
10000.005 g and standard deviation 0.0225 g. The standard deviation (standard uncertainty) is
calculated from the expanded uncertainty and the coverage factor provided on the calibration
certificate. This interpretation is also described in GUM-S1 [[3} 6.4.7]. The drift of the mass of the
standard weight dmp, is modelled using a rectangular distribution, centred at 0 g and with a half-
width of 0.015 g. The corrections for eccentricity and magnetic effects, and that for air buoyancy
are both modelled using a rectangular distribution with midpoint 0.000 g and half-width 0.010 g.

The mass difference m between the two weights computed from the indications of the balance is
calculated as the mean of n = 3 independent observations. EA 4/02 explains that the associated
standard uncertainty is computed from a pooled standard deviation 0.025 g, obtained from a
previous mass comparison, divided by 4/n.

In the implementation of the Monte Carlo method, the three observations are simulated using
normal distributions with means of the observed values (i.e., 0.010 g, 0.030 g and 0.020 g respec-
tively) and a standard deviation of 0.025 g for each. The mass difference is formed by calculating
the arithmetic average of the three simulated observations.
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The measurement model (equation (3.1))) can be coded in R as follows:

mass.x <- function(m.std,dm.d,diff,dm.c,dm.B) {
m.std + dm.d + diff + dm.c + dm.B

}

where m. std denotes the conventional mass of the standard weight, dm. d the drift correction
of the conventional mass of the standard weight, diff the mass difference obtained from the
substitution weighing, dm. ¢ the correction due to eccentricity and magnetic effects, and dm.B
the correction due to air buoyancy. The function is called mass.x and returns the value of the
output quantity my.

Most programming languages implement a “for” loop, which enables executing a block of code a
defined number of times. Anyone familiar with this “for” loop in computer programming would
now use this kind of loop to code the recipe given in GUM-S1 clause 7.2.2 [3]]. An implementation
of the Monte Carlo method with a fixed value for the number of samples M would then read as
follows:

prob = 0.95
M = 10000 * ceiling(1.0/(1.0-prob))
m.x = numeric(M)
m.data = numeric(3)
for (i in 1:M) {
m.std = rnorm(1,10000.005,0.0225)

dm.d = runif(1,-0.015,+0.015)
dm.c = runif(1,-0.010,+0.010)
dm.B = runif(1,-0.010,+0.010)

m.data[1] rnorm(1,0.01,0.025)
m.datal[2] rnorm(1,0.03,0.025)
m.datal[3] = rnorm(1,0.02,0.025)
m
m

.diff = mean(m.data)
.x[1] = mass.x(m.std,dm.d,m.diff,dm.c,dm.B)

On the first line, the probability level of the coverage interval (prob) is defined to be 0.95. In
accordance with the guidance in clause 7.2.2 of GUM-S1 [3]], M is calculated using the built-
in function ceiling which returns the smallest integer not less than its argument. With prob
= 0.95 the net effect of calling ceiling is that the floating point number is converted to an
integer, as the result of 1/(1-prob) is 20, hence the minimum number of Monte Carlo trials
is M = 10000 - 20 = 200000. Then an array (vector) m.x is declared that will hold the values
calculated for the mass of the weight being calibrated. The vector m.data is a temporary storage
for simulating the mass differences between the standard weight and the weight being calibrated.
In the for loop, at each iteration a sample is drawn of the input quantities mg (m.std), dmy,
(dm.d), dm¢ (dm.c), and OB (dm.B). The mass difference from comparing the two weights
(m.diff) is simulated by drawing from a normal distribution with different means, but the same
standard deviations, the three readings and taking the average. The measured value of the output
quantity my (m.x) is finally obtained by calling the measurement model with as arguments the
input quantities.

Running the above code provides the following output for the mean, standard deviation (standard
uncertainty) and the coverage interval of my:
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print (mean(m.x) ,digits = 9)

## [1] 10000.025
print(sd(m.x),digits = 2)

## [1] 0.029

quantile(m.x,probs = c(0.025,0.975))

## 2.5% 97.5%
## 9999.968 10000.082

where the argument probs holds the probabilities corresponding to the lower and upper ends
of the probabilistically symmetric 95 % coverage interval.

This way of coding an implementation of the Monte Carlo method would work in a large num-
ber of computer languages, including Python, MATLAB, Fortran, C, C++ and Pascal. While the
above code in R does what is intended, the same task can be performed with greater effective-
ness in R, exploiting the fact that R is very efficient in working with vectors and matrices [56]].
Computational efficiency is especially important with more complex models and larger numbers
of Monte Carlo trials, as it can greatly reduce the required computing time. The following code
implements the same simulation, using vectors and matrices where possible:

prob = 0.95

M = 10000 * ceiling(1.0/(1.0-prob))

m.std = rnorm(M,10000.005,0.0225)

dm.d = runif(M,-0.015,+0.015)

dm.c = runif(M,-0.010,+0.010)

dm.B = runif(M,-0.010,+0.010)

m.data = matrix(rep(c(0.01,0.03,0.02),M), nrow = M, byrow = TRUE)
m.data = m.data + matrix(rnorm(3*M,0,0.025) ,nrow = M,byrow = TRUE)
m.diff = apply(m.data,l,mean)

m.x = mass.x(m.std,dm.d,m.diff,dm.c,dm.B)

Now the variables m.std, dm.d, dm. ¢, and dm.B are vectors holding all M values for the input
quantities. The data from comparing the weights is summarised in a matrix called m.data of M
rows and 3 columns. The matrix is constructed by adding the means (0.01, 0.03, and 0.02) to
the simulated data which have been generated using the normal distribution with mean 0 and
standard deviation 0.025. The mass differences are computed by calculating the row means and
storing these in m.diff using the R function apply. Note also that the measurement model can
be called with vectors rather than scalars as arguments (last line of the code); in this case also
m.x is a vector of length M.

The second code runs in less than half the time of the first implementation. For this simple
example, the difference is a matter of a few seconds, but for more complex models the difference
in speed will be of more practical significance. Especially the steps that are repeated often should
be carefully thought about. Another issue is memory use. The second implementation consumes
appreciably more memory (for it holds all generated values for the input quantities) than the
first (which only holds the last value for each of the input quantities).
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Figure 3.4: Probability density function of the output quantity m.x

The second code provides the following output for the mean, standard deviation (standard un-
certainty) and the coverage interval of my:

print (mean(m.x) ,digits = 9)

## [1] 10000.0249

print(sd(m.x) ,digits = 2)

## [1] 0.029

quantile(m.x,probs = c(0.025,0.975))

#it 2.5% 97.5Y%
## 9999.967 10000.082

The output probability density function is shown in figure[3.4] The form of the probability density
function resembles that of a normal distribution with mean 10 000.025 g and standard deviation
0.029 g. The following code computes the expanded uncertainty by taking the half-width of
the 95 % coverage interval and the coverage factor by dividing the expanded uncertainty by the
standard uncertainty:

m.x.Unc = (quantile(m.x,probs = 0.975) - quantile(m.x,probs = 0.025))/2.0
m.x.k = m.x.Unc/sd(m.x)

The expanded uncertainty is 0.057 g and the coverage factor is 1.96. This coverage factor is that
of a 95 % coverage interval of the normal distribution. The coverage factor differs from that used
in EA 4/02 which uses k = 2 for obtaining (at least) 95 % coverage probability. The difference
is readily explained, as the dominating uncertainty contributions are modelled using the normal
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distribution, and the sum of two normal distributions is also normally distributed (see also the
measurement model, equation (3.1))). That the output quantity has an (approximately) normal
distribution is reflected in the coverage factor obtained from the Monte Carlo method.

Now all results are obtained that commonly appear on a calibration certificate (as well as in many
test reports), as described in ISO/IEC 17025 [7]]:

— the measured value (= value of the output quantity)
— the expanded uncertainty

— the coverage factor

In this case, one might also be willing to state that the output probability density function is
a normal distribution. Whereas in this case such a statement can be made, in most cases the
output probability density function cannot directly be approximated by a well-known analytic
probability density function. Comparison of the three results listed above with those from the LPU
would imply that for comparable data LPU would be fit for purpose in a subsequent uncertainty
evaluation. In a subsequent uncertainty evaluation, with my as one of the input quantities, the
above information suffices to apply the law of propagation of uncertainty, say [2]].

3.7 Law of propagation of uncertainty

The law of propagation of uncertainty (LPU) is the most widely used mechanism for propagating
uncertainty. Whereas with the Monte Carlo method the lack of computing and programming
skills can form a bottleneck, with the LPU it is often the calculation of the sensitivity coefficients,
i.e., the partial derivatives of the output quantity with respect to the input quantities, that pro-
vides a difficulty. Most guidance documents, such as the GUM [2], GUM-S2 [4] and EA 4/02 [57]
direct their readers to analytic differentiation of the measurement model to obtain the expres-
sions for calculating the sensitivity coefficients. Whilst this guidance is fully appropriate, it is
not always practicable, for many people have lost their skills in differentiation. The fact that
there are tables with derivatives of common functions (such as [|58,59]]) is barely mentioned in
such documents. Numerical approximation of the sensitivity coefficients [[40,41]] is a very good
alternative, provided that it is done properly. In this section, we show how to use numerical
differentiation and the law of propagation of uncertainty to perform the uncertainty evaluation
of the mass example of EA 4/02 [|57].

The R package numDeriv provides the function grad (from gradient) that returns from a function
a generally good approximation, using Richardson extrapolation [|60]], of the partial derivatives of
the input variables. The function returns a vector holding the values of these partial derivatives.
The function passed to grad should have only one argument, namely a vector holding all input
variables. Hence, the measurement model needs to be reformulated as follows:

mass2.x <- function(x) {
m.std = x[1]; dm.d = x[2];
diff = x[3]; dm.c = x[4]; dm.B = x[5]
m.std + dm.d + diff + dm.c + dm.B

}
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where x denotes the vector with input variables. For clarity and convenience, in the function body
of mass2.x the same symbols have been used as in mass . x shown previously. The convenience
extends to easier debugging the code as necessary. The penultimate line calculates the result of
the function as the sum of the five input variables, just as in the case of the Monte Carlo method.

The uncertainty evaluation itself can be coded as follows:

require (numDeriv)

m.std = 10000.005; dm.d = 0.0; diff = mean(c(0.01,0.03,0.02))

dm.c = 0.0; dm.B = 0.0;

sens = grad(func=mass2.x,x=c(m.std,dm.d,diff,dm.c,dm.B))

m.std.u = 0.0225

dm.d.u = 0.015/sqrt(3); dm.c.u = 0.010/sqrt(3)

diff.u = 0.025/sqrt(3); dm.B.u = 0.010/sqrt(3)

m.x = mass2.x(c(m.std,dm.d,diff,dm.c,dm.B))

m.x.unc = sqrt(sum(sens~2*c(m.std.u,dm.d.u,diff.u,dm.c.u,dm.B.u)"2))

The first line loads the package numDeriv (which needs to be installed in RStudio. The next
two lines define the values of the input quantities. The vector sens on the fourth line holds
the sensitivity coefficients returned by calling grad. The subsequent three lines calculate the
standard uncertainties associated with the five input quantities. The penultimate line calculates
the estimate of the output quantity m.x and the last line its associated standard uncertainty
m.x.unc. Again, this last line shows the flexibility of R working with vectors.

The mass of the calibrated weight is 10000.025 g with standard uncertainty 0.029 g. Using a
coverage factor k = 2, the expanded uncertainty becomes 0.059 g. These results reproduce those
in example S.2 of EA 4/02 to the number of decimal digits given.

The values of the sensitivity coefficients are

## [1] 1 1111

and are identical to those given in EA 4/02 [[57]]. The code is also valid for measurement models
with non-trivial sensitivity coefficients [41]].

The approach described also works with correlated input variables. In that case, the calculation
of the standard uncertainty associated with my is performed as follows:

D = diag(c(m.std.u,dm.d.u,diff.u,dm.c.u,dm.B.u))
CM =D %*% D

tmp = t(sens) %*}% CM %x*)% sens

m.x.unc = sqrt(tmp[1,1])

The first two lines form the covariance matrix, diagonal in this case, associated with the five input
quantities. (These are only needed to create the covariance matrix; if there were correlations
between the five input variables, the code for creating it would have to be adapted accordingly.)
The actual implementation of the LPU for correlated input variables is given in the last two lines of
the previous code. By vector/matrix multiplication (see also the law of propagation of uncertainty
in GUM-S2 [4]]) a covariance matrix of dimension 1 x 1 associated with the output quantity is
returned (tmp). The last line takes the square root of the only element in this matrix (holding the
variance of my) to obtain the standard uncertainty associated with my. This standard uncertainty
is 0.029 g.
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Chapter 4

Bayesian inference in R and RStan

A.M.H. van der Veen

4.1 Preamble

In this tutorial, we revisit the well-known example of an uncertainty evaluation of the calibration
of a 10 kg weight, published in the guidance document EA 4/02 from European co-operation for
Accreditation (EA) to illustrate how a Bayesian evaluation of measurement uncertainty can be set
up using R [|11]] and rstan [|61]], including the use of Markov Chain Monte Carlo (MCMC). The
example shows how type A and type B methods of evaluating standard uncertainty are coded,
how the calculations are performed and how from the posterior of the measurand the value,
standard uncertainty, coverage interval and coverage factor can be determined.

4.2 Introduction

The mass example in EA 4/02 [[57]] was introduced in chapter[3|and this Bayesian inference builds
forth on the example as already described. The Bayesian evaluation using MCMC highlights
that the type B evaluation of standard uncertainty in such a Bayesian setting is very similar to
the same evaluation using the Monte Carlo method of GUM Supplement 1 (GUM-S1) [3[]. The
greatest difference is usually in those uncertainty components that are evaluated using type A
methods. There is no technical reason for using MCMC in this instance, for the same result
(measured value and expanded uncertainty) can be obtained by much simpler means (i.e., the
law of propagation of uncertainty [|2]] or the Monte Carlo method of GUM Supplement 1 (GUM-
S1) [|3]. For this reason, it is an excellent case for assessing whether an implementation of
the MCMC provides valid results. In this revisit of the mass example, the type A evaluation
of standard uncertainty [2,/57]] of the mass differences is fairly straightforward, as the original
example assumes a known standard deviation. This known standard deviation can be viewed as
a kind of “prior knowledge” , which justifies a Bayesian treatment (the treatment in EA 4/02 is
in this respect Bayesian, for it utilises the information about the repeatability standard deviation
of the weighings.

The calculations in this tutorial have been performed using R, an environment for statistical com-
putation [|11]], and the package rstan [62]] that enables writing Bayesian models in a straight-
forward manner. This environment and the use of RStan for Bayesian inference have been
introduced previously [63,64].

21
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From the posterior probability density function obtained through a Bayesian inference, as has
been and will be shown, all essential information can be retrieved, including the measured value,
its associated standard uncertainty, and a 95 % coverage interval, just as in the case of the Monte
Carlo method of GUM-S1 [[3]]. It is worth noting that the posterior is not necessarily symmetric, so
that obtaining an expanded uncertainty can turn out to be impossible. The expanded uncertainty
is the half-width of a symmetric coverage interval [2,/57]] and obviously only makes sense if that
interval is (approximately) symmetric.

4.3 Bayesian evaluation of the mass example of EA 4/02

The re-evaluation of the mass example from EA 4/02 is performed by mimicking the assumptions
made in EA 4/02 [[57] as closely as possible. The example describes for all type B evaluations
the probability density functions used (rectangular and normal distributions). For the repeated
observations of the mass difference, the normal distribution is used with a known standard devia-
tion, which is consistent with the original evaluation as presented in EA 4/02. The measurement
model is given in equation (3.1)). For Bayesian inference, probability density functions need to
be assigned to each of the five input quantities. This aspect of the evaluation is similar to the use
of the Monte Carlo method of GUM-S1 [J3] (see also chapter [3]

The conventional mass of the standard is modelled using a normal distribution with mean 5 mg
(the deviation from the nominal value of 10kg) and standard deviation 22.5 mg. The subtrac-
tion of the nominal value is necessary to obtain stable output in the Markov Chain Monte Carlo
(MCMC) calculation; it does not in any way change the outcome of the inference, apart from
that we have redefined the measurand to be the departure from the nominal mass, rather than
the mass of the 10 kg weight itself. The measurement model could be written as

Amy = Amg + 8dp, + dm + dm + 5B 4.1)

where Amy denotes the departure from its nominal mass for the weight being calibrated, and
Amg the departure from its nominal mass for the standard weight. The fact that the outcome
of the MCMC calculation is sensitive to the choice of variables (‘parametrisation’) in the model
has been discussed previously already [|63}/64]]. This sensitivity is one of the hurdles to be taken
when performing iterative calculations (as MCMC is [65]).

In Stan code, the model of the mass calibration reads as

data {
int<lower=1> N;
vector[N] diffs;

3

parameters{
real m_s;
real<lower=-15,upper=15> dm_d;
real diff;
real<lower=-10,upper=10> dm_c;
real<lower=-10,upper=10> dm_B;

}

model {
m_s ~ normal(5,22.5);
diff ~ normal(0,500.0); // weak prior
diffs ~ normal(diff,25.0);

3

generated quantitiesq{
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real m_x;
m_x =m_s + dn_d + diff + dm_c + dm_B;

}

In the data block, a vector of length N is declared called diffs which holds the recorded mass
differences from comparing the masses of the standard and the weight being calibrated. The
input quantities evaluated using type B methods for evaluating standard uncertainty [2]] are
declared as model parameters in the parameters block. By default, Stan assigns these variables
a rectangular distribution over their domain of validity [62]]. If no constraints on the variable are
specified, the domain is (—oo, +00) and thus the assigned prior is improper (i.e. not integrating
to one over its domain [|65]]) . This default can be overridden by specifying another prior in the
model block.

The first variable not having assigned a rectangular distribution, m_s, denotes Am, the departure
of its nominal mass of the standard weight (see equation (4.1))). In the model block, it is assigned
a normal distribution with mean 5 mg and standard deviation 22.5 mg. In Bayesian models, this
way of coding a probability distribution would be the same as assigning a prior to the parameter
m_s . It is not combined with data, so the probability distribution of this parameter does not
change as part of the Bayesian inference. Hence, it is sometimes argued that the way in which
the GUM [12]] deals with type B evaluations of standard uncertainty is ‘weakly Bayesian’ [[66]] by
nature. The ‘weakly’ aspect lies in the fact that only an informative prior is assigned , and that it is
not combined with (new) measurement data, as no data are generated for this parameter during
the measurement. The same applies to the other model parameters in equation evaluated
using type B methods.

The corrections for drift (dm_d), eccentricity and magnetic effects (dm_c), and buoyancy (dm_B)
are all declared with upper and lower limits (£15mg for drift, and £10mg for the other two).
As Stan assigns these a rectangular distribution taking into account the limits, there is no need
to assign these three variables explicitly a rectangular distribution in the model block. Actually,
there are computational advantages to write the model as shown; these advantages are well
covered in the description of the Stan language [|61,62]].

The mass difference between the weight being calibrated and the standard weight is called diff
in the model. It is assigned a weakly informative prior in the form of a normal distribution (that
is implied by the example as well) with zero mean and a large standard deviation. This prior
does not do more than saying that we expect, before observing the data, that the mass difference
between the two weights will be close to zero, given a large standard deviation (500 mg in this
case, much larger than any of the uncertainties considered). If the OIML class of a weight is
known, the maximum departure from the nominal mass can be presumed to be known, unless
the weight is out-of-specification. The specification of the OIML class can be used to elicit a
value for the standard deviation of the prior. In the last line of the model block, the data (held in
diffs) is used to update the probability distribution of diff, given a fixed standard deviation of
25 mg. The latter is also given in the example in EA 4/02 [|57]]. This is the only part of the model
where Bayes’ rule is applied, and also the only part that differs in nature from the evaluation in
the original example, where a frequentist method is used (just as for other type A methods in the
GUM [2,/63])).

The measurement model finally appears in the generated quantities block. The mass (dif-
ference from the nominal mass) of the weight being calibrated is declared as m_x and its value
is calculated as described in equation (4.I)). Note that only m_x needs to be specified using the
measurement model. When evaluating the model, Stan will compute a value for m_x during each
cycle of the MCMC , thus providing a sample of its posterior.
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When running the MCMC, a number of iterations are necessary to enable the sampler to configure
itself. This is called the “warmup phase”. Furthermore, several series of samples (“chains”) are
generated, as one of the criteria for convergence is that the ratio of the between- and within-
chain variances is close to one [[65]]. More details have been given elsewhere [63}/64]. Running
the model with 21000 iterations and a warmup of 1000 iterations, using 4 chains yields the
following output:

## Inference for Stan model: 091dba697d92e3c49746850cfc395085.

## 4 chains, each with iter=21000; warmup=1000; thin=1;

## post-warmup draws per chain=20000, total post-warmup draws=80000.
##

## mean se_mean sd 2.5% 97.5% n_eff Rhat

## m_s 4.93 0.07 22.43 -39.20 49.10 94501
## dm_d 0.03 .03 8.66 -14.25 14.26 99537
## diff 20.01 .05 14.42 -8.29 48.20 93814
## dm_c -0.01 .02 5.77 -9.49 9.48 104833
## dm_B -0.02 .02 5.77 -9.51 9.49 120707
## m_x 24.95 .09 29.19 -32.23 82.20 97247
## 1lp__ 2.24 .01 1.77 -2.16 4.59 31166
##

## Samples were drawn using NUTS(diag_e) at Fri Mar 29 19:17:03 2019.

## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

O OO O OO
e e

In the output, the first column lists the parameters. 1p__ denotes the log of the joint posterior.
The second column, labelled ‘mean’ provides the estimates of the parameters. The next column
gives the standard error of the mean due to the MCMC calculation. The standard error generally
decreases as the number of iterations increases. It should be small enough to produce sufficiently
accurate results. A simple (yet not always sufficient way) is to repeat the calculation and to see
how well the results agree. In the column ‘sd’, the standard deviation (= standard uncertainty)
of the parameters is given. The following two columns contain the lower and upper limits of
the probabilistically-symmetric 95 % coverage interval. n_eff provides a crude estimate of the
effective number of samples [|65[]. The final column, labelled Rhat, gives the ratio of the between-
chain and within-chain variance. For convergence, it should be close to one [63}|65]].

A more thorough way of looking at the results of the MCMC calculation is to inspect the traceplots
of the parameters. These show the parameter values for each chain and each iteration in the
calculation. There is in this example only one variable that warrants looking at its traceplot
(diff), which is shown in figure |4.1

The traceplot shows good convergence: the parameter values fluctuate around a mean value and
there are no meaningful differences between the chains.

The value of the correction due to eccentricity and magnetic effects (dm_c) is —0.0 mg with stan-
dard uncertainty 5.8 mg. Both values are very close to the values obtained using the rectangular
distribution: 0.0 mg and 10mg/+/3 ~ 5.8 mg, respectively. The same can be said about the cor-
rection due to air buoyancy (dm_B), which has the value 0 mg with standard uncertainty 5.8 mg;
the values that are obtained using the rectangular distribution directly are the same as for the
correction due to eccentricity and magnetic effects. For the third correction, that due to drift
(dm_d) the expected standard deviation is 15mg/+/3 ~ 8.7mg, and the mean is zero [57]]; the
results obtained from the MCMC are 8.7 mg and 0 mg respectively.

Examples of evaluating measurement uncertainty First edition



Chapter 4. Bayesian inference in R and RStan 25

50 A I'Hll'll| J"JU’JILMw”" ‘L \“WW'JIMW‘IHW' chain

= — 1
£ 2
= 3
=

\P 'Ildi‘[L il ||Hw 'M“.." W“ﬂd MW

5000 10000 15000 20000
iteration number

Figure 4.1: Trace plot of the model parameter diff

The mass difference of the standard (Amyg) is evaluated as 4.9 mg with standard uncertainty
22 mg; the ones given in the original example are 5 mg and 22.5 mg respectively. The calculated
mass difference is evaluated as 20 mg with standard uncertainty 14 mg; the ones given in the
original example are 20 mg and 14.4 mg respectively. In both cases, the agreement is excellent.

The mass difference between the weights is returned as m_x; its value is 24.9 mg and its standard
uncertainty is 29 mg. We can see that the value and standard deviation are very close to the ones
given in the original example (25 mg and 29.3 mg respectively [57]]).

The final hurdle in this example is the reproduction of the expanded uncertainty, which is stated
to be 59 mg [|57]]. The MCMC calculation provides for all parameters the 95 % coverage intervals
(see the output discussed previously). Before attempting to compute the expanded uncertainty
as the half-width of an approximately symmetric coverage interval, the shape of the posterior of
Am, should be assessed for symmetry. This posterior is shown in figure 4.2

From figure{4.2} it can be seen that the posterior of Am, is fairly symmetric . One way to compute
the expanded uncertainty would be to compute the difference between the mean (= measured
value) and the lower end of the 95 % coverage interval and the difference between the upper end
of the said interval and the mean, and to use whichever is the greater. The R code to perform
the calculation takes the form

0.025)

Lower = quantile(fitout$m_x,probs
= 0.975)

Upper = quantile(fitout$m_x,probs
m_x = mean(fitout$m_x)

U.val = max(Upper-m_x,m_x-Lower)
U.k = U.val/sd(fitout$m_x)

where the variable fitout holds the extracted samples of the MCMC calculation. The expanded
uncertainty thus obtained is 57 mg and the coverage factor is 1.96. The latter is obtained by
dividing the expanded uncertainty by the standard uncertainty. This coverage factor is consistent
with that for the normal distribution, which should not come as a surprise, as the two dominating
uncertainty contribution have the normal distribution (the mass of the standard and the mass
difference between the two weights) [|57]]. Alternatively, the expanded uncertainty could also be
computed as the half-width of the 95 % coverage interval.
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Figure 4.2: Posterior of mass difference of the weight being calibrated from its nominal mass

The reprocessing of this example in a computational environment for Bayesian inference high-
lights that

1. type B evaluations of standard uncertainty can be viewed as assigning only a prior distribu-
tion to the parameter concerned; as there is no ‘fresh’ data, the distribution is not updated
using Bayes’ rule;

2. the normal distribution naturally arises under the assumption that the standard deviation
is known (if the latter were assumed to be completely unknown, the t distribution arises
[63}65,/67);

3. the propagation of distributions is performed in a similar fashion as in the Monte Carlo
method of GUM-S1 (but the Monte Carlo methods are different! [|3,[65]]).

A concern for those favouring classical statistical methods could be the weakly informative prior
assigned to the variable diff. There are different ways to assess the influence of assigning this
prior. One of the ways would be to replace it by a reference prior, which in this case would be a
rectangular distribution over the interval (—oo, +00) [65]]. The corresponding model is obtained
by removing the weakly informative prior from the model block and takes the form

data {
int<lower=1> N;
vector[N] diffs;

}

parameters{
real m_s;
real<lower=-15,upper=15> dm_d;
real diff;
real<lower=-10,upper=10> dm_c;
real<lower=-10,upper=10> dm_B;
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}
model {
m_s ~ normal(5,22.5);
diffs ~ normal(diff,25.0);
}
generated quantities{
real m_x;
m_x =m_s + dmn_d + diff + dm_c + dm_B;

}

Fitting the amended model with the same number of chains and chain lengths yields

## Inference for Stan model: d370744d73ed5069a780210ed9d07c6e.

## 4 chains, each with iter=21000; warmup=1000; thin=1;

## post-warmup draws per chain=20000, total post-warmup draws=80000.
##

## mean se_mean sd 2.5% 97.5% n_eff Rhat

## m_s 5.04 0.08 22.54 -39.23 49.06 84178
## dm_d -0.01 .03 8.65 -14.26 14.25 88047
## diff 20.09 .05 14.39 -8.23 48.36 85716
## dm_c -0.03 .02 5.78 -9.51 9.51 102528
## dm_B -0.01 .02 5.75 -9.49 9.49 99109
## m_x 25.09 .10 29.30 -32.43 82.70 86586
## 1lp__ 2.24 .01 1.77 -2.08 4.60 31782
##

## Samples were drawn using NUTS(diag_e) at Fri Mar 29 19:17:19 2019.

## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

O O O O OO
e e e

Comparing the results of the MCMC with those obtained previously shows that they are very close,
which underlines the ‘weakly-informative’ behaviour of the assigned prior to diff in the original
model. Another way to assess the influence of the assigned prior would be to choose other values
for the standard deviation (now 500 mg). A larger standard deviation would cause a reduction
in the influence of the prior (it becomes less informative); a smaller standard deviation would
cause it to become more influential [[63}/64]]. It is left to the reader to confirm that the chosen
prior indeed behaves as a weakly-informative prior.

Finally, it is worth noting that for Am,, the departure of its nominal mass of the weight being
calibrated, no prior is assigned. Its probability distribution is obtained in a calculation from the
other parameters using the measurement model (4.1). This part of the model behaves in the
same way as it would do when using the Monte Carlo method of GUM-S1 [22].
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Chapter 5

Understanding and treating correlated
quantities in measurement uncertainty
evaluation

M.G. Cox, A.M.H. van der Veen

5.1 Preamble

The evaluation of covariances, as required by the GUM (Guide to the expression of uncertainty
in measurement) [|2, clause 8, step 4] is often omitted in practice when evaluating measurement
uncertainty for a variety of reasons. In many instances, this habit has the consequence that it
produces an incorrect value for the resulting uncertainty, possibly leading to wrong decisions
based on the measurement result. In fact, not evaluating a covariance is equivalent to setting its
value to zero, which should be justified.

Where for many experimenters the evaluation of measurement uncertainty using the law of prop-
agation of uncertainty (LPU) of the GUM [2] or the Monte Carlo method (MCM) of GUM Sup-
plement 1 (GUM-S1) [3[] is already challenging, understanding how correlations between input
variables arises and handling it is even more so. In this primer, we provide an introduction to the
subject, illustrated by several examples. The purpose of these examples is to show the versatility
of the GUM suite of documents [[2-5]] in dealing with this aspect of evaluating measurement un-
certainty. In some of these examples, we also evaluate the consequences of ignoring correlations.

The GUM [2] provides two important formulae for evaluating and working with covariances due
to common input effects. The first equation to be mentioned is GUM formula (13), which is the
law of propagation of uncertainty for correlated input quantities. This formula is lesser known
than its counterpart for independent variables [[2, equation (10)], but it is the preferred choice
when using a linear or linearized measurement model with interdependent input quantities. The
second formula to be mentioned is given in [[2, formula (E1)], which provides the expression
for the calculation of the covariance between quantities X; and X;, depending on a set of input
quantities Q, with { =1...L:

L
dX; 0X;
uX;,X;) = L —12(Qy), (5.1)
’ ; 0Q 3Q,
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where u(x) denotes the standard uncertainty associated with x, the partial derivatives are eval-
uated at the estimates of the X; and only those terms contribute for which dX;/9Q, # 0 and
0X;/0Q # 0, which implies that only those quantities Q, contribute on which both X; and X;
depend [2].

When using the Monte Carlo method of GUM-S1 or GUM Supplement 2 (GUM-S2) [13}/4]], care
is automatically taken of dependencies between variables in the measurement model. If the
input quantities are dependent, then samples should be drawn from a joint probability density
function [4, clause 7.3] [[3} clause 6.4]. The method of GUM-S2 provides a sample of the joint
output probability density function for the output quantities forming the measurand, and from
this sample the covariances or correlation coefficients can be readily obtained [4, clause 7.6].

5.2 Covariance and correlation

Covariance and correlation are two measures for the dependence between (estimates of) quan-
tities. A covariance is expressed in the units of the quantities involved, whereas the correlation
coefficient is dimensionless. The correlation coefficient, which always lies between —1 and 1, is
defined as [|2} clause 5.2.2]

u(XiJXj)

WK u(x,)’ G2

r(X,X;)=
where X; and X; are the quantities involved and u(X;,X;) the covariance between them. From
expression (5.2)), if the covariance is zero, the correlation coefficient is also zero. Strong correla-
tion between X; and X; is indicated by |r| ~ 1. If r > 0, then X; and X; are positively correlated,
that is, an increase in X; leads to an increase in X;. Similarly, if the variables are negatively cor-
related, an increase in X; leads to a decrease in X;. In situations where it is difficult to compute
a covariance, it is often simpler to estimate a correlation coefficient. With expression (5.2), the
corresponding covariance u(X;,X;) can then be obtained.

5.3 Correlation arising from Type A evaluation

When simultaneous observations are repeatedly made of several input quantities, it is likely that
there are correlations to be associated with the estimates of these quantities.

EXAMPLE Simultaneous observations of voltage, current and phase

A treatment of simultaneous observations is given in GUM-S2 [[4, clause 6.2] where, from a circuit element,
the following quantities are concurrently measured six times:

V. amplitude of a sinusoidally-alternating potential difference across the terminals,
I: amplitude of alternating current passing through it,
¢: phase angle of the alternating potential difference relative to the alternating current.

Any systematic error present in V, I and ¢ is considered negligible. The n = 6 indications are given in
table

Estimates of V, I and ¢ are the averages V, I and ¢ of the observations. The associated standard uncer-
tainties u(V), u(I) and u(¢) are calculated in the usual way, for example,

n 6

i — L Sy = LS iy
V) = s 2V V= 5 2= T)

j=1 j=1
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Table 5.1: Indications for voltage, current and phase angle of a circuit element [4]]

Seti V;/V I,/mA ¢;/rad

1 5.007 19.663 1.0456
4994 19.639 1.0438
5.005 19.640 1.0468
4990 19.685 1.0428
4.999 19.678 1.0433
4.999 19.661 1.0445

U1~ WN

and covariances evaluated using GUM formula (17) [2} clause 5.2.3], for example,
1 < 1
V,)=——— > (V,=V)T,—D) == > (V,—= V)T, - 1).
u(v,1) n(n_l);( RRIURS) 30;( i = V), =1)

From these standard uncertainties and covariances, the correlation coefficients can be computed using
formula (5.2). The estimates and standard uncertainties are summarized in table The information
concerning the correlations is summarized in table In this matrix, the off-diagonal elements contain
the value of the correlation coefficient for the corresponding pair of variables. (The correlation coefficient
between a variable and itself is unity by default. Furthermore, since r(X;,X,) = r(X5,X;), the elements
below the main diagonal in table[5.3]are not shown, as they are the mirror image of the upper triangle of
the matrix.)

Table 5.2: Estimates of V, I and ¢ and associated standard uncertainties [4]]

V/V I/mA ¢ /rad

Estimate 4.9990 19.6610 1.04446
Std. unc. 0.0026  0.0077 0.00061

Table 5.3: Correlation coefficients between voltage, current and phase angle of a circuit element

14 I ¢
1 —0.355  0.858
I 1 —0.645
¢ 1

This approach also finds application in the post-processing of data obtained using the Monte
Carlo method from GUM-S1 and GUM-S2 [|3,|/4] to obtain, for example, standard uncertainties,
covariances, correlation coefficients or a covariance matrix.
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5.4 Correlation relating to common input effects

Correlation relating to common input effects arises frequently in metrology. Such an effect is
due, for instance, to the same measuring system, physical measurement standard or reference
datum. Consider a simple model for two measurands:

X1=Qo+Q,
Xy =Qo+Qy,
where Qy, Q; and Q, denote the input quantities and X; and X, the output quantities. Fur-
ther assume that Qy, Q,Q, are mutually independent. Using equations (E1) and (E2) from the
GUM [2],
u?(X1) =u?(Qo) + u*(Q1),
u*(X3) = u*(Qo) + u*(Qy), (5.3)
u(Xq,X5) = u2(Q0)~

EXAMPLE Calibration of a liquid-in-glass thermometer

Two platinum resistance thermometers (PRTs) are used to calibrate a liquid-in-glass thermometer. The
measurement model for the temperature, using the two PRTs takes the form

1
T= E(Tl +Ty),

where T; and T, denote the quantities representing temperature obtained using the two PRTs, T denotes
the aggregated temperature and u(T) is given by using the law of propagation of uncertainty (LPU) of the
GUM [22]:

1
u*(T) = Z[UZ(T1)+U2(T2)+ZU(T1,T2):|- 5.4
Uncertainty budgets for the two PRTs are given in table The reference thermometer and the unifor-

mity of the temperature in the bath are considered to be identical for the two PRTs, hence giving rise to
correlation.

Table 5.4: Uncertainty budgets for two PRTs

Source Standard uncertainty contribution/K
PRT 1 PRT 2
Reference thermometer to calibrate PRTs 0.00250 0.00250
Uniformity of thermo-regulated bath 0.00098 0.00098
Drift 0.00006 0.00006
Repeatability 0.00013 0.00004
Adjustment from calibration curve 0.00039 0.00060
Stability 0.001 62 0.001 62
Combined standard uncertainty 0.00316 0.00319

Table[5.4]gives the main sources of uncertainty: the first two are systematic effects (the same for each PRT).
All other effects are different for the two PRTs. Application of formula provides u(T) = 0.00294K,
whereas without the covariance term 2u(T;, T,), u(T) = 0.00225K. The former standard uncertainty
is 30 % greater than the latter. In this case, ignoring correlation gives an optimistically small value for
required standard uncertainty. Whether this difference is seen as significant depends on the context and
the subsequent use of the quantity T.
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An example such as that above can straightforwardly be handled using expressions of the form
(5.3). With several dependent input quantities, the application of the GUM is somewhat more
difficult, especially if the natural form of the expressions are to be used. For example, in studying
the performance of a jet engine, the measurement model has five output quantities or measur-
ands, Y1,...,Ys and involves a chain of calculation steps (see example [E6.1)). In the first step, Y;
is specified in terms of (some of) the input quantities. In the second step, Y, is specified in terms
of Y; and the input quantities, and so on. Such a situation is hard to handle for practitioners
without the necessary skills in partial differentiation. Ways to treat this example that avoid the
need for these skills are considered in example [E6.1}

5.5 Identifying joint effects

In section an example was shown where two PRTs were used to calibrate a liquid-in-glass
thermometer. The use of multiple measurement standards occurs much more widely, and the im-
portance of evaluating possible correlations is not always fully recognised. In this section, issues
arising with the use of multiple standards are further explored, showing how the magnitude of
the correlation can be evaluated.

In many areas of calibration, multiple measurement standards are used. For instance, two
weights are used jointly to calibrate a balance or two resistors are used in an electrical circuit.
Often, these weights or resistors are calibrated by the same laboratory. Calibration laboratories
typically use a specific measurement standard for a particular calibration.

EXAMPLE Weights calibrated against the same measurement standard

Two 10 kg weights are submitted to the same calibration laboratory and calibrated against the same mea-
surement standard. Consequently, the calibration results will be correlated. If in a subsequent calibration
these two weights are used and their total mass needs to be computed, a basic measurement model takes
the form

Mggs = My + my, (5.5)

where mg4, denotes the mass of the combined weight, and m; and m, the masses of the respective weights.
Using the variant of LPU for correlated variables (see equation (13) in the GUM [2]]), the variance associ-
ated with myy, can be expressed as

u?(mgyg,) = u*(my) + u?(my,) + 2u(m;, my,), (5.6)

where u(m;, m,) denotes the covariance between m; and m,. The evaluation of this covariance requires
knowledge about the uncertainty budgets for m; and m,. In the simplest case, the calibration of the two
weights takes place by comparison with the same standard with mass mg. In that case, the covariance
between m; and m, can be computed as

u(my,m,) = uz(ms),

where mg denotes the mass of the standard used in the calibration of both weights. = When
u(my) = u(m,) = u(mg), u(myys) = v2u(mg) would be obtained under the assumption that m; and m,
are independent. If they are dependent, u(mgy,) = 2u(msg) is obtained using equation (5.6)). These results
are markedly different. The impact on the uncertainty in a subsequent measurement depends of course
on how dominant u(mgy,) is in the uncertainty budget of the measurement involving the two weights.

Consider first the situation where detailed metrological information is available. Suppose now, follow-
ing [|5]], that the basic measurement model (5.5) takes the extended form [|57]]:

m; = mg+dmp + dm; + dmg ; + 6B;, 5.7
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where the symbols have the following meaning:
m; conventional mass of the weight being calibrated,

mg conventional mass of the standard,

dmp  drift of the value of the standard since its last calibration,

om; observed difference in mass between the unknown mass and the standard,

dmg;  correction for eccentricity and magnetic effects,

8B; correction for air buoyancy,
where the index j refers to either weight 1 or weight 2. The terms with index j are modelled as inde-
pendent for the calibration of the two weights. For the observed mass difference 6m;, this assumption
is consistent with the assumption made in the example that the readings of the balance are independent
within a calibration, so it is reasonable to make the same assumption for the readings for the two calibra-
tions. Buoyancy effects depend on, for example, the density of the weights and the air density. For the
two weights being calibrated, the densities can be assumed to be independent (unless these have been
determined in the same experiment), and a similar reasoning applies to magnetic effects. The effect of
eccentricity relates to the placement of the weights on the balance, and if this placement is such that the
weight is placed in the centre of the pan, it can also be modelled as independent if the eccentric loading of
the balance is small. The conventional mass of the standard and the drift of the standard are, considering
the way that they have been modelled, the same in both calibrations, hence contributing to the covariance.
Using equation (E1) in the GUM [2], the covariance can be expressed as

u(my, my) = u?(mg) + u*(dmyp). (5.8)

The simple model in equation does not permit a refinement of the treatment of correlations. The
choice is rather binary, which may be fit for purpose, but not necessarily so. For example, air buoyancy
is a quantity that can be modelled as independent if in time (and by implication, weather conditions are
sufficiently different), but is better modelled as fully dependent if the two weights had been calibrated on
the same day (sharing the same air density). Correlation in this case increases the covariance [calculated
in a similar fashion as shown in equation (5.6)].

Itis not usual that the customer of a laboratory has detailed knowledge about the uncertainty bud-
get of the calibration ordered. If requested, referring to the above example, the laboratory could
provide a value for the covariance u(my, m,) or, equivalently, the correlation coefficient r(m;, m,)
so that the customer can use that information when using the two weights together. If such in-
formation is not available, the customer could make an attempt to guess the correlation coeffi-
cient [68]], and use that estimate in subsequent calculations. Estimating the value of a correlation
coefficient is often easier than the corresponding covariance since, as stated in section the
correlation coefficient lies in the interval —1 < r < 1. An important aspect in the estimation is
the sign of the correlation coefficient, which can often also be determined by reasoning. In the
case of the weights, it is likely that if m; is estimated high, m, will also be estimated high, so the
correlation coefficient is positive (given that we know the same standard has been used for both
calibrations, we can rule out that r = 0 is plausible).

5.6 Induced correlations

Correlations can also arise due to the fact that quantities are calculated from a more fundamental
set of quantities and then subsequently used in combination with the quantities from which they
are calculated.

EXAMPLE Key comparisons

An instance of induced correlation arises in key comparisons, or more generally, in interlaboratory com-
parisons with a consensus value.
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In a key comparison, the capabilities of participating laboratories are assessed by degrees of equiva-
lence (DoEs). A DoE is defined as the difference between the measured value from a national metrology
institute (NMI) and the key comparison reference value (KCRV), together with its associated expanded
uncertainty at a 95 % probability level. In proficiency testing, a similar metric is used in comparisons
for calibration laboratories, the E,-score, which is the ratio of the difference and associated expanded
uncertainty of a measured value with respect to the assigned value [69].

The KCRYV is usually calculated from the measured values x, ..., xy from the N NMIs participating in the
key comparison, which are nominally measuring the same measurand, and u(x,),...,u(xy) the reported
associated standard uncertainties. The commonest estimator of the KCRV is the weighted mean (WM),
computed for independent measured values as [|70]]:

N N -1
X; 1
XKCRV = uz(xKCRV)Z - u?(xgcry) = [Z ] .
i=1

= u?(x;)’ ~u(x;)

The DoE (d}, U;) for Laboratory j is
d; = X; — Xgcrv> U; = ku(d;), u?(d;) = u(x;) —u?(xgery)s

where k denotes the coverage factor, equal to 1.96 under the assumption that the measured values are
normally distributed. Note the minus sign in the expression for uz(dj), which results from the correlation
between x; and xycgy arising from the dependence of xycgy on x; [70].

As a simple illustration of the effect of including (or ignoring) the correlation between the KCRV and the
measured values, consider the arithmetic mean as KCRV for N = 3 laboratories:

1
Xkcrv = g(xl + x5 + X3),

and suppose that the three laboratories all report a standard uncertainty of one unit. From the law of
propagation of uncertainty, it follows that

2 (xxery) = %[uZ(xl) () + u2(x5)]
_ 1 2 2 27 l
_9[1 +1°+1 ]_3.

Hence, u(xgcry) = 1/+/3, the familiar ‘root N effect’ on the standard uncertainty when computing the
average of N values under the assumption of independence. The squared standard uncertainty of the DoE
for laboratory 1 becomes

u?(dy) = u®(y) — u? (oyery)
1 2
3 3
If correlation were (completely wrongly) ignored, that is, LPU for independent quantities were applied,
the following value for the squared standard uncertainty would instead become

uz(dl) = u2(x1) + uz(xref)
1
—l4a=2
3 3
This value for the squared standard uncertainty is twice as large as the correct value. This problem is
well-known in the literature, and appropriate ways of dealing with it have been developed [[70]], including
the elimination of the correlation [[71-73]].

5.7 Missing or ignored correlation

Sometimes, correlations are missing or ignored, leading to poor decisions or logical absurdities.
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EXAMPLE pH measurement

The pH, the negative decadic logarithm (base 10) of the activity of hydrogen ion in a solution is the most
measured kind-of-quantity in chemistry. The measurement of pH often involves measuring an electrical
potential E for standard solutions and temperatures and using reference tables to convert these to pH
values. In short, the process starts with measuring the potential Ex of the cell in a test solution at ‘standard
temperature’. Then, tabular entries in the reference material certificate for standard solutions S; and S,
that ‘bracket’ test solution in terms of E are identified. These entries are then linearly interpolated to
provide pHy, the pH of the test solution.

Laboratories following the IUPAC (2002) recommendations [|74]] will not take correlation into consid-
eration when calculating the uncertainty associated with the measured pHy, and so might be reporting
optimistically small measurement uncertainties. Little pH literature on accounting for correlation in inter-
polated values is available, yet it is important to take the dependencies into account (for a fuller discussion,

see example [E1.T)).

Nevertheless, the information necessary may already be available. Certificates of buffer solutions often
give two uncertainties, one for an Sl-traceable value and one, much smaller, that omits the uncertainty
associated with the Bates-Guggenheim (BG) convention [|75[]. The effect of the BG convention is similar (if
not largely the same) for all pH measurements, so the squared uncertainty arising from the BG convention
could be taken as an approximate covariance, implying a correlation coefficient ~ 1. For a typical case, pH
is estimated as 7.0109 with a standard uncertainty of 0.0041 assuming independence and when evaluated
with full correlation 0.0051, which matches the uncertainty in the certified values.

The logical absurdity of such a situation is now explained. Figure shows interpolated pH values for
temperatures between those listed on the reference material certificate. The uncertainty associated with
the interpolated values is substantially smaller than those stated on the certificate. Repeating the process
(so, taking the interpolated values as reference and calculating new values for the temperatures given
on the certificate) will, with the same attitude, lead to even smaller uncertainties. Indefinite repetition
of this procedure makes it evident that uncertainties evaluated in this way are not credible. Actually,
when taking into account the correlations, a meaningful reduction of the uncertainty would not be seen.
Such a reduction would only be credible if the reference points were truly independent, so carrying more
information.

5.8 Removable and unremovable correlation

In many instances, it is possible to eliminate correlation by expressing an output quantity in terms
of a different set of (independent) input quantities. This idea also underlies equation in the
GUM [2[]. Correlation between (estimates of) quantities typically arises when these quantities
are evaluated using the same pool of data.

EXAMPLE 1 Straight-line calibration

A well-known example of removable correlation is straight-line regression, where usually the calculated
slope and intercept are correlated. If the values of the slope and intercept are used in a subsequent
calculation, it is essential that the covariance between them is taken into consideration [76}77|]. Ignoring
the covariance can lead to a gross overstatement of the uncertainty (see also example [E5.3). There are
also instances where the uncertainty would be understated, see example The covariance between
slope and intercept will become zero if the data set consisting of N pairs (x;, y;) is shifted to become
(x; —X,y;), where X = >, x;/N. An example illustrating this elimination is given in annex H.3 of the
GUM [12, annex H.3.5].

EXAMPLE 2 Key comparisons (once more)
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Figure 5.1: NIST certified values (filled circles, blue) and interpolated values (boxes, red) and
the associated expanded uncertainties when ignoring the correlation between the certified values

In the case of the key comparison data in the example in section working with correlations can be
avoided by consistently working only with the original quantities x;, x, and x5. Instead of using the
quantity x,., which is important in its own right [|78]], the DoE can be established by expressions that
solely depend on the mutually independent input quantities as follows. Use

1 1
dy =Xy = Xpeg = X1 — 5(351 + Xy +x3) = g(le — X3 — X3).
Then, apply the LPU in its simplest form to give the same result:

w(d) = Gute) + Gute) + gutlx) = S +1+ 1) =2 = 2.

5.9 Multivariate measurement models

5.9.1 General

For a measurement model in which there are multiple quantities having correlations or multiple
measurement equations or both, GUM-S2 [4]] presents a matrix treatment of the law of propa-
gation of uncertainty through such a modelE] This treatment is not only useful for multivariate
measurement models, but also for multi-stage measurement models (section where it is
cumbersome or even impossible to express the measurand in a set of uncorrelated input quan-
tities. Matrix expressions for uncertainty propagation are valuable since computer systems such
as MATLAB [79]], Python [[80] and R [[11[] support working with matrices. Even mainstream

1Some of the material here is based on that guide.
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spreadsheet software contains the essential functions for implementing the law of propagation
of uncertainty for multivariate measurement models, that is, the functions for matrix multiplica-
tion and matrix transpose. Often, quite involved calculations can be coded in a few lines using
matrix calculus.

Although multivariate measurement models receive little treatment in the GUM [_2]], the same
underlying GUM principles may be used to propagate estimates of the input quantities and the
associated uncertainties through the measurement model to obtain estimates of the output quan-
tities and their associated uncertainties. Mathematical expressions for the evaluation of uncer-
tainty are stated using matrix-vector notation, rather than the subscripted summations given in
the GUM, because generally such expressions are more compact and more naturally implemented
within modern software packages and computer languages.

The law of propagation of uncertainty, in a more generalized form than presented in the GUM,
for multivariate measurement models is a valuable tool for propagating uncertainties. It also
caters for covariances associated with the input quantities and obtaining those associated with
the output quantities.

For the application of the law of propagation of uncertainty, the same information concerning
the input quantities as for the univariate measurement model treated in the GUM is used:

5.9.2 Explicit multivariate measurement models

1. An explicit multivariate measurement model specifying the relationship between an output
quantity Y = (Y;,...,Y,,)" and an input quantity X = (X;,...,Xy)", takes the form

T
Y:f(X), f:(fly"':fm) >
where f denotes the multivariate measurement function.
2. An estimate x = (xq,...,xy)  of X;

3. The covariance matrix

u(xy,xq) - ulxq,xy)
Vx = .. >
u(XNJxl) U(Xm,XN)
of dimension N x N, associated with x containing the covariances u(x;,x;), i = 1,...,N,

j=1,...,N, associated with x; and x;. u(xj,x;) = uz(xj) denotes the variance (squared
standard uncertainty) associated with x it

Given an estimate x of X, an estimate of Y is f(x). A generic formula for propagating V,
through f(X) is [4]]

V,=CV,C’, (5.9)
where V,, is the output covariance matrix of dimension m x m associated with y and
0X, Xy
c=| :
X, Xy

is the sensitivity matrix of dimension m x N evaluated at X = x [|81,, page 29].
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EXAMPLE 1 Resistance and reactance of a circuit element once more
Continuing the example in section[5.3] a bivariate measurement model for R and X in terms of V, I and
¢ is
v vV .
R=f1(VJ,¢)=7COS¢, X=f2(V,I,¢)=751nqb. (5.10)

Using the above general notation, N =3, m=2,X = (V,I,¢)" and Y =(R,X)".

An estimate y = (R, X )I of resistance R and reactance X is obtained by evaluating expressions dl at
an estimate x = (V,1,¢)" of the input quantity X.

The covariance matrix V), of dimension 2 x 2 associated with y is given by formula (5.9), where C, is the
sensitivity matrix of dimension 2 x 3 given by evaluating

ofh 9fi 9Ofi cos ¢ Vcos¢ Vsin ¢
ov. . dI 3d¢ I 7 T
2fy, 8fy 9fy - sing ~ Vsing  Vcos¢g
oV o3I 9¢ I I2 I

at X = x, and V,, is the covariance matrix of dimension 3 x 3 associated with x.

EXAMPLE 2 Calibration of mass standards

This example constitutes an instance of a multi-stage model (section [5.10)).

A set of q mass standards of unknown mass values m = (ml,...,mq)T is calibrated by comparison
with a reference kilogram, using a mass comparator, a sensitivity weight for determining the compara-
tor sensitivity, and a number of ancillary instruments such as a thermometer, a barometer and a hy-
grometer for determining the correction due to air buoyancy. The reference kilogram and the sensi-
tivity weight have masses my and mg, respectively. The calibration is carried out by performing, ac-
cording to a suitable measurement procedure, a sufficient number k of comparisons between groups
of standards, yielding apparent, namely, in-air differences 6 = (61,...,6k)T. Corresponding buoyancy
corrections b = (by, ..., bk)T are calculated. In-vacuo mass differences X are obtained from the sub-model

X = f (W), where W = (mR, mg, &', bT)T.

An estimate y = (m;y, ..., fn\q)T of the masses m is typically given by the least-squares solution of the over-
determined system of equations Am = X, where A is a matrix of dimensions k x g with elements equal to
+1, —1 or zero, respecting the uncertainties involved. With this choice, the estimate y is given by

y=V,A"V 'x, (5.11)

where x is the estimate of the input quantity X, and the covariance matrix V, of dimension g xq associated

. o 1,1 . . . . . . .
with y is given by V,, = (ATVx 1A) . V, is the covariance matrix of dimension k x k associated with x.
A more detailed description of the sub-model, as well as a procedure for obtaining V, in terms of V,,, the
covariance matrix associated with the estimate w of W, is available [|82]].

The multivariate measurement model for this example can be expressed as
— Ty-1
Y=V,A"VX,
where the measurement function is UyATUfX . In terms of the general notation, N = k, m = q and
Y=m.

It is preferable computationally to obtain the estimate given by formula (5.11)) by an algorithm based on
orthogonal factorization [|83]], rather than use this explicit formula.
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5.9.3 Implicit multivariate measurement models

An implicit multivariate measurement model specifies a relationship between an output quantity
Y =(Yy,...,Y,)" and an input quantity X = (Xy,...,Xy)", and takes the form

h(Y,Xx)=0, h=(hy,...,h,)".
Given an estimate x of X, an estimate y of Y is given by the solution of the system of equations
h(y,x) =0, (5.12)

generally to be solved numerically for y, using, for example, Newton’s method [84]] or a variant
of that method, starting from an approximation y(® to the solution.

The covariance matrix V, of dimension m x m associated with y is evaluated from the system of
equations [|4]

C,V,C, =C,V,C,, (5.13)

where C,, is the sensitivity matrix of dimension m x m containing the partial derivatives dh,/3Y;,
¢{=1,...,m,j=1,...,m, and C, is the sensitivity matrix of dimension m x N containing the
partial derivatives dh,/0X;, £ =1,...,m,i=1,...,N, all derivatives being evaluated at X = x
and Y = y. The covariance matrix V, in expression (5.13) is not defined if C, is singular. 1

Formally, the covariance matrices V, and V,, are related by

V,=CV,C", C= C,'Cx, (5.14)
where

C — C;lcx, (5.15)

a matrix of sensitivity coefficients of dimension m x N.

EXAMPLE 1 Set of pressures generated by a pressure balance

The pressure p generated by a pressure balance is defined implicitly by the equation

— mw(]- _pa/pw) 8
P A (1 2p) (1 + as6)’

(5.16)

where m,, is the total applied mass, p, and p,, are, respectively, the densities of air and the applied
masses, g, is the local acceleration due to gravity, A, is the effective cross-sectional area of the balance at
zero pressure, A is the distortion coefficient of the piston-cylinder assembly, a is the coefficient of thermal
expansion, and 56 is the deviation from a 20 °C reference Celsius temperature [|85]].

Let py,...,pq denote the generated pressures for, respectively, applied masses m,, 1, ...,m,, 4 and temper-
ature deviations 80,,...,56,.

In terms of the general notation, the vector (Ay, A, a,80;,my, 1, .., 804, My g, Pas P> gg)T is denoted by X
and (pl,...,pq)T by Y with N =6+ 2qg and m =q.

X and Y are related by the measurement model
hj(Y,X)=A0pj(1+Apj)(1+a69j)—mwjj(1—pa/pw)ge =0, i=1,...,q. (5.17)

An estimate p; of p; is obtained by solving an equation of the form (5.17) given estimates of Ay, 1, a,
80;, my, j, pPa, Pw and g;. The resulting estimates p;, ..., have associated covariances because they all
depend on the measured quantities Ay, A, a, p,, p,, and g,.
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The covariance matrix V, of dimension q x q associated with y = (py, ... ,f)q)T is evaluated from expres-
sion , where C, is the sensitivity matrix of dimension g xq containing the partial derivatives dh,/JY;,
¢=1,...,q,j =1,...,q, and C, is the matrix of dimension g x (6 + 2q) containing the partial deriva-
tives dh,/0X;, L =1,...,q,i=1,...,6+2q, both evaluated at X = x and Y =y, and U, is the covariance
matrix of dimension (6 + 2q) X (6 + 2q) associated with x.

A measurement function [giving Y; (= p;) explicitly as a function of X] can be determined in this case as
the solution of a quadratic equation. Such a form is not necessarily numerically stable. Moreover, mea-
surement models involving additional, higher-order powers of p are sometimes used [|[86]]. Determination
of an explicit expression is not generally possible in such a case.

EXAMPLE 2 Use of the Soave-Redlich-Kwong equation of state

Equations of state are key to calculating the pV T (pressure, volume, temperature)-behaviour of fluids
(gases, liquids, vapours). Often, with very limited information such as the critical properties (temperature,
pressure) of the components, a reasonable prediction of the phase behaviour, a pressure, specific volume
or density can be obtained. To illustrate the calculation of the specific volume V,, of a fluid at a given
temperature and pressure, we demonstrate the use of the Soave-Relich-Kwong (SRK) equation of state,
not because it is arguably the best of all cubic equations of state, but because the calculation serves as
a template for using more complicated (and accurate) equations of state. The equation of state can be
formulated as [|87]]

V24 a,V2+a,Vy + a3 =0, (5.18)
where
RT RT b
a =——, a2:_b2__b+g, a3=_a_ (519)
p p p p

where a and b are coefficients of the SRK that depend on the critical properties of the fluid and the
saturated vapour pressure at a reduced temperature of 0.7 [|87]], and the temperature. In equation (5.19),
R denotes the ideal gas constant, T the thermodynamic temperature and p the pressure. Depending on
the values of p and T, equation has one or three real roots. The latter occurs if the saturation
pressure is used for p, corresponding to the temperature T. Such a vapour-liquid equilibrium calculation,
where p is also part of the measurand has been discussed elsewhere [|88]].

In this context, it is important to note that the coefficients a in equation (5.18]) depend on a set of variables
that can be presumed to be independent [see equation (5.19)] [|88]].

Propagation of uncertainty can be performed readily using expression (5.15) for implicit multivariate
measurement models, enabling inclusion of correlations between the a;, that is,

12(Vy) = (3V2 + 20,V + @) - CoUGCL.

5.10 Multi-stage measurement models

A measurement model with several stages is known as a multi-stage model: the output from
one stage becomes the input to the next stage (which may have further inputs). For instance,
calibration is a two-step process.

EXAMPLE 1 Straight-line calibration

Given data comprising a set of pairs of stimulus and response values, following the VIM [89]], the process
for straight-line calibration constitutes two stages:

1. Determine calibration parameter values (intercept a and slope b for a straight line y = a + bx ex-
pressing response y in terms of stimulus x) from the data, and

Examples of evaluating measurement uncertainty First edition



Chapter 5. Understanding and treating correlated quantities 42

2. Use a and b to produce the stimulus x, = (y,—a)/b (the measurand) corresponding to a measured
response Y.

Given the data and associated uncertainties (and covariances if present), a and b and their covariance
matrix V[, ) are produced in stage 1. Then, in stage 2, a and b and their covariance matrix V[, ;) and y,
are used to provide x, and u(x,) using

1 1 1
Xo = E(J’o —a), u?(xo) = ﬁ[l xolViap[1 x0]" + ﬁuz()’o)' (5.20)

Full details of the computation are contained in [[90]] and are based on the expressions in section

The process naturally consists of two stages. Note that the covariance matrix determined in stage 1 must
be made available to stage 2 to evaluate the standard uncertainty u(x,).

When the recipient of the calibration results is the calibration laboratory itself, the two stages can be
combined. The covariance matrix does not even have to be reported. The key difference from the two-
stage process is that the computational scheme for evaluating V[, ,; is ‘plugged’ into formula (5.20).

The above contrasting scenarios constitute illustrations of removable and unremovable correla-
tion in section[5.8| (with a further example — peak area determined from spectral data — below).

EXAMPLE Peak area determined from spectral data

A requirement in spectroscopy is the detection of peaks in a signal and the determination of peak pa-
rameters such as area and location. Peak area determination nominally constitutes a two-stage model, in
which (1) raw data are filtered to reduce the effects of noise and (2) peak area is calculated using the
filtered data. Covariances would be passed from the first stage to the second.

(a) Two-stage model

In the first stage data are filtered using a windowing function, each item of raw data being superseded
by a filtered data item. The result is a set of filtered values, with associated standard uncertainties and
covariances. Covariances arise since each filtered value is a combination of raw values and any specific
raw value contributes to several filtered quantities (common input as in section|5.4]).

In the second stage a linear function of the filtered data is obtained such as peak area

The peak area is estimated using the filtered data. To evaluate the standard uncertainty associated with
estimated peak area, use is made of the standard uncertainties and covariances associated with the filtered
data established in the first stage.

(b) Single-stage model

The peak area is expressed directly as a function of the unfiltered data by combining explicitly the above
two stages. The explicit provision of covariances generated in the above first stage is not needed.

Mathematical expressions for the calculation are given in [|5, clause 8.4.2].

5.11 Concluding remarks

The evaluation of covariances is usually an essential part of an evaluation of measurement un-
certainty. There are several ways to incorporate these dependencies in the calculations, ranging
from simply working with the forms of the law of propagation of uncertainty and the Monte Carlo
method that consider dependencies between input quantities to the elimination of dependencies
by re-expressing the measurement model so that the measurand depends on a set of independent
or at least uncorrelated input quantities.

In practice, especially for uncertainty evaluation problems involving many variables, it is often
preferable to work with matrix-vector forms of expressions for dealing with standard uncertain-
ties and covariances. Doing so requires some knowledge above the basic skills needed to apply
the law of propagation of uncertainty as given in the GUM.
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Messages made in the treatment here include the following:

— When properly established, a measurement model articulates the relationships between
variables.

— Accounting for covariances is an essential part of an uncertainty evaluation: their proper
use can increase or decrease the obtained uncertainty over an uncertainty evaluation that
disregards them.

— The propagation of a covariance matrix is not required if the stages in a multi-stage model
can be combined into a single-stage model (see section|[5.8]).

— It is not always necessary to (re-)express the measurand(s) as a set of uncorrelated input
quantities. If the covariances are evaluated, the law of propagation of uncertainty for
dependent quantities [|2, equation (13)] can be applied directly, or when using the Monte
Carlo method, samples can be drawn from a multivariate probability density function.

— Working with multivariate methods [[4] is often the easier choice, but requires some famil-
iarity with matrix calculus.

— The Monte Carlo method [|3,/4] and Bayesian inference using Markov Chain Monte Carlo
(see, for example, section|5.3)) also provide means to extract information about covariances
between output quantities.
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Chapter 6

Reporting measurement results

M.G. Cox, A.M.H. van der Veen

6.1 Introduction

The manner in which measurement results are reported is fundamental since in many cases they
are the primary outcome of a measurement, including the evaluation of the measurement data
and the uncertainty evaluation. There are various styles of reporting, most of which are ‘conven-
tional’, apply to a single measurand, and are given in standards from International Organization
for Standardization (ISO) and International Electrotechnical Commission (IEC) [|7,8,(39]] and rec-
ognized guidance documents such as JCGM [2}3]], European Accreditation [57|], Eurachem [42],
International Laboratory Accreditation Cooperation (ILAC) [91[] and UKAS [[92]]. In addition to
considering this type of reporting of measurement results, vector measurands [[4]] are increasingly
important since there is an upsurge in measuring systems with many output quantities such as
pixel images obtained in fields like surface metrology and medical physics. In these areas, the
vector output quantity is often used in further stages of data processing in which case correlations
that exist between these quantities must be taken into consideration to provide valid results.

Further, we consider measurement results represented by probability distributions [|3}4}/89]] be-
cause of the growing interest in regarding a probability distribution as a complete statement
of uncertainty [|93[], their importance in conformance assessment [|6,/94]] and the availability of
relevant computational facilities [|95]].

6.2 Measurement result

To report a measurement result, it is important to appreciate what a measurement result com-
prises. According to the International Vocabulary of Metrology — Basic and General Concepts
and Associated Terms (JCGM 200:2012; VIM 3rd edition) [|89]], it is defined as

2.9 (3.1) measurement result

result of measurement

set of quantity values being attributed to a measurand together with any other avail-
able relevant information
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NOTE 1 A measurement result generally contains “relevant information” about the set of
quantity values, such that some may be more representative of the measurand than others.
This may be expressed in the form of a probability density function (PDF).

NOTE 2 A measurement result is generally expressed as a single measured quantity value and
a measurement uncertainty. If the measurement uncertainty is considered to be negligible
for some purpose, the measurement result may be expressed as a single measured quantity
value. In many fields, this is the common way of expressing a measurement result.

6.3 Measurement result reporting

At its simplest, for a scalar measurand, a measurement result may be presented by an estimate
of the measurand and an associated standard uncertainty. In the case of a vector measurand,
a measurement result may similarly be represented by a vector of estimates and the associated
covariance matrix.

Although a probability distribution is a complete description of the metrologist’s judgment re-
garding the measurand, it alone will not generally meet reasonable requirements for reporting
because, unless the recipient is well versed in statistics, it does not readily convey usable informa-
tion about the measurand. Therefore, various summaries of the distribution should be provided
to convey clear and meaningful information for the recipient [|96]]. Summary statistics might also
include a coverage interval or, in the multivariate case, a description of a coverage region that
contains the measurand for a given coverage probability, and possibly some other material. A
coverage region, a multivariate counterpart of a coverage interval in the univariate case, is not
unique, one instance being the coverage region of smallest volume.

As regards the reporting of a PDF itself, there are several options available. In a univariate case, if
the PDF can be reported to be sufficiently well represented by a normal distribution, the mean and
standard deviation, taken as the estimate and associated standard uncertainty of the measurand,
may be all that is needed. (The GUM [_2] assumes, by appealing to the central limit theorem,
the PDF for the measurand is approximately normal.) If the PDF for the measurand is (or close
to) a t distribution, resulting from the presence of some sample-based input quantities (Type
A evaluations), the reporting is as for a normal distribution with the addition of an (effective)
degrees of freedom [2[]. If another PDF is assumed for the measurand, then this PDF and its
parameters can be provided as the measurement result [574/97,98]].

The use of Monte Carlo (MC) or Monte Carlo Markov Chain (MCMC) methods provides the dis-
tribution for the measurand in the form of a large sample from that distribution. The distribution
may be reported in this form, as an electronic data file, or as a suitable standard statistical distri-
bution that is a good approximation fitted to the sample. Summary statistics such as the mean,
the standard deviation and a coverage interval may be computed directly from the sample [4]
and could be provided additionally to the sample of the distribution.

If that PDF is to be used as input to a further evaluation, the electronic data file can be used
directly for that purpose [|4,(96]].

The provision of suitable graphics, such as a plot of the PDE is frequently desirable in the uni-
variate case or even for bivariate measurement models [[96]]. One- or two-dimensional sections
of a multivariate PDF can also be useful for visualisation.

The measurement result applies to the measurement model in hand, which can range from real,
univariate and explicit to complex, multivariate and implicit. Guide JCGM 102 [4, clause 6]
categorises the measurement model according to their mathematical form. The current primer
does not cover the complex case; the reader is referred to [[4,(99]].
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So that measurement results are metrologically reproducible [[100]], it is recommended that the
reporting of results includes all data necessary for the measurement result to be reproduced by
others.

It is recognised that the metadata accompanying a measurement result depends on the method
used to produce it. Although it is beyond the scope of this document to comment in detail on the
relative merits of methods, we state the following. Each method uses information particular to
that method in specifying the evaluation problem to be solved. An instance is in the calibration
of a thermometer using straight-line regression in terms of the original variables or transformed
variables [[2, clause H.3]. The use of a centred variable, simply obtained by shifting the ori-
gin of the independent variable, transforms the problem into a form that not only gives more
straightforward reporting, since the correlation between the line parameters (section is
eliminated, but also simplifies the calculation.

It would be wise to alert or remind the recipient of the measurement result that any replacement
of a non-linear model by a linear model has been judged to be acceptable.

There are also options within the three methods considered for any specific evaluation problem,
namely, the GUM uncertainty framework (GUF) [2,4]], Monte Carlo (MC) [|3,/4,101]] and Bayesian
inference [|102,(103]].

For the GUE there is the choice of the law of propagation of uncertainty (LPU) based on first or
higher-order terms in the Taylor expansion of the measurement function. For MC, there is choice
in the number of MC trials, the random number generators (RNGs) used and the seeds chosen for
those generators. For MCMC methods used in Bayesian inference, there is choice in the number
of MCMC iterations, the number of iterations in the burn-in period, the RNGs and the seeds.

This primer gives advice on the items to be reported.

6.3.1 Univariate models
Preamble

A measurement model taking the form

Y :f(X17 . ..,XN),

relating a single output quantity Y to the input quantities X1, ...,Xy, is termed univariate and
explicit.

A measurement model taking the form
h(Y,Xl, .o ,XN) = 0,

where Y is a scalar output quantity, and h denotes a function of Y and the input quantities
Xq,...,Xy, is termed univariate and implicit.

The GUM uncertainty framework

For the GUM uncertainty framework [2]], report

1. A specification of the measurand;
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2. The measurement model, either analytically or in terms of (or making explicit reference
to) an algorithm or item of software (a data repository such as Zenodo, which can also
include accompanying metadata, is valuable for this purpose);

3. For implicit models only, the manner in which the output quantity is evaluated given esti-
mates of the input quantities, by stating or referring to a formula, algorithm or software;

4. For each input quantity, the estimate and associated standard uncertainty and (for a Type
A evaluation) the degrees of freedom;

5. When appropriate, for each pair of input quantities, the associated covariance or correlation
coefficient;

6. As an alternative to the previous two items, the covariance matrix associated with the set
of estimates of the input quantities;

7. For the output quantity, the estimate and associated standard uncertainty and, if appropri-
ate, the effective degrees of freedom and the expanded uncertainty or (the endpoints of)
a coverage interval or both for a stated coverage probability;

8. The assumed probability density function of the measurand used to obtain the coverage
factor and expanded uncertainty;

9. Whether the first- or higher-order variant of LPU has been used.
EXAMPLE Example of items 1 and 7 for the mass mg of a measurement standard

The measurand is the mass mg in vacuum of a nominally 100 g weight at a stipulated time.

A measurement result for mg is reported as ‘mg = 100.02147 g with associated standard uncertainty
0.35mg’.

The Monte Carlo method

For the Monte Carlo method [3[], report

1. Items 1, 2 and 3 in section [6.3.1}
2. The PDF for each input quantity;

3. As an alternative to 2 when input quantities are correlated, the joint PDF for those quanti-
ties;

4. For the output quantity, the estimate of that quantity and the associated standard uncer-
tainty and, if required, a coverage interval, stating whether it is probabilistically symmetric
or shortest or otherwise, and the coverage probability;

5. As a possible addition to the previous item, the PDF for the output quantity, which can be
used in subsequent evaluations that make use of input PDFs;

6. The number of MC trials taken, the RNG used and the RNG seeds selected (the latter two
are important if the results are to be reproduced exactly).
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EXAMPLE Example of items 1 (part), 2, 4 and 6 for the cross-sectional area A of a pipe
The measurand is the cross-sectional area A of a specific pipe at a stipulated time and location on the pipe.

The PDFs selected for the input quantities were normal distributions with means and standard deviations
equal to the estimates and associated standard uncertainties for those quantities.

A measurement result for A is an estimate of 7.92 x 10® mm? with an associated standard uncertainty of
0.16 x 10°> mm?.

The probabilistically symmetric coverage interval is [7.60 x 10°, 8.24 x 1031 mm? for 95 % coverage prob-
ability.

The number of Monte Carlo trials was 1 x 107, the random number generator was the Mersenne Twister
and the random number seed was 9790.

Bayesian inference

When the measurement result originates from Bayesian inference, the measurand is part of the
posterior PDE or can be computed from it. If the Bayesian model used contains multiple pa-
rameters, one of them can be the measurand. Alternatively, if the measurand is a function of
these model parameters, it can be computed from these parameters. If this posterior PDF has
a well-known form, such as the normal distribution or t distribution, it can be reported as such
with the parameter values obtained from the Bayesian evaluation. In many cases, the posterior
PDF does not have a simple well-known form, and then a similar reporting format can be chosen
as for the Monte Carlo method (see section|6.3.1)):

1. Items 1, 2 and 3 in section [6.3.1};
2. prior PDF for each input quantity;

3. As an alternative to 2 when input quantities are correlated, the joint prior PDF for those
quantities;

4. The likelihood function(s) used for the data;

5. For the output quantity, the estimate of that quantity and the associated standard uncer-
tainty and, if required, a coverage interval, stating whether it is probabilistically symmetric
or shortest or otherwise, and the coverage probability;

6. As a possible addition to the previous item, the posterior PDF for the output quantity, which
can be used in subsequent evaluations that make use of input PDFs;

7. The number of MCMC trials taken (chain length, length of the warm-up phase, number
of chains), the RNG used and the RNG seeds selected (the latter two are important if the
results are to be reproduced exactly).

8. The algorithm used to perform the MCMC.

6.3.2 Multivariate models
The GUM uncertainty framework in the multivariate case
For the GUM uncertainty framework in the multivariate case [[4]], report as for the GUM uncer-

tainty framework in the univariate case in section except that the measurand and measure-
ment model are to be interpreted in terms of their vector or multivariate counterparts. Moreovet,
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no specific advice is given here on the coverage region, the multivariate counterpart of a cover-
age interval for the output quantity for a stipulated coverage probability: the reader is invited
to consult [|4]] and the relevant examples therein. Item 8 has no documented counterpart in the
multivariate case.

EXAMPLE Simple bivariate measurement model [4} clause 9.2.3]

The bivariate measurand is Y = (¥}, Y,)" is defined by the measurement model Y; = X; +X;, Y, = X, +X;,
where the input quantities X;,X, and X5 are independent and have zero estimates and unit standard
deviations. Giving additional decimal places for purposes of comparison with those for the example in
section the estimate y = (y;,y,)' of the bivariate output quantity Y is y; = 0.000 and y, = 0.000,
the associated standard uncertainties are u(y;) = 1.414 and u(y,) = 1.414 and the associated covariance
is u(y;,y,) = 1.000, that is,

0.000 1.414 2.000 1.000
Y _[ 0.000 ] “(3’)_[ 1.414 ] Vy _[ 1.000 2.000 ] 6.1
In terms of a bivariate vector 1), a 95 % elliptical coverage region for Y can be reported as
=3V, (n—y) =k, (6.2)

yfs[p(;cifying its location, V, its shape, and k, = 2.45 its size, determined according to the provisions
of [4].

The Monte Carlo method in the multivariate case

For the Monte Carlo method in the multivariate case [4], report as for the Monte Carlo method (in
the univariate case) in section except that the measurand and measurement model are to
be interpreted in terms of their vector or multivariate counterparts. Moreover, for the coverage
region, state whether the region is hyper-ellipsoidal, hyper-rectangular, of smallest volume or
otherwise.

EXAMPLE Simple bivariate measurement model [4} clause 9.2.3 ] once more

The bivariate measurand, model and estimates of the input quantities and their associated standard uncer-
tainties are as for the example in section[6.3.2where X; and X, are characterized by normal distributions
and X5 by a rectangular distribution so they all have estimates of zero and standard deviations of unity.
The output information regarding estimate and uncertainties is the same as that in expressions (6.1)).

A 95 % ellipsoidal coverage region for Y is
Ty—1 _ 12 _
m=y) Vv, (n-y)=k,,  k,=215 (6.3)

somewhat different from that in the example in section |6.3.1} which assumes underlying normality.

Bayesian inference in the multivariate case

Similarly to the extension of the reporting in the multivariate case of the Monte Carlo method (see
section [6.3.2)), the reporting from Bayesian inference in the univariate case (see section [6.3.1)
can be extended. Rather than the posterior PDF for the measurand, now the joint posterior of the
measurand is provided, and as summary data a vector with the estimates, a covariance matrix,
and where relevant a coverage region, for which the same deliberations apply as outlined in the
previous section for the Monte Carlo method.
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6.3.3 Rounding and number of digits
Absolute uncertainty

The number of digits reported in the measurement results is often dictated by requirements of the
application. If not stipulated, in the univariate case it is recommended that two significant digits
be reported in a standard uncertainty or an expanded uncertainty, and the corresponding estimate
or the endpoints of a coverage interval be terminated at the position of the least significant
decimal digit of the reported uncertainty. If a comparison is being made of methods for providing
measurement results, additional digits may be reported when considered appropriate.

NOTE If the uncertainty is rounded and stated to two significant decimal digits, the magnitude of the
largest possible relative deviation from the unrounded value is 5 %.

The above advice does not apply to the multivariate case where correlation is almost invariably present in
the measurement results. See section[6.3.4]

EXAMPLE 1 For a mass measurement, the estimate is 10.004 53 g and the associated standard uncertainty
is 0.00074 g (each to five decimal places).

EXAMPLE 2 For a distance measurement, the estimate is 126.3 x 10°km and the associated standard
uncertainty is 2.4 x 10> km (each to one decimal place).

If the measurement result is to be used in a subsequent calculation, as many digits as required for that
calculation should be reported. For information passed electronically, the computer-held numbers should
be used with no rounding.

The normal rules of rounding according to ISO 80000-1:2009 [104]] should be applied, with rounding
to the nearest even last digit in cases of ambiguity, unless there are valid technical reasons for doing
otherwise.

EXAMPLE The two stages of calibration

Consider the two stages of calibration [|89, clause 2.39]. The first stage establishes a relation between
(stimulus) values provided by measurement standards and corresponding instrument response values.
The second stage uses this relation to obtain stimulus values from further instrument response values
(inverse evaluation). The relation also allows a stimulus value to be obtained given a further response
value (direct evaluation). When the two stages are under the control of a single party, there is little
problem in moving from the first stage to the second if all calculations are carried out using a single item
of software or results from the first stage are passed electronically to full machine precision to the second
stage. If there are departures from this way of working or the stages are under the control of two parties,
especially if a calibration certificate contains results to limited numerical precision, there may be issues,
for which the reader is directed to section (particularly the second example).

Relative uncertainty

In many areas of measurement, it is customary to communicate measurement uncertainty in rel-
ative terms, such as a percentage or parts-per-million of the reported estimate of the measurand.
This practice is widely applied in analytical chemistry and the life sciences, but also in physical
calibration (pressure, for example), the use of relative rather than absolute uncertainty is com-
mon practice. The rationale for preferring relative uncertainty is that it is a better representation
of the measurement uncertainty over a wide(r) interval of values of the measurand. In many
calibration and measurement capabilities, as in many instrument specifications, a combination
of absolute and relative uncertainty is used to communicate the measurement uncertainty or
specification.
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Especially when a relative expanded uncertainty has been agreed with the recipient of the mea-
surement result, using an absolute uncertainty with the commonly applied rounding can lead to
issues. It has been proposed to carry an extra digit in the absolute uncertainty [[105]] over what is
commonly recommended (see section [6.3.3) to express properly the measurement uncertainty.

6.3.4 Rounding correlation and covariance

Rather than reporting a covariance matrix associated with an estimate of the measurand, we rec-
ommend instead, both for human interpretation and analysis, the use of the correlation matrix
R, associated with the vector estimate y together with the vector u(y) of standard uncertain-
ties u(y;). The covariance matrix V, associated with y is related to R,, by

}’R}'D}"

V,=D
where D, is the diagonal matrix of dimension m x m with diagonal elements u(y,),...,u(yn)-
Element (i, j) of V,, is the correlation coefficient associated with the estimates y; and y;:

u()’ia)’j) = r(}’i:}’j)u(}’i)u(}’j)-

EXAMPLE Natural gas analysis

ISO/TS 28038 [|106, clause 9.4.2] is concerned with constructing and using polynomial calibration curves
with the polynomial represented in Chebyshev-series form [[107]]. One of the examples considers natural
gas data relating amount fractions and corresponding instrument responses. Polynomial models of several
degrees were considered to represent this data. One of these polynomials was of degree 2 (quadratic) for
which the covariance matrix associated with the computed Chebyshev coefficients was obtained:

0.61 0.72 0.53
V,=10"x 1.08 0.49 |,
sym. 0.74

which can be compared with the representation as a standard-uncertainty vector and the correlation ma-
trix:

0.0008 1 0.89 0.79
u(y)=1 0.0010 |, R, = 1 0.54
0.0009 sym. 1

The second representation is arguably easier to interpret. For instance, the correlation coefficient (0.89)
between the first and second Chebyshev coefficients is appreciable (compared with unity). It is difficult to
make this interpretation of the first representation (0.72 compared with the other elements of 1 x 106Vy).

In the presence of non-zero covariances or correlation coefficients, reporting needs very careful
consideration, especially if some of the input quantities are output quantities from a previous
evaluation or are to be used subsequently. Since a covariance corresponding to a correlation co-
efficient having magnitude close to unity might cause numerical difficulties in subsequent eval-
uations, such as related to least squares’ applications, the number of digits to be held should
depend on that magnitude. Considering quantities X; and X,, unless required otherwise for par-
ticular technical reasons, it is recommended that the correlation coefficient r associated with X
and X, is reported such that 1 — |r| has at least two significant decimal digits. The standard un-
certainties u(x;) and u(x,) and the covariance u(xy, x,) should be reported to the same number
of decimal places. In any cases of doubt, all computer-held digits should be reported.
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NOTE The above paragraph includes a rule of thumb that is not foolproof. The number of digits to be
reported for a correlation coefficient or covariance depends on the application that uses such information.
A full analysis of the number of digits to be reported needs details of the application and may involve ad-
vanced numerical computations such as involving the eigenvalues of the correlation matrix. The following
information is based on that given in [|4, clause 3.2.1]:

If the correlation matrix is close to being singular, additional decimal digits need to be re-
tained in order to avoid numerical difficulties when using the correlation matrix as input
to an uncertainty evaluation. The number of decimal digits to be retained depends on the
nature of the subsequent calculation, but as a guide can be taken as the number of decimal
digits needed to represent the smallest eigenvalue of the correlation matrix with two signifi-
cant decimal digits. For a correlation matrix of dimension 2 x 2, the eigenvalues are 1+ |r|,
the smaller being 1 — |r|, where r is the off-diagonal element of the matrix. If a correlation
matrix is known to be singular prior to rounding, rounding towards zero reduces the risk that
the rounded matrix is not positive semi-definite.

EXAMPLE Highly correlated quantities

For a particular evaluation problem, the quantities X; and X,, corresponding to output quantities in a
previous evaluation, are very highly correlated. To seven significant decimal digits, the standard uncer-
tainties associated with their best estimates are u(x;) = 0.1527482, u(x,) = 0.6035364 and the asso-
ciated covariance is u(x;,x,) =—0.3034072, all in appropriate units. This covariance corresponds to a
correlation coefficient r of —0.999 277 4. The value of 1 —|r| is 0.000 722 6, which, when rounded to two
significant decimal digits, is 0.000 72. Accordingly, these results should be reported as, u(x;) = 0.15275,
u(x,) = 0.603 54, u(x;,x;) =—0.30341 and r = —0.999 28.

A covariance should be reported to the same number of significant digits as used when reporting
a correlation coefficient.

Regarding compatibility with standards, ISO/IEC 17025 [|7, clause 7.8.4.1] states

‘...calibration certificates shall include ...the measurement uncertainty of the mea-
surement result presented in the same unit as that of the measurand or in a term
relative to the measurand (e.g. percent) ...’

Thus, to conform with ISO/IEC 17025 the measurement uncertainty must be reported. The
important aspect of the quoted clause is the word ‘include’: the possibility of providing further
information (such as a probability density function (PDF)) is not excluded.

6.4 Use of KIgX and Microsoft Word for reporting uncertainty

6.4.1 General

A value of a physical quantity and its associated uncertainty should each be expressed as the
product of a number and a unit. The SI brochure [[108] states that there should be a space
between the number part and the unit part. This guidance still leaves several options for type-
setting. Here we recommend the use of a thin space (en-space — the width of a lower case ‘n’)
for this purpose; thus ‘10 m’ rather than ‘10 m’. We recommend ways of reporting estimates of
quantities and associated uncertainties using the systems KIEX and Microsoft Word.
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6.4.2 BIEX

KIEX package siunitx is invaluable for typesetting quantities, for which the manual is regularly
updated:
http://anorien.csc.warwick.ac.uk/mirrors/CTAN/macros/latex/contrib/siunitx/
siunitx.pdfl

For reporting measured values and their units, siunitx inserts a thin space between a number
and the unit:

\SI{997}{\kg\per\m~3} 997 kg/m?>
\SI{997}{\kg\per\cubic\m} 997kgm>
\SI{95}{\percent} 95 %

Package siunitx has many other valuable facilities for working with physical quantities, such
as an excellent capability for working with tabular material such as uncertainty budgets.

6.4.3 Microsoft Word

There does not appear to be a Microsoft Word template that provides facilities that are compa-
rable to those of siunitx. However, to create 95 % (with a thin space), for example, type in
Microsoft Word:

95>space>2009>ALT+X>%

Then delete the left (the wider) of the two space characters.

Alternatively, the pre-defined special characters for an en and em space can be assigned a shortcut
key in the ‘Symbols’ dialog box to make these better accessible when typing. Finally, holding down
the Alt key as 8194 (for an en space) or 8195 (for an em space) is typed produces the special
white spaces.

Examples of evaluating measurement uncertainty First edition


http://anorien.csc.warwick.ac.uk/mirrors/CTAN/macros/latex/contrib/siunitx/siunitx.pdf
http://anorien.csc.warwick.ac.uk/mirrors/CTAN/macros/latex/contrib/siunitx/siunitx.pdf

Part E1

Calibration, measurement and testing

55






Example E1.1

Two-point and multipoint calibration

M.G. Cox, J. Greenwood, A. Bosnjakovi¢, V. Karahodzi¢

E1.1.1 Summary

A generic treatment of two-point and multi-point interpolation of calibration data is given with
uncertainties associated with the data propagated using the law of propagation of uncertainty
and its generalization to vector measurands. The approach is applied to the measurement of
hydrogen ion activity (pH). Such measurement is one of the most common in chemistry, although
correlations associated with the input quantities in the measurement model are rarely taken into
account. The treatment given follows common practice, which tends to give an optimistically
small evaluation of the uncertainty associated with an estimated pH value. A way of taking
correlation into account in one typical instance is given but its implementation is problematical
because of the difficulty in quantifying the correlation.

E1.1.2 Introduction of the application

E1.1.2.1 General

A generic treatment of two-point and multi-point interpolation of calibration data is first given.
We stay consistent with the VIM’s concept of calibration [|89, definition 2.39] as constituting
two stages. Here the first stage involves fitting to measured data a function that describes the
relationship of a response (dependent) variable y to a stimulus (independent) variable x. The
second stage involves using this relationship to determine the value of one variable given a value
of the other. Uncertainties in both the stimulus and response variables are handled in both stages
and propagated using the law of propagation of uncertainty (LPU) in JCGM 100:2008 (GUM) [2]
and its generalization to vector measurands in GUM Supplement 2 (GUM-S2) [4]].

Two scenarios are considered. One, a single party accesses the calibration data set and provides
the required interpolated value. In doing so, the party may or may not determine the calibra-
tion parameters explicitly. Two, one party has access to the calibration data set, delivering the
calibration parameters to a second party, which in turn provides the interpolated value.

Although the measurement models involved are simple, they are used to illustrate a number of
aspects that can be carried over to examples in other areas.
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The approach is applied to the measurement of hydrogen ion activity (pH) in which up to three
two-point interpolations are required and uncertainties are tracked through the calculation.

E1.1.2.2 Specific: pH of a test solution using two-point calibration

pH, the negative logarithm to base 10 of the activity of hydrogen ion in a solution is probably
the most measured quantity in chemistry [[109]. The electric potential of a suitable cell, for
example, a glass electrode and reference electrode, is proportional to pH and forms the basis of
pH measurement.

In 2002 IUPAC, the International Union for Pure and Applied Chemistry, issued a recommen-
dation for revision of the pH scale based on the concept of a primary reference measurement
procedure for pH [|74]]. The use of an electrochemical (Harned) cell fulfils the criteria for a
primary reference measurement procedure so that a pH value thus obtained is traceable to the
International System of Units, here the SI measurement unit 1 (one). A solution, the pH of which
is measured by such a cell at the highest metrological level, may be classified as a primary mea-
surement standard and can be used to assign pH values to other solutions. These solutions are
sold as certified reference materials to calibrate pH meters for routine use.

There are several approaches to pH measurement involving the use of 1-point, 2-point and multi-
point calibration, least-squares regression, and with or without temperature correction. Here we
use the 2-point calibration approach, with and without temperature correction.

The methods in the generic parts of this document apply (a) when the temperature of the test
solution matches that of the standard (reference) solutions and (b) when this is not the case.

E1.1.3 Specification of the measurand(s)

In this specific example, the measurand is the pH of a solution being calibrated. More generally,
the measurand is the interpolated independent or dependent variable obtained from a relation-
ship between those variables derived from data representing values of the variables. Intermediate
measurands, when required, are the parameters describing the relationship.

E1.1.4 Measurement model

E1.1.4.1 General

There are two stages involved in calibration [|89]]: (i) determine a calibration curve from calibra-
tion data and (ii) use that calibration curve. Because of the relative simplicity of two-point and
multi-point interpolation as considered here, it may be preferable when circumstances permit to
combine the stages into a single-stage model. Such a model avoids having to deal with interme-
diate correlation associated with the calibration curve parameters that are estimated in the first
stage and used in the second. Operating in two stages corresponds to the use of a multi-stage
model [|5, clause 8.4] and is necessary when the construction and use of the calibration model
are carried out by different parties.
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Generic approach to two-point calibration

Two calibration points (x1, y;) and (x5, y5) are given that bracket x,, an x-value for which y,,
the corresponding y-value, is required under the assumption that the y-value lies on the straight
line joining the calibration points (see figure [E1.1.1).

1

Figure E1.1.1: Two-point calibration

By similar triangles, with 6x = x, —x; and dy =y, — ¥4,

— — d
Y=r1_Yoa— 1 _ _.V, (E1.1.1)
X—Xx1 Xp—Xx; Ox

A common representation of a straight-line calibration function, which is used here, is
y =a+bx, (E1.1.2)

where a is the intercept on the y-axis and b is the gradient [|77]].

NOTE The form (E1.1.2)) is used in the straight-line calibration standard ISO/TS 28037 [|77]] and will be
familiar to many end-users.

The process

The process defining the measurement model has one or two stages (section|E1.1.2.1)).

Single-stage model. A single party has access to (x,y;) and (x5, y5), and also x,, and provides
Yo, the y-value on the line corresponding to x, (figure [E1.1.1). In doing so, the party may or
may not determine a and b explicitly. The measurement model is specified by the description of
the provision of y,.

Two-stage model. One party has access to (x;, y;) and (x5, ¥5), and provides a and b (intermedi-
ate measurands) to the second party using the straightforwardly verified

p=22"0 (E1.1.3)
Xo — X1
a =y1_bxl. (E11.4)
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The second party (possibly identical to the first party) has access to a and b, and also x;, and
provides y, using the expression

Yo = a+ bx. (E1.1.5)

The measurement model is again described by the process to provide y.

NOTE When x; and x, are far from the origin, that is, |x, — x;| < |x;|, an alternative form may be
numerically more stable. One such form is given by working with a transformed x-variable

X =x—x.

Using (E1.1.2) and (E1.1.4) the calibration function can be expressed as

y =y1+bXx, (E1.1.6)
which is evaluated at the value x, of the independent variable. The resulting expression

Yo—Y
J’0=}’1+b(xo_x1)=}’1+x2 xl(xo_xﬂ: (E1.1.7)
1

2

and formula (E1.1.3) constitute the measurement model with y, as the measurand. It is accepted that
such a transformation is not always appropriate.

The form of interpolation considered here is forward interpolation. Inverse interpolation, when
the stimulus value x corresponding to a response value y, is required, can also be carried out
(for treatments see [|77,{110]]) but is not required here. The roles of x and y can be interchanged
when permitted by the context.

Generic approach to multi-point calibration

Multi-point calibration is the treatment in sections above extended to an arbitrary number of
points. In these sections, a straight-line segment joining two of the calibration points serves as
the calibration function. When there are m calibration points (m > 2), with strictly increasing
stimulus values, the points are joined pairwise by successive straight-line segments, the overall
construction being a piecewise-linear function or first-degree spline [|[111]], acting as the calibra-
tion function. For each interval between pairs of successive points, the treatment of sections
above can be applied directly to the appropriate segment of the piecewise-linear function.

NOTE When m = 2 the calibration function is a single straight-line segment so it is naturally monotonic,

a necessary condition. For m > 2, the ordered points may not form a monotonic sequence, a situation not
considered here [[110]].

Alternatively, straight-line fitting by least squares can be used taking reported uncertainties asso-
ciated with the calibration data into consideration [77]]. Polynomial interpolation or polynomial
fitting can also be used [[110]].

Metrological extension

The measurement model implied by two-point calibration is the algorithm to provide y, given x.
The data will generally have associated uncertainties arising from a Type A evaluation of uncer-
tainty [2, clause 4.2] especially following an analysis of repeated observations. Often there will
also be uncertainties obtained from a Type B evaluation and associated covariances arising from
common measurement effects [|2, clause 4.3]. Such covariances should also be handled to avoid
producing invalid statements of uncertainty associated with predicted y-values.

The calibration data considered here are assumed to have independent errors.
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E1.1.4.2 pH measured at a specific temperature

An approach to providing the pH of a test solution [[112] is a correction approach in which pHy,
the pH of a test solution X, is given by using a cell twice to measure potential Ex in X and potential
Eg in a standard solution S:

Ex —Eg

pHy = pHs + =——=. (E1.1.8)

In expression (E1.1.8), pHg is the pH of S, and

RTIn10
k=——,
F
where R is the gas constant, T the temperature in K and F the Faraday constant.
Two other approaches are bracketing methods, which are generally more accurate and used here.

Use is made of the reference material certificates for the standard solutions, which give pH values
and associated standard uncertainties at stipulated temperatures.

Measurement is made at temperature Ty, one of these stipulated temperatures, and a bracketing
procedure adopted [[113]]. The potential Ex of the test solution X is measured. Likewise, the
potentials Eg and Eg, are measured of two cells with standard solutions S; and S, such that
the Eg - and Eg -values bracket Ex and are as near as possible to it. The pH of S; and S, at

temperature Ty, namely, pHg‘, pHST:, are given on certificates such as issued by NIST [|114,/115]].
By assuming linearity between pH and E, that is, linear interpolation is valid between the points
(Es,, pHg‘) and (Eg,, pHg‘), the pH value pHy corresponding to potential Ey is obtained.

The output quantity, the measurand, generically y,, is pHy, the pH of the test solution.

. s T, T, .
The 1ngut quantities in the measurement model gre Eg, Eg,, pHSf, pHS;‘ and Ex, corresponding
respectively to xq, X5, Y1, Yo and X, in the generic approach.

In an extended model [|5, clause 9], account is taken of further influences. In this case main
effects are pH instrument calibration, instrument resolution and interpolated pH. The uncertain-
ties associated with the first two effects are provided by the instrument manual and inspection
of the output display. Incorporating correction terms to account for these effects,

EX,corr = Ex + 0Eex + OEcq,
ESl,corr =Eg + 6EresSl + 6Ecal: (E1.1.9)
ESZ,corr = ESZ + 6EresSZ + 6Ecal-

Interpolated pH and correction quantities in expressions (E1.1.9) relating to cell potential are
assumed independent.

Section [E1.1.7.1| contains a discussion of the validation of results.

E1.1.4.3 pH measurement accounting for temperature

The temperature Tx of the test solution is measured and the certificate of one of the standard so-
lutions is used to identify the closest bracketing temperatures T; and T,. Potential measurement
gives Eg , Eg,, Ex as before.

Examples of evaluating measurement uncertainty First edition



Example E1.1. Two-point and multipoint calibration 62

The pH values pHT1 and pHT1 for standard solutions S; and S, at temperature T; are obtained
S1 Sy
from the certificate. Linear interpolation is used between the points (Esl,PHsTi) and (ESZ,pHLZ;)

to give the pH value pH>T(1 at temperature T, corresponding to potential Ex.

This step is repeated for temperature T,. The certificate is used to give the pH values pHgf and
png for standard solutions S; and S, at temperature T,. Linear interpolation is used between
the points (Eg,, pHgf) and (Eg, png) to give the pH value pH)I;2 at temperature T, corresponding
to potential Ex.

Finally, linear interpolation is applied to the points (Eg 1,pH)El) and (ESZ,pH?) to give the pH
value pH)EX at temperature Ty corresponding to potential Ex.

The generic treatment in section [E1.1.4.1]is thus applied three times to implement these three
stages of two-point interpolation.
The measurement model is given by the above algorithmic description where the input quantities

in the model are Ex, Eg , Eg,, Tx, pHgll, pHgf, pH;{;, png.

E1.1.5 Uncertainty propagation

E1.1.5.1 Assumption

Uncertainty propagation in this section is based on the assumption that the input quantities —
the measured potentials and the pH values for the standard solutions — are independent. This
assumption is consistent with IUPAC recommendations for pH measurement [74]]. There proce-
dures are given for accounting for input standard uncertainties based on the variant of the law
of propagation of uncertainty in [[2 section 5.1]. That variant does not account for correlations
among the input quantities.

In practice, input quantities are likely to be correlated and account should be taken of that fact.
See the important discussion in section[E1.1.7.2

E1.1.5.2 General two-stage model

The notation established here for the two-stage model is also used in the single-stage model.

First stage. The inputs are the calibration data x;, y;, x5 and y, and their associated standard
uncertainties. The outputs are the calibration parameters a and b and their associated covariance
matrix Vig 3. The model is bivariate (two output quantities):

— 5
p=22"N_% iy b (E1.1.10)
XZ—X]_ 6.)(

For the uncertainty propagation, [4, formula (3)] is applied to obtain the output covariance
matrix

Uz(a) u(a,b) 6)) T
Vigp = [ u(a,b) u2(b) =CV;,C . (E1.1.11)
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In formula (E1.1.11), u(a, b) denotes the covariance between a and b, V;, denotes the input

covariance matrix, the 4 x 4 diagonal matrix with diagonal entries u?(x;), u%(y;), u%(x,) and
2

u“(y2), and

1| — —
C‘”=a[ fl’)xz fi b_xb1 fl} (E1.1.12)

is the sensitivity matrix containing the first partial derivatives of x;, y1, x5 and y, with respect
to a and b.

Second stage. The inputs are the outputs from the first stage together with x; and u(x).

The model is
Yo=a+ bxg.

Applying uncertainty propagation [4, formula (3)] once more, the output standard uncertainty
u(yyp) is given by

.
u(y0) = €AV 1€ + b (xy), (E1.1.13)

where € is the 1 x 2 sensitivity matrix

cP=[1 x ] (E1.1.14)

E1.1.5.3 General single-stage model

By combining the two stages above, the substitution of formula (E1.1.11)) into expression (E1.1.13])
yields
T T
u(yo) = €PcVv, e ¢@ + b2u(x,).
Setting

Xo— X1
ox 7

the use of expressions (E1.1.12)) and (EI.1.14) gives

q= (E1.1.15)

C(Z)C(l)zi[ —b(xy—x9) xy3—x9 —b(xg—x1) Xx9—x; ]
=[ -b(1-q) 1—q —bg q ]
Hence, using
UZ(Xl)
u*(y1)

Vin= () ’

UZ(}’z)
CPcWyy = =bQ—u*(x;)) (A—qu*(y1) —bqu*(xy) qui(ys) |,
and so

c@cWy. C(l)T _ i [ —b(1 —Q)UZ(Xl)(—bxz) +(1 —Q)Uz(}’l)xz - bquz(xz)bxl —quz(y2)x1 ]
n - y

5x —b%(1 — @Qu?(x1) — (1 — Q)u*(y1) + b2qu?(xy) + qu3(y)
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Therefore,

Ccv, ¢! = b (-l ey 1 —bRa (e —ail (o),
— b%xo(1 —Qu?(x1) — xo(1 — @)u*(y1) + b?qxou?(x2) + gxou(y,)]
= % [5*(1 — uP (1) (g — x0) + (1 — QuP(y1) (32 — Xo) + b?qu?(x2)(xg — x1) + qu(¥2) (g — x1) |
Thus expression can be written as
12(y) = CPcWy, ¢ c® 1 p2u2(x)
= b*(1—q)*u?(x1) + (1= @*u?(y1) + b1 (x3) + 1 (y2) + bPuP(xo),
that is,
u?(yo) = b*(1—q)*u®(x1) + (1 = )*u®(y1) + b?q*u(x2) + ¢*u® (o) + b?u?(xo). (E1.1.16)
The result can also be confirmed from first principles.

E1.1.5.4 pH estimation at a specific temperature and associated uncertainty eval-
uation
Values of potential in the test and standard solutions S; and S, were
Ex=-1.875mV, Eg; =6.15mV,  Eg,=—26.35mV,

each of which was the average of 4 repeated observations. pH values at 25°C for S; and S,
from [[114] are

25°C _ 25°C _
pHZC = 6.8640,  pHZC=7.4157.
From formule (E1.1.3) and (E1.1.7) the resulting estimate of pHy = 7.0002.

Associated standard uncertainties were

u(Ex) =0.0250mV,  u(Eg;)=0.0289mV,  u(Esy)=0.0289mV,
u(pHz, ©)=0.0051,  u(pHg; ©) = 0.0051.

The above standard uncertainties associated with standard pH solutions are given in [[114]].

The propagation of uncertainty carried out in accordance with expressions (E1.1.15) to (E1.1.16)
yields u(pHy) = 0.0041.

These results relate to the basic measurement model for pH. The extended model would work
with the corrected quantities in (E1.1.9) rather than the uncorrected quantities. The estimates
of all correction terms in the extended model are taken as zero. 0F, appears in three of expres-
sions (EI.1.9), so seemingly inducing correlation. However, this quantity is eliminated when the
corrected quantities are used rather than the original. This effect can be seen mathematically by
substituting Ex corr, Esi corr @Nd Egp oy as the ‘new’ xg, x; and x,, respectively, from expressions

(E1.1.9) into expressions (E1.1.3) and (E1.1.7).

The instrument display gave results in volts with 3 significant decimal places. Assume a rounding
error in the last digit, that is, in the interval £0.0005V. Characterizing resolution by a rectangu-
lar distribution over this interval, the consequent resolution standard uncertainty E,., applying
to all potential readings is 0.0005V/+/3 = 0.00029V. This standard uncertainty is some one
hundredth of the above potential standard uncertainties and so is negligible.

The extended model would deliver the same estimate and standard uncertainty as the basic model
to the number of digits reported.
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E1.1.5.5 pH estimation accounting for temperature and associated uncertainty
evaluation

The measured temperature of the test solution was Ty = 23.7°C. The pH values of the measure-
ment standards are given at a temperature interval of 5°C. The bracketing pair T; = 25°C and
T, = 20°C is therefore appropriate.

Potential measurement gives
Ex=-1.875mV, Eg;=6.15mV, Eg,=—26.35mV,

each of which was the average of 4 repeated observations. pH values at 25 °C and 20°C for S;
and S, from [114] are

pHZC=6.8640,  pH2 ©=7.4157, pH2©=6.8796,  pHZ)©=7.4323.
Linear interpolation between the points

(Esl,pHQ) = (6.15mV, 6.8640) and (Esz,pHgi) = (—26.35mV, 7.4157)

gives the pH value pH)T(1 = 6.8681 at temperature T; of 23.7°C corresponding to potential Ex =
—1.875mV.

Likewise, linear interpolation between

(Es,,pHg*) = (6.15mV, 6.8640) and (Es,, pHg?) = (—26.35mV,7.4323)

gives the pH value pH)T(2 = 7.4200 at temperature T, of 23.7°C corresponding to potential Ex =
—26.35mV.

Finally, linear interpolation between the points (Eg , pH)T(1) and (Eg,, pH)?) is used to give the pH
value pH)E2 at temperature pH>T<X corresponding to potential Ex.

Associated standard uncertainties were

u(Ex) =0.0250mV,  u(Eg;)=0.0289mV,  u(Esy)=0.0289mV,

u(pHg!) =0.0051,  u(pHG)=0.0051,  u(pHg:)=0.0051,  u(pHg3)= 0.0051.

The above standard uncertainties associated with standard pH solutions are given in [[114]].
The application of the method of section |E1.1.4.3|gives pHy = 7.0109 and u(pHy) = 0.0041.
E1.1.6 Reporting the result

The estimate y, of the measurand and the associated standard uncertainty u(y,) are directly
reported in the conventional manner according to the GUM [12]].
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E1.1.7 Interpretation of results

E1.1.7.1 Validation of results

A check on the accuracy of linear interpolation was made for the example in sub-section[E1.1.4.3]
NIST certificate [[114]] gives pH values for the standard solutions considered at temperature val-
ues from 5 °C to 50 °C in steps of 5°C. Cubic interpolation based in [[110]] was carried out using
temperature values 15 °C, 20°C, 25°C and 30°C (two values on either side of 23.7°C), and the
corresponding pH values for S; given in the certificate. The interpolated value at 23.7 °C was
6.8677 compared with 6.8681 from linear interpolation. The magnitude of the difference be-
tween these values is almost a factor of ten smaller than the standard uncertainty associated
with the obtained pH value. A comparable result was obtained for S, and for the other linear
interpolations carried out. Thus, linear interpolation is adequate in this example.

In a study by Damasco et al. [[116]] it was reported that a Monte Carlo method applied to pri-
mary pH measurement gave similar results to the ‘GUM approach’ [2]]. The work of Wiora and
Wiora [[117]] came to the same conclusion. As a simple trial, the Monte Carlo method of GUM
Supplement 1 [3]] was applied to the example in section The input quantities were
modelled by normal distributions with means equal to the input estimates and standard devia-
tions equal to the associated standard uncertainties. For 10° Monte Carlo trials, exactly the same
result was delivered as in that section to the number of decimal places stated.

The standard uncertainties associated with the interpolated value pHy are scarcely influenced by
the uncertainties associated with the pH values of the standard solutions. As an instance, if the
latter standard uncertainties are replaced by zero in the example in sub-section|[E1.1.5.4] u(pHy)
becomes 0.0040 (originally 0.0041), implying that the further repeated observations of the three
potentials would do much to reduce u(pHy), assuming the repeated observations are genuinely
independent.

E1.1.7.2 Correlation issues

It must be emphasized that the treatment given regards all input quantities as independent.
Independence is a common assumption in general in pH uncertainty evaluation. This assumption
is often made implicitly (see [[118-121]], for instance), but has adverse consequences in that
evaluated pH uncertainties can be optimistically small. To obtain more valid results covariance
effects need to be quantified and incorporated.

Laboratories that follow IUPAC recommendations [|74]] will not take correlation into consideration
and so might be reporting optimistically small measurement uncertainties. There seems to be
little relevant literature available on pH measurement on obtaining correlations associated with
input quantities. If such correlations were available, they could be accounted for by applying the
provisions in the GUM [2, section 5.2].

It is noted in passing that correlation issues are discussed in [|[122[], but they relate to correlations
induced by the choice of parametrization rather than being associated with input quantities.

In terms of pH certificates used here, it would appear that covariance between pH at different tem-
peratures, and probably between pH values for different materials, can be deduced. The certifi-
cates give two uncertainties, one (as in sections|[E1.1.5.4/and [E1.1.5.5) for an SI-traceable value
and one, much smaller, that omits the uncertainty associated with the Bates-Guggenheim conven-
tion [75]. The Bates-Guggenheim conventional uncertainty, as given on the certificates, could
hence reasonably be taken as at least an approximate covariance when using the SI-traceable
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values. Doing so gives the correlation very close to unity, and indeed that (or any respectably
high value) could be suggested as a generally conservative treatment (going somewhat against
GUM conventional wisdom, which advises realism).

To indicate the effect of ignoring correlation, we carry out an exercise in which full correlation is
present between the pH values for the standards in section Assume that all quantities
are independent apart from these two pH values, which are accorded a correlation of unity.
For this case of perfect correlation [|[123-125]], the standard uncertainties associated with these
quantities must be identical, which indeed they are, being equal to 0.0051. In terms of the
generic notation of section the input covariance matrix V;, is no longer diagonal but
has covariance u?(y;) = u?(y,) in off-diagonal positions (2,4) and (4, 2):

Uz(xl) ) )
_ u“(y1) u“(y1)
Vi, = uz(xz) . (E1.1.17)

u2()’1) Uz()’l)

Noting that u?(y;) = u?(y,) = u(y;,y,) in the fully correlated case, where u(y;, y,) is the co-
variance associated with y; and y,, by applying a similar treatment to that in section [E1.1.5.3
but using the covariance matrix (E1.1.17) gives

u*(yo) = b*(1—q)*u?(x1)+(1—q)*u?(y1)+29(1—q)u(y1, y2)+ b q*u® (x0)+q*u?(y2) + b2u*(xo).
(E1.1.18)

The only difference is that the terms

(1-*u*(y1) + *u?(y2) = [(1 —q)* + ¢* T’ (y1) (E1.1.19)
in the uncorrelated treatment [expression (E1.1.16])] are replaced by

(1—@)*u®(y1) +29(1 —Qu(y1, y2) + ¢*u*(y2) = [(1—q)* +29(1—q) + ¢*Tu*(y;) (E1.1.20)

in the fully correlated case [expression (EI.1.18) ]. Since expression (E1.1.20) simplifies (exactly)
to u?(y,), expression (E1.1.18) becomes

u?(yo) = b%(1 — @)%t (x1) + 1?(y1) + b2q*u?(x5) + b*u?(xg) (E1.1.21)

in the fully correlated case.

In the application of expression to the data in section the standard uncer-
tainty associated with pHy = 7.0109 becomes u(pHy) = 0.0051 (compared with 0.0041 when
correlation is disregarded). Unsurprisingly, this value of u(pHy) is the same as the (identical)
values of the ‘input’ standard uncertainties u(pHgi’oc) and u(pHggoc). Thus there is no reduction
in uncertainty in the fully correlated case.

It is observed that the standard uncertainties u(pHgioc) and u(pHggoc) make comparatively large
contributions compared with those for the measured potential values. The five standard un-
certainty contributions [the square roots of the successive terms on the right side of expression

(E1.1.16)] in the case where correlation is ignored are
—0.0004, 0.0001, 0.0038, 0.0013, —0.0004

to four decimal places. The values are to be compared with the corresponding four values from
expression (E1.1.21)), namely,

—0.0004, 0.0001, 0.0051, —0.0004,
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in the correlated case, confirming that perfectly correlated standard uncertainty components are
combined additively (see [2, clause 5.2.2, note 1]):

0.0038 +0.0013 = 0.0051.

The situation is compounded in section|E1.1.5.5|where four (rather than two) pH values and two
temperature values are involved.

Assuming independence of the values of the pH standards in either case is not a valid assumption.
A treatment such as given in [[123, section 4.1] is suggested, that is, to work with a common
correlation coefficient p associated with the input pH values. The basic change would be that
the off-diagonal terms of V;, in formula would become pu?(y;). (The case p = 0
yields the uncorrelated case and p = 1 the case of perfect correlation.) A value for p might be
obtained on technical grounds by examining uncertainty budgets (to see the relative contribution
from the Bates-Guggenheim convention, for instance) or some other means such as employing
expert judgment.

A further, chemical, issue is that the NIST standards are not solutions; they are solids that have
to be weighed, mixed and dissolved fully in high purity water. Buffer solutions are not particu-
larly sensitive to minor dilution problems, but the preparation just mentioned will add further
variation. Atmospheric CO,, for example, can shift measured pH values, especially in a neutral
pH test sample (pH = 7), unless that is also buffered or air excluded. Although a measurement
laboratory would exercise care in measuring secondary solutions, the analysis given here omits
potentially important handling effects.
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Straight-line calibration in
errors-in-variables models

S. Martens, K. Klauenberg, C. Elster

E1.2.1 Summary

In calibration practice, regression problems often include uncertainties in both the dependent
and independent variables, which are also called errors-in-variables models. The parameters of
such regression models can be estimated with the help of weighted total least squares methods.
The uncertainty for these regression parameters can be determined by the GUM approaches of
propagating uncertainties [|2,4]] or propagating distributions [|3,4]]. Alternatively Bayesian infer-
ence can be applied.

Comparing these three approaches for straight-line calibration in errors-in-variables models re-
sulted in the examples

— “Calibration of a sonic nozzle as an example for quantifying all uncertainties involved in
straight-line regression” (see [E4.3),

— “Quantifying uncertainty when comparing measurement methods — Haemoglobin concen-
tration as an example of correlation in straight-line regression” (see[E5.3), and

— “Calibration of a torque measuring system — GUM uncertainty evaluation for least-squares
versus Bayesian inference” (see [E6.2)).
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Bayesian approach applied to the mass
calibration example in JCGM 101:2008

S. Demeyer, N. Fischer, M.G. Cox, A.M.H. van der Veen, J.A. Sousa, O. Pellegrino, A. BoSn-
jakovi¢, V. Karahodzi¢, C. Elster

E1.3.1 Summary

This example describes the calibration of a conventional mass of a weight W against a reference
weight R with a nominal mass of 100 g. The example builds on that given in JCGM 101:2008.
This time a Bayesian evaluation of the measurement is performed. A Bayesian approach differs
from the Monte Carlo method (MCM) of JCGM 101:2008 and the LPU in JCGM 100:2008 in that
it combines prior knowledge about the measurand with the data obtained during calibration.
From the joint posterior probability density function which is obtained from this combination, a
value and a coverage interval for the measurand are obtained.

E1.3.2 Introduction of the application

A Bayesian approach to the mass calibration example consists in updating a prior state of knowl-
edge on the measurand by the means of new information obtained during calibration.

In JCGM 101:2008 [|3]], the available information is a best estimate and its associated uncertainty.
A comparison of results between LPU, MCM and the Bayesian approach is given in this example.
We show that the three methods give similar results when the Bayesian approach is conducted
under a non-informative prior distribution. We also show the effect of choosing various prior
parameter values for Gaussian prior distributions.

The data and sources of this example are available electronically [|12]].

E1.3.3 Specification of the measurand

As described in JCGM 101:2008 [13[], the application concerns the calibration of a weight W of
mass density py against a reference weight R of mass density pp having nominally the same
mass My, using a balance operating in air of mass density p,. Let 6mp be the mass of a small
weight of density pr added to R to balance it with W.
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It is usual to work in terms of conventional masses. The conventional mass my . of W is the
mass of a (hypothetical) weight of density po = 8 x 10°kgm™ that balances W in air at density
Pa, = 1.2kgm3.

The measurand 6m = myy .—My,py is the deviation of myy . from the nominal mass m;,, = 100g.

E1.3.4 Measurement model

According to JCGM 101:2008 [3]], in terms of conventional masses my ., mg. and dmg, an
approximation adequate for most purposes is

mW,c:(mR,c+5mR,c)|:1+(pa_pa0)(i_i)j|- (E1-3-1)
Pw  Pr

The measurement model used in the mass calibration example of [3]] is

1 1
om = (mg.+6mg ) [1 +(Pa—Pa,) (— — —)] — Mpom- (E1.3.2)
Pw  Pr

E1.3.5 Input quantities of the measurement model

Table[E1.3.T|summarizes the input quantities mg ., 5mg ., Pa, Pw and pg, and the PDFs assigned
from [3]]. In the table, a Gaussian distribution N(u, 0%) is described in terms of expectation u
and standard deviation o, and a rectangular distribution R(a, b) with endpoints a and b (a < b)
in terms of expectation (a + b)/2 and semi-width (b —a)/2.

Table E1.3.1: The input quantities and PDFs assigned to them for the mass calibration model
(E1.3.2), from JCGM 101:2008 [3].

Quantity Distribution Parameters

Expectation Standard Expectation Semi-width
u  deviation o (a+b)/2 (b—a)/2

Mg e N(u,0?)  100000.000 mg 0.050 mg

Smg, N(u,o?) 1.234mg 0.020 mg
Pa R(a,b) 1.20kgm™3 0.10kgm™3
Pw R(a,b) 8 x 10°kgm 3 1x103kgm™
Pr R(a,b) 8.00 x 103kgm™  0.05 x 103 kgm™>

Note that the input quantity 6mg . is usually associated with fresh calibration results but that in
the JCGM 101:2008 [3] treatment of mass calibration, a Type B uncertainty evaluation of §mg .
is performed resulting in a Gaussian distribution omg . ~ N(d, u?(d)) where d is a best estimate
with associated uncertainty u(d).
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E1.3.6 Uncertainty propagation

E1.3.6.1 Bayesian analysis: generalities

To set up a Bayesian framework [65}/126]], a statistical model is needed for which we choose to
revise notation, as in [[127]], so that random variables are now represented by Greek letters. In
this document, we consider statistical models of the form

D|n,0 ~N([n—G(68)1/C(8),u*(d)) (E1.3.3)

in which the observed data d is modelled as a realization of a random variable D having a Gaus-
sian distribution with mean [ — G(0)]/C(0) and variance u(d), C(8) # 0 and G(0) are smooth
functions. The measurand is denoted by 1) and @ is a vector of further parameters.

The statistical model (E1.3.3) is equivalent to the measurement model (E1.3.2)

n=G(0)+C(0) (E1.3.4)
with
{=omg,, (E1.3.5)
0= (pa, Pw> PR ch) , (E1.3.6)
C(0)=1+(pa—pao)(i—i), (E1.3.7)
Pw Pr
G(0) =C(0)mp . —myop. (E1.3.8)

The measurement result (accounting for uncertainty in @) is represented by the marginal poste-
rior probability distribution 7t(n|d), resulting from the (potentially) high-dimensional integration

m(nld) =J m(n,0]d)de, (E1.3.9)
0

where 7(n, 8]d) is the joint posterior distribution of (7, 9).

In this document, point estimates are derived from equation for comparison with LPU
and MCM. We introduce the following quantities = E(n|d) = fnn(nld)dn to denote the
posterior mean of the measurement result and u?(7)) = V(n|d) = f (n—10)?n(n|d)dn to denote
the posterior variance of the measurement result. Coverage intervals are computed as shortest
intervals as described in [[3]], similar to highest posterior density (HPD) intervals in Bayesian
statistics.

E1.3.6.2 Prior distributions

In the Bayesian paradigm, a prior state of knowledge is described by a prior distribution (7).
For instance, a way to express the prior belief that the measurand is close to a specified value
1o is to use a prior Gaussian distribution 7(n) ~ N(no,ag) where the standard deviation o
controls the degree of belief in 1. For instance, if |ny| is much larger than o, a small value of
the relative uncertainty o,/n, gives an informative prior distribution whereas a large value of
this ratio leads to a poorly informative prior. Another way of modelling poor prior information is
to use the so-called non informative prior 7t(n) o< 1. Alternative prior distributions can be used
(uniform, truncated, etc.) to model particular features of the measurand (bounds, non negativity,
etc.).
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E1.3.6.3 Posterior distributions

Bayes’ formula gives the expression of the posterior distribution 7t(n, 8|d) as a function of the
likelihood I(d|n, 6) and the prior distribution 7t(n, 6):

[(d|n, 8)r(n, )
m(d) ’

m(n,0]d) = (E1.3.10)

where m(d) = fl(dln, 0)n(n, 0)dn is the marginal distribution of d, (1, 8) = w(n)n(0) and
7(@) is the probability distribution of the input quantities contained in 6.

Equivalently, (E1.3.10) can be translated into the proportionality relation as follows
n(n, 01d) o< I(d|n, 8)(n, §). (E1.3.11)

Letting s = u(d), the likelihood is

_ 2
[(d[n,0) o< %GXP{—M} (E1.3.12)
([C(0)]*s2)z 2[C(8)]s?
where m(0) = C(0)d + G(0).
Under the non-informative prior distribution (1) o< 1, Bayes’ formula gives
n(n,8]d) ~ N (m(0),[C(0)]*s*) n(6). (E1.3.13)
Under the Gaussian prior distribution, (1) ~ N(n,, ag), the Bayes’s formula gives
n(n,01d) ~ N (m,(8),2(8)) n(6), (E1.3.14)

where the posterior mean and variance of 7 are, respectively,

m(@):az(o){@Jr—m(B)} az(e)z{i+—1 }_1
P 02 Tcops2) O o2 [COPs?]

The posterior mean is a weighted mean between the prior 1, and the best estimate m and the
inverse posterior variance, also called precision, is the sum of the prior precision, 1/ ag, and the
precision from the best estimate, 1/{[C(0)]s%}.

The integration according to (E1.3.9)) is performed with a Monte Carlo method. The total number
of Monte Carlo trials is decomposed as follows: ny draws according to 7(6) and n,. draws
from the Gaussian distributions (E1.3.13)) or (E1.3.14) giving a total of nyg X 1, simulations.

E1.3.7 Reporting the result

E1.3.7.1 Bayesian analysis of the mass calibration example in JCGM 101:2008

Results obtained with LPU, MCM and the Bayesian approach with non-informative prior (Bayes-
NI) are displayed in Table (LPU, and LPU, denote respectively the first and second order
Taylor approximations) and plotted in Figure The comparison shows a good agreement
between methoddll

For the so-called non informative prior, [[127]] showed that Bayesian marginal posterior uncertainty coincides with
the MCM uncertainty estimate when the model is linear.
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Table E1.3.2: Comparison of results obtained with LPU1, LPU2, MCM and Bayes-NI, the Bayesian
analysis conducted with non informative prior distribution. Results from LPU1, LPU2, MCM are
taken from [|3]].

Method &5m u(g m) Shortest 95 %
/mg /mg  coverage interval, CI/mg

LPU, 1.2340 0.0539 [1.1285,1.3395]
LPU, 1.2340 0.0750 [1.0870,1.3810]
MCM 1.2340 0.0754 [1.0834,1.3825]
Bayes-NI 1.2340 0.0755 [1.0845,1.3830]

0 —
— LRU2
< T ---- MM
> —— Bayes—NI
[
[}
O « -
— —
o ——/ \

I I I I I
1.0 11 1.2 13 1.4

mass difference (mg)

Figure E1.3.1: Distributions of mass difference 6m obtained under Gaussian approximation with
LPU2, MCM and Bayes-NI from the values in Table[E1.3.2

Results obtained with a Gaussian prior distribution are displayed in Table [E1.3.3]| and plotted
in Figure|[E1.3.2] It can be observed that, when the prior standard deviation o increases, the
weight of the prior distribution decreases and the resulting posterior distribution tends to the

non informative case.

Table E1.3.3: Comparison of results obtained with the Bayesian analysis under Gaussian prior
distributions.

Mo o 5m u(dm) Shortest 95 %

/mg  /mg /mg /mg  coverage interval, CI/mg
1.134 0.020 1.1840 0.0390 [1.1069,1.261 3]
1.134 0.01 1.1539 0.0171 [1.1272,1.1525]
1.134 0.040 1.2140 0.0610 [1.0936,1.3345]

In this section, all the results obtained with the Bayesian approach involve 2 x 10’ Monte Carlo
trials (nyc = 20000, ny,.e = 1000).
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Figure E1.3.2: Posterior distributions of dm obtained under Gaussian prior distributions from the

values in Table
E1.3.8 Conclusion

This document shows the main features of a Bayesian approach of uncertainty evaluation applied
to the mass calibration example in JCGM 101:2008 [3]]. The measurement result is represented
by the marginal posterior distribution of the measurand which accounts for both uncertainty
sources and prior information on the measurand, and is comparable in nature with the PDFs
provided by MCM [13]] and by the Gaussian distribution from LPU [2]].

In general, the Bayesian approach provides a flexible tool for statistical modelling and achieves
added value through prior information, at some computational price. In many circumstances,
reduced uncertainties are obtained.

This example illustrates the well known property that, if a non-informative prior distribution is
chosen, the Bayesian posterior distribution is essentially the same distribution from which the
MCM determines a sample for linear measurement models, see for instance [[127]] and [|128]] for
the mass calibration problem.

This example shows that prior distributions can be chosen to allow a simplified Bayesian uncer-
tainty analysis using a Monte Carlo method instead of a Markov Chain Monte Carlo method [|129]],
usually used to sample from high-dimensional integrals, as in [[128] and [[130]], which can be
helpful for any practitioner already familiar with MCM willing to perform a Bayesian uncertainty
analysis.
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Example E1.4

Evaluation of measurement uncertainty
in SBI — Single Burning Item reaction to
fire test

L.L. Martins, A.S. Ribeiro, M.G. Cox, J.A. Sousa, D. Loureiro, M.C. Almeida, M.A. Silva,
R. Brito, A.C. Soares

E1.4.1 Summary

This example illustrates the application of the Monte Carlo Method (MCM) in measurement
uncertainty propagation related to the single burning item (SBI) test, within the European nor-
mative framework of reaction to fire tests for building products, namely, the EN 13823:2010+A1
[[131]]. The use of the MCM is justified by the multivariate, non-linear and complex nature of the
functional relations between a large number of input, intermediate and output quantities, thus
providing a numerical approach to the validation of the GUM uncertainty framework (GUF) [12]]
described in [|132].

E1.4.2 Introduction of the application

The objective of the SBI standard test [[131] is to measure a set of quantities which determine
the evaluation and classification of a construction material (excluding floorings), aiming to char-
acterise its contribution to the deflagration and propagation of fires in buildings, when exposed
to adverse thermal conditions by means of a combustion item.

In this test, the specimen retrieved from the tested material is composed of two plates vertically
positioned with a 90° angle between both plates, being exposed to a main burner located in the
lower region of the plate’s junction. The specimen’s performance is evaluated for a period of
20 minutes, based on the indirect measurement of quantities related to heat release and smoke
production. Complementary observations are also performed regarding lateral flame propagation
and the production of drops or particles from the combustion process.
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E1.4.3 Specification of the measurand(s)

Two main measurands are defined in the SBI test: the heat release rate (HRR) , which corre-
sponds to the thermal power released in a given time instant (expressed in kW) and, in a similar
way, the smoke production rate (SPR), both being related to the combustion of the specimen
(expressed in m?s~1). Due to the applied test method [[131], the definitions of these quantities
are related to different time periods of the SBI test, namely:

0, t <300s
HRR(t) = { max[0, HRRyyy(t) — HRRyyner], 3005 < 3125 (E1.4.1)
HRRtOtal(t) - HRR-burner, 312s<t

where HRR,(t) is the total thermal power released by the specimen and the main burner in the
time instant t, while HRRy .o, is the average thermal power released only by the main burner;
and

0, t <300s
SPR(t) = { max[0, SPRy(t) — SPRyymer], 300s <t <312s (E1.4.2)
SPRtotal(t) - SPRburner, 312s<t

where SPR,,(t) is the total smoke production rate of the specimen and the main burner in the
time instant t, while SPRy e, iS the average smoke production rate related only to the main
burner.

In both cases, the initial stage of the SBI test time period (between 210s and 2705s) is used
to determine the quantities HRRy e @and SPRy er, Dased on average values obtained when
combustion occurs only in an auxiliary burner (identical to the main burner) installed in the
experimental apparatus.

The heat release rate is a key intermediate quantity in the determination of two main output
quantities of the SBI test — THR, the total heat release (usually expressed in MJ) from the speci-
men in a certain time exposure to the main burner flames (namely, in the first 600s), and FIGRA,
the fire growth rate (expressed in Ws™'), and defined as the maximum value of the quotient of
heat release rate from the specimen and the time of its occurrence using a THR threshold (such
as 0.2MJ or 0.4 MJ).

In a similar way, the smoke production rate is also a significant intermediate quantity in the SBI
test since it contributes for the determination of two other main output quantities — TSP the total
smoke production (in m?) from the specimen in a certain time exposure to the main burner flames
(namely, in the first 600s), and SMOGRA, the smoke growth rate (expressed in m?s~2), which is
defined as the maximum value of the quotient of smoke production rate from the specimen and
the time of its occurrence.

This example only addresses the measurement uncertainty evaluation of the quantities heat re-
lease rate and smoke production rate, since the posterior uncertainty propagation from these in-
termediate key quantities to the output quantities of the SBI test (total heat release, fire growth
rate, total smoke production and smoke growth rate) is straightforward and characterised by
simple linear mathematical models. Both the heat release rate and the smoke production rate
quantities are indirectly measured, in a given time instant, based on a large number of input
quantities and mathematical models, as described in the following sections.
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E1.4.4 Measurement model

The heat release rate measurement model is derived from the studies performed by [[133]] in
the oxygen consumption calorimetry research field. The measurement principle states that the
amount of heat released per unit of consumed oxygen volume, E’, during a combustion process
(in MJ m—2) is considered constant regardless of the combustion material, which can be expressed

by

HRR=E’- x82 Q- qy, (E1.4.3)

where x82 is the oxygen amount fraction in the ambient, ¢ is the oxygen depletion factor and
qv, is the volumetric flow of air in the ambient (expressed in m3s7h).

The amount of heat released per unit of consumed oxygen volume quantity can be determined
by the product between the oxygen density, po,, (in kg m~2) and the heat release per unit of
consumed oxygen mass, E (in MJkg™1), i.e.,

E'=po, E (E1.4.9)
The amount fraction oxygen in the ambient is given by
xgz = xg‘;tial : (1 - XI(-)IZO) (E1.4.5)

xglzitial being the amount fraction oxygen measured in the initial stage of the SBI test (in the

time period between 30s and 90s), with a gas analyser'}, and xg o> the amount fraction water
in the ambient, which can be determined by the following model (derived from the Clausius-
Clapeyron equation for water vapour saturation pressure and based on conventional values for
the gas constant and the heat vaporisation of water)

h
X0 r—exp[23.2— (E1.4.6)

_ 3816 ]
H207 100 parm

Tinitial —46

where rh is the relative humidity in moist air (as a percentage), Tiyiiia iS the initial air temperature
inside the exhaust duct (in K) and p,,,, is the atmospheric pressure (in Pa). The oxygen depletion

factor ¢ is calculated by
initial
Xo,

(1—xco,) = xo,(1 = x&&™)

Y= (E1.4.7)

o
X1 — 0, — Xco,)
where xglziﬁal and xicngzial are, respectively, the amount fractions of oxygen and carbon dioxide
measured in the initial stage of the SBI test with the gas analyser, while x(, and x¢, are respec-
tively, the molar fractions of oxygen and carbon dioxide measured with the same equipment in
a given time instant after the initial stage.

The volumetric flow rate of air in the ambient is indirectly measured based on the expression

qy,

= m (E1.4.8)

dy;

1This equipment receives a gas sample from a normalised exhaust duct in which all water vapour and water soluble
gases are eliminated before measurement.
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in which qy,_is the volumetric flow rate of the gases in the exhaust duct (in m®s™!) and a rep-
resents the expansion factor. This last quantity reflects the fact that, in a combustion chemical
reaction, the amount of substance related to combustion products is not identical to the amount
of substance related to the oxygen consumed in the reaction process, i.e.

a=1+xg (B—1) (E1.4.9)

where x82 is obtained from expression and f is the ratio between the amount of sub-
stance of combustion products and of consumed oxygen. A combustion reaction involving reac-
tants such as hydrocarbons (C,H;O.N;X,) and oxygen (O,) originates products such as carbon
dioxide (CO,), water (H,0O), hydrates (HX), carbon monoxide (CO) and nitrogen (N,), the over-
all chemical reaction formula being given by

g b—e ¢ b—e
CaHbOcNdXe+(a_§+ 7 —5

d
)02 — (a—c)CO,+ H20+eHX+gCO+EN2 (E1.4.10)

where particular constants a to g apply in any specific instance. Therefore, based on expres-
sion (E1.4.10) and by definition, the f ratio is given by

+2b+2e+2d
B = 4a e (E1.4.11)
4da+b—e—2c—2g

Depending on the type of hydrocarbon subjected to combustion, several estimates are known for
the f ratio usually values between one and twoﬂ The volumetric flow rate of the gases in the
exhaust duct is obtained by the expression

k 2Ap T
£, |22P 20 4

(E1.4.12)
1% P, T

where Ap is the differential pressure measured in a bidirectional pressure sensor located inside
the exhaust duct (in Pa); pr, is the moist air densit)ﬂ for a reference temperature, T, equal to
298.15K; T is the gas temperature in the exhaust duct (in K); A is the area (in m?) of the exhaust
duct circular cross-section; k,, is the differential pressure correction factor; and k, is the global
correction factor.

Since the exhaust duct as a circular cross-section, its area corresponds to

A= g .42 (E1.4.13)

where d is the exhaust duct diameter (in m). For the quantification of the moist air density
(considering the reference temperature T, in K ), the following expression [[134] is used:

_0.34848 - ppyy — 0.0090241h exp[0.0612 - (T — 273.15)]
- T

P, (E1.4.14)

2Examples of f3 ratio estimates for the combustion of: carbon (C, 8 = 1); ethylene (C,H,, = 1.3); propene
(C3Hg, p = 1.3); butane (C4H,y, B = 1.4); heptane (C;H;4, f = 1.4); propane (C;Hg, 8 = 1.4); ethane (C,Hg, 8 =
1.4); methane (CH,, 8 = 1.5); hydrogen (H,, 8 = 2).

3Since the density of the gas mixture inside the exhaust duct is unknown, this quantity is assumed to be close to
the moist air density (expressed in kgm™2).
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The differential pressure correction factor is considered in expression (E1.4.12) due to the use
of a bidirectional sensor [|135]] instead of a conventional Pitot tube (vulnerable to solid particles
in the flow). This quantity is defined by

k, = —2 (E1.4.15)
where v, is the linear flow velocity in the centre of the exhaust duct cross-section (in m s71) and
Pr,., is the moist air density [[134] for ambient temperature, T,ny, (in K) given by

0.34848p,., — 0.009024rh exp [0.0612 ( Ty, — 273.15)]
pTamb =

(E1.4.16)
Tamb

The global correction factor, k,, corresponds to the average of three individual corrections, k. ,,
k¢ propanes K¢ heptane T€lated to the periodic testing of the SBI experimental apparatus aiming, re-
spectively, at the determination of the non-uniformity of the flow velocity in the exhaust duct
and the comparison between experimental and theoretical heat release rate values, concerning
the combustion of known pure substances such as propane and heptane. In the case of the k,
correction, its quantification is supported by

5
Zi:l Vi

k.., =
tv 5-v,

(E1.4.17)

considering the averagef_r] flow velocities measured in the i radius of the exhaust duct, v;, and in

its centre, v,, all these quantities being expressed in ms™.

The k, propane correction is expressed by the ratio between the theoretical and the experimen-

tal heat release rate values of the propane combustion (in kW) respectively, HRth.he"r<3tical and
HRR?xpenmental i

, L.C.

theoretical
_p > HRR!
t,propane —

t' Zi HRRciaxperimental (E1.4.18)

considering the several testing steps indexed by i of this normalised test [[131], where k; is the
global correction used in the experimental determination of the heat release rateﬂ The theoret-
ical heat release rate at the i the step is given by

HRREheoretical =qm |Ah1;|propane’ (E1.4.19)

1

. . . . . _1
where q,,. is the propane mass flow in the i th testing step (expressed in kgs™), and |AhC |Propane

is the low enthalpy of propane combustion per unit of mass (in kJkg™'). It should be noted
that, in the calculation of HRR prenmental by expression (E1.4.3), the heat released per unit of
consumed oxygen volume adopts a specific estimate and measurement uncertainty known for
propane, instead of the value mentioned in [|[132]] and used for construction materials in the SBI

test. Regarding the kyepane coOrrection, this quantity is obtained from the expression

|Ahl |heptane * Mpeptane
kt heptane = k; : . THR (E1.4.20)

“The measurement sample is composed of four velocity measurements in each of five normalised distances from
the exhaust duct centre, in addition to four velocity measurements at the centre.
*This quantity is also included in HRR;P*"™"*; therefore, it can be removed from expression (EL.4.18).
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where k; is the global correction used in the experimental determination of the total heat re-
lease ® THR, (in MJ) during the heptane combustion test, Ahf: is the low enthalpy of

heptane combustion per unit of mass (in kJkg™') and Mheptane 1S heptane mass used as burn-

ing combustible (in kg ). As in the case of propane combustion, the estimate and measurement
uncertainty of the heat released per unit of consumed oxygen volume adopts known values for

heptane, when using expression (E1.4.3).

’ heptane

The smoke production rate, SPR, is defined in a similar way to the heat release rate quantity.
However, its measurement is based on the light attenuation phenomenon resulting from the
presence of smoke in an optical path. In this case, the measurement model corresponds to

SPR =

v. T -m(l) (E1.4.21)
I T

0 T

where gy, is the volumetric flow rate of gases in the exhaust duct (in m>s™1), obtained from
expression ; L is the optical path length (in m); the factor T /T, is a correction for
the temperature difference between the gases in the exhaust duct, T, (in K) and the reference
temperature, Ty, equal to 298.15K; and 7 is transmittance, defined as the ratio between the
luminous intensity measured in a given time instant and in the initial testing stage, I and I,
respectively. In the SBI test, the luminous intensity that reaches the photo detector installed in
the exhaust duct, is considered proportional to the electrical tension between its terminals so
that the transmittance quantity is determined by electrical tension measurements.

In order to improve the comprehension of the functional relations related to the presented mea-
surement models, figure shows a schematic representation of the heat release rate cal-
culation process, while figure refers to the smoke production rate. Particular attention is
given to the global correction factor and to its calculation process, schematically represented in

figure

E1.4.5 Uncertainty propagation

The measurement uncertainty evaluation shown in this example is composed of two main stages:
(i) the formulation stage, in which all the input quantities of the mathematical models involved
in the measurements are identified and characterised, through the assignment of a probability
density function (PDF) which better represents the dispersion of values related to its measure-
ment; (ii) the calculation stage, from which the measurement uncertainty of the quantities of
interest (heat release rate and smoke production rate) is obtained, based on the propagation of
the measurement uncertainties of the input quantities through the above described mathematical
models.

In the presented case, the MCM was used in the calculation stage [|3,4]], justified by the multivari-
ate, non-linear and complex nature of the functional relations between a large number of input,
intermediate and output quantities. For this purpose, the Mersenne Twister pseudo-random num-
ber generator [[46]] was used to obtain numerical sequences with a typical dimension (number of
trials) of 1 x 10, in order to give a good assurance in obtaining convergent solutions. In addi-
tion, validated computational tools for converting and sorting the generated numerical sequences
were also used.
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In the SBI test, the heat release rate quantity is measured in different test stages, firstly in the
preliminary periodic combustion of propane and heptane and, afterwards, during the combus-
tion of the tested specimen. The only significant difference is related to the heat release per
unit of consumed oxygen mass quantity, which assumes different estimates and measurement
uncertainties in each test case (propane, heptane or specimen combustion).

Table shows the adopted probabilistic formulation of the input quantities required for
the determination of the total heat release rate related to the combustion of a certain specimen,
which already includes (in the global correction factor) the measurement uncertainty of the heat
release rate measured in the propane and heptane combustions.

Table E1.4.1: Probabilistic formulation of the input quantities related to the heat release rate
measurement

Quantity Symbol PDF Estimate Standard
uncertainty

Relative humidity rh Gaussian 60.1 % 1.1%

Atmospheric pressure Datm Gaussian 101.4kPa 0.2kPa

Initial air temperature inside the  Tipial Gaussian 288.3K 0.1K

exhaust duct

Oxygen density Po, Gaussian 1.308kgm™  0.003kgm™3

Heat released per unit of con- E Gaussian 13.1MJkg™'  0.3MJkg™*

sumed oxygen mass

Initial amount fraction of oxygen xg‘;ﬁal Gaussian 0.2095 0.000 04

Amount fraction of oxygen Xo Gaussian 0.206 7 0.000 2

Initial amount fraction of carbon  xZg™ Gaussian ~ 0.000 3 0.000 005

dioxide

Amount fraction of carbon dioxide  xo, Gaussian 0.001 8 0.000 02

Exhaust duct diameter d Gaussian 0.315m 0.001m

Exhaust gas temperature T Gaussian 313.8K 0.4K

Ambient temperature Toamb Gaussian 288.6K 0.7K

Differential pressure Ap Gaussian 68.6Pa 2.1Pa

Linear flow velocity in the centre of v, Gaussian 9.6ms™* 0.7ms™?

the exhaust duct cross-section

Ratio between the amount of sub- f3 Uniform 1.5 0.3

stance of combustion products and

of consumed oxygen

Global correction factor k; Gaussian 0.77 0.02

Regarding the smoke production quantity, table|[E1.4.2|presents the adopted probabilistic formu-
lation of the input quantities which supported the MCM simulations.
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Example E1.4. Single Burning Item reaction to fire test
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Example E1.4. Single Burning Item reaction to fire test
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Table E1.4.2: Probabilistic formulation of the input quantities of the smoke production rate

Quantity Symbol PDF Estimate Standard
uncertainty
Relative humidity rh Gaussian 60.1 % 1.1%
Atmospheric pressure Datm Gaussian 101.4 kPa 0.2 kPa
Ambient temperature Tamb Gaussian 288.6K 09K
Exhaust duct diameter d Gaussian 0.315m 0.001 m
Optical path length L Gaussian 0.315m 0.001m
Transmittance T Gaussian 0.974 0.005
Exhaust gas temperature T Gaussian 313.8K 0.4K
Differential pressure Ap Gaussian 68.6 Pa 2.1Pa
Linear flow velocity in the centre of v, Gaussian 9.6ms™* 0.7ms™*
the exhaust duct cross-section
Global correction factor k, Gaussian 0.77 0.02

Table E1.4.3: MCM simulation results for intermediate quantities in the calculation of the heat

release rate

Quantity Symbol PDF Estimate Standard
uncertainty

Water vapour amount fraction xgzo Gaussian 0.0146 0.0004

Moist air density for ambient tem- pr Gaussian 1.180kgm™ 0.005kgm™

perature

Differential pressure correction k, Gaussian 1.15 0.09

factor

Expansion factor a Gaussian 1.1 0.05

Volumetric flow rate of gases in the gy, Gaussian 0.55m3s7! 0.04m3s7!

exhaust duct

Heat released per unit of con- E’ Gaussian 171MJm™2  0.4MJm™

sumed oxygen volume

Ambient oxygen molar fraction xgz Gaussian 0.2074 0.00005

Oxygen depletion factor @ Gaussian 0.015 0.001

Ambient volumetric flow rate qy Gaussian 0.55m3s™'  0.04m3s™!
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First edition



Example E1.4. Single Burning Item reaction to fire test 88

7000

BO00

5000

4000

3000

2000

1000

1]
15

Figure E1.4.4: Output PDF of the heat release rate quantity

BDDD T T T T T T

5000

4000

3000

2000

1000

1]
-0.02 1] 0.0z 0.04 0.06 0.03 0.1 012

Figure E1.4.5: Output PDF of the smoke production rate quantity
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Table E1.4.4: MCM simulation results for the heat release rate

Quantity Symbol PDF Estimate Standard Required Simulation
uncertainty —accuracy accuracy
Heat release rate HRR Gaussian 30kW 3kw 0.5kW 0.1kW

Table E1.4.5: MCM simulation results for intermediate quantities in the calculation of the smoke
release rate

Quantity Symbol PDF Estimate Standard
uncertainty

Moist air density for ambient tem-  pg_ Gaussian 1.220kgm™  0.005kgm™>

perature

Differential pressure correction k, Gaussian 1.11 0.09

factor

Volumetric flow rate of gasesin the gy, Gaussian 0.55m®>s™?  0.04m3s™!

exhaust duct

Table E1.4.6: MCM simulation results for the smoke production rate (0.05 m2s7! level)

Quantity Symbol PDF Estimate Standard Required Simulation

uncertainty ~ accuracy accuracy
Smoke production SPR Gaussian 0.05m?s™t  0.02m?s! 0.005m?s™! 0.0005m?s*
rate

E1.4.6 Reporting the result

The measurement uncertainties of the input quantities shown in table were propagated
by the MCM to the intermediate quantities (results shown in table and, posteriorly, to
the total heat release rate quantity (see table for an example of a 30 kW thermal power
level). Figure shows the output PDF obtained for the heat release rate quantity.

Additional simulations were performed for higher thermal power levels (up to 250 kW), showing
similar results. The obtained relative standard uncertainty varies between 8 % and 9 %.

The obtained results for the smoke production quantity are shown in table |[E1.4.5| (intermediate
quantities) and table (output quantity). Figure [E1.4.5| shows the PDF obtained by the
MCM for the smoke production rate.

Additional simulations were performed for higher smoke levels (up to 6.8 m?s™!), showing sim-
ilar results. The obtained relative standard uncertainty varies between 9 % and 12 %.

E1.4.7 Interpretation of results

As seen in figures[E1.4.4|and [E1.4.5] the output PDF of both the heat release and smoke produc-
tion quantities have a geometrical shape close to a Gaussian PDE which was expected since all
the input quantities (with the exception of the ratio between the amount of substance of com-
bustion products and of consumed oxygen, see table were taken as Gaussian. In terms
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of validation of results, tables|E1.4.4|and [E1.4.6|show that the number of performed simulations
allowed achieving a computational accuracy quite lower than the required accuracy needed to
perform the SBI test. In this particular example, the major advantage of using the MCM, when
compared with the GUF approach, relies on its greater simplicity and accuracy when dealing with
a large number of input quantities.
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Statistical reassessment of calibration
and measurement capabilities based on
key comparison results

K. Shirono, M.G. Cox

E1.5.1 Summary

This example illustrates the minimal adjustment of calibration and measurement capability (CMC)
uncertainty claims so they are supported by the results of a key comparison (KC). According to
the CIPM Mutual Recognition Arrangement (MRA) [|78, clause T.7], CMC uncertainties are nor-
mally expressed at a 95 % level of confidence. CMC uncertainties are the expanded measurement
uncertainties available to customers under normal conditions of measurement. When laborato-
ries’ CMC claims are unsupported by the relevant KC, modified values must be assigned to their
declared CMC uncertainties.

In the vast majority of cases when CMCs apply to a continuous interval of values such as mass
fraction or wavelength, KCs are carried out for selected discrete values of the quantity concerned.
Since the comparison at each discrete value strictly only supports the CMC uncertainty at that
value, it is not immediately apparent how to modify the CMC uncertainties. Under realistic as-
sumptions, we apply a method that is applicable in such an instance and for which the reported
CMC uncertainties are amplified so that they are underpinned by the results of the KC. The am-
plification factors depend on the laboratories’ degrees of equivalence (DoEs) for these discrete
values, adjusted to achieve consistency with the key comparison reference values (key compari-
son reference values (KCRVs)).

The method is based on the patterns in the individual behaviour of the DoEs of the participating
laboratories for the discrete values, implying the presence of correlation associated with the DoE
values. It applies when the weighted mean of some or all of the measured values reported by the
participating laboratories in the KC is used to obtain the KCRV.

Full details of the example are provided in [|136]].
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E1.5.2 Introduction of the application

CMCs must be consistent with results derived from KCs [78, clause T.7], a requirement interpreted
in the sense that a CMC uncertainty claimed by a participating laboratory must be no smaller than
the expanded uncertainty associated with the corresponding laboratory’s reported value in the
KC. The extent of agreement of that reported value to the reference value in the KC is assessed
by a DoE calculated in accordance with the MRA [78, clause T.2]. Such an interpretation is
straightforward when there exists a ‘one-to-one’ relationship between the KC and the CMC claim,
that is, when the KC and the CMC relate to the same measurand [[137]]. In such a case, it is
straightforward to obtain an appropriate uncertainty that should be reported in the KC for the
performance evaluated by the DoE to be satisfactory [[137]].

This example relates to the commonest class of CMC claims in which laboratories provide uncer-
tainty for a measurand that depends continuously on a quantity (parameter) having an interval of
values, termed here the ‘measurement interval’. This parameter could, for example, be frequency,
wavelength or mass concentration.

The corresponding KC provides DoEs for each participating laboratory for each of a discrete set
of values of the parameter within the measurement interval. An analysis based on the one-
to-one relationship could be applied separately for each of these discrete parameter values. A
consequence of doing so is that any structure present in the data across these parameter values
is not taken into consideration: the analysis of these discrete cases are independent exercises.
Generally there would be a different expansion factor for the CMC uncertainties corresponding
to each discrete value, particularly in cases when the same measuring system is used for each
such case, perhaps due only to random variation. The provision of a single expansion factor for
each national metrology institute (NMI) based on the completed and published KC results would
be helpful for the reassessment of the CMC uncertainties.

Importantly, KC results for these discrete values almost invariably display some degree of corre-
lation that cannot be taken into consideration by an analysis for the one-to-one relationship. The
existence of correlation is often evidenced by patterns in the individual behaviour of the DoEs for
each participating laboratory across the discrete values of the parameter within the measurement
interval. An instance is given in [|136]] relating to a KC of free-field hydrophone calibrations in the
frequency interval 1 kHz to 500 kHz [[138]]. Such correlations relate to the biases often associated
with individual participating laboratories’ measured values.

An approach for CMC uncertainty reassessment involving the estimation of correlations is exem-
plified by providing a single multiplicative expansion factor for the CMC uncertainties for each
laboratory. The method described applies Bayesian principles under the assumption that the ob-
served pattern in each laboratory’s DoE value components can largely be explained by a single
correlation coefficient, specific to that laboratory. Since no specific physical adjustments are as-
sumed, the approach is generally applicable to a wide range of practices in metrology. As part
of the approach, for each laboratory a single common expansion factor for CMC uncertainties is
estimated that applies across the measurement interval. Since some estimated expansion factors
may prove to be unity, the corresponding laboratories can be regarded as already having CMC
uncertainties that are consistent with the relevant KC. Thus, the approach is discriminatory: only
some laboratories are required to adjust their CMC uncertainties depending on their DoEs.
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E1.5.3 Specification of the measurand(s)

Suppose there are N laboratories participating in the KC, each providing a measured value at
p stipulated values of a parameter in the measurement interval. The measurand is a vector

measurand consisting of adjusted CMC uncertainties UiCMC’adj( j)i=1,...,N,j=1,...,p.

There are intermediate measurands, especially the CMC uncertainty expansion factors, in an
according multi-stage measurement model as described in section [E1.5.4]

E1.5.4 Measurement model

The measurement model is multi-stagedﬂ [[5]] comprising various steps in the analysis of existing
KC data and corresponding CMC data. The measurement model uses the following data.

Each laboratory participating in the KC reports a measured value and an associated standard
uncertainty for each prescribed parameter value within the measurement interval. Specifically,
for each laboratory i, i = 1,...,N, the value x;(j), j = 1,...,p, and the associated standard
uncertainty u(x;(j)) are provided. The corresponding (unadjusted) CMC uncertainties are also
provided. It is assumed that for each j the KCRV x,((j) relating to the jth measurand is given as
the weighted mearﬂ (WM) of all or some of the reported values x;(j), j =1,...,p [[139]. Thus,
the according DoEs (d;(j), U(d;(j))),i=1,...,N, j=1,...,p, defined as follows are available.

E1.5.4.1 Degrees of equivalence

The DoE value component for laboratory i and parameter j is

d;(j) = x;(j) — xre(j), i=1,...,N, (E1.5.1)

and the corresponding uncertainty component is

ki[uz(xi(j))_uz(xref(j))]l/Zz NS Iref:

e[ (i (1)) + u?(xre(j))1Y2, otherwise, (E1.5.2)

U(d;(j)) = ku(d;(j)) = {
where I, denotes the set of values of i for which x;(j) and u(x;(j)) are used in the computation
of x,.¢(j) and u?(x,.¢(j)) is the variance (squared standard uncertainty) associated with x,.¢(j)
[139]]. Under the assumption of normality, the coverage factors for the DoE uncertainties are
taken as k; = 1.96.

If the DoE for any participating laboratory has an E, scordﬂ that is in magnitude greater than
unity, that laboratory’s performance is unsatisfactory and the according CMC uncertainty may
have to be re-assessed.

In many stepwise processes in metrology, quantities from intermediate measurements are naturally used in a
subsequent measurement. Each stage in the process can be described by a measurement model with input quantities
and output quantities. This set of measurement models constitutes a multi-stage measurement model and can be used
as such.

2It is assumed that no information on correlation was employed in the computation of the WMs. Otherwise, the
treatment here would require modification.

3As a measure of the performance of laboratory i, a normalized error ratio or ‘E, score’

d 4

ED= L —_ E1.5.3
C T UW)  ku(d) (EL5.3)

is used: If IES)I < 1, laboratory i’s performance is regarded as ‘satisfactory’; otherwise it is ‘unsatisfactory’ [9]].
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Exclusive statistics d; .4(j) rather than d;(j) [71,140]], where d; ¢,(j) = x; — xex(j) and x4(j)
is the exclusive weighted mean, as given in [[136]], are used to describe the DoEs because of
algebraic advantages over conventional statistics. The associated standard uncertainty u(xq.(j))
is provided.

E1.5.4.2 Assumptions
The following assumptions are made:

1. An individual common expansion factor specific to each laboratory applies for the uncer-
tainty over its measurement interval. The expansion factors for the uncertainties reported
in a KC and the CMC uncertainties are considered identical.

2. The measurement errors in the reported values x;(1),...,x;(p) from laboratory i can be
regarded as being drawn from a multivariate normal distribution whose covariance matrix
depends on a single correlation coefficient associated with those values.

E1.5.4.3 Steps in the multi-stage model

1. Establish a statistical model for the DoEs for the participating laboratories. The statistical
model contains the following parameters to be estimated from the KC data fori =1,...,N:

* Expansion factor L; for laboratory i.
* Correlation coefficient p; for laboratory i: see section|E1.5.4.4
* Technical parameter A; related to the standard deviations S; in section[E1.5.4.4

Although the p; are not primary measurands, they are of interest in understanding the
extent of the correlations involved for the individual laboratories.

2. Solve the statistical model for expansion factors L; for the participating laboratories.

3. Apply the expansion factors to the existing CMC uncertainties to provide adjusted CMC
uncertainties that are supported by the KC.

E1.5.4.4 Statistical model

Let the vector d; oy = [d; x(1),..., di’ex(p)]T denote the value components of the exclusive DoEs
for laboratory i for the p discrete values of the parameter. The probability distribution used to
describe the vector quantity for which d; ., is a realization is assumed to be multivariate normal:

di,ex ~ N(O) 2}i): (E154)

where 0 is the column vector having p zero elements and ¥; is a covariance matrix of dimension
p % p. Consider the decomposition

% =S;P;S;,

where S; is the diagonal matrix whose jth diagonal element is a standard deviation o;(j) equal
to the square root of the jth diagonal element of ¥; and P; is a correlation matrix [[4]]. Neither
S; nor P; is typically available from the KC and must be estimated from reported results.
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Define
ri(j) = (xex G/ (xi(7)), Timin = mjin ri(j).

2

Then, for the matrix S;, o(j) is approximately given by

o7 (7) = Al (i (1)) + u? (xex U] & (1 + 1y min)Aite* (3 (7)) (E1.5.5)
The expression in the right side of is obtained through applying the relationship
T+ [ri()—rimnl ® 7, Ti =1+ 1iminAy (E1.5.6)

Although we cannot say that expression is always a reasonable approximation, we can
confirm the extent of its validity after estimating the parameters specified in section
More details are given in [[136]], where 7; is employed as a parameter to be estimated rather
than A;. No essential change happens because of the transformation from 7; to A;.

The correlation matrix P; used in [[136] has the form
P,=Pi(p)=1—p)I+p;117,

where I is the identity matrix of dimension p x p and 1 is the column vector containing p ones.
P; is thus a matrix with ones on the main diagonal and p; elsewhere. The parameters p; and A;
are obtained using Bayesian estimation. A uniform distribution over [0,1] is used as the prior
for p; since the correlation between DoEs is expected to be non-negative, and a Jeffreys’ prior is
used for A;:

1, 0<p; <1,

A'_la 2’l. Z 1’
p(p;) o< { 0 '

’ p(A) < { 0, otherwise.

otherwise (E1.5.7)

E1.5.4.5 Data

The data used in this example is for KC CCL.K-2 [|141] relating to gauge block measurements.
Four gauge blocks with nominal lengths 175 mm, 500 mm, 500 mm and 900 mm were circulated
to 12 participating laboratories. Because the data from a particular laboratory were “...known
to contain errors and is not representative of their standard measurement technique, its data was
withdrawn from the comparison" [[141]]. The reported deviations of the remaining 11 laboratory
values from the nominal lengths of the gauge blocks and their associated standard uncertainties
are summarized in table and figure [E1.5.1] The reference values and their associated
standard uncertainties are also given in table

E1.5.5 Uncertainty analysis

Bayesian estimation with modestly informative priors for the quantities to be estimated was used
to obtain a single factor for each laboratory to expand (only when necessary) its CMC uncertain-
ties. Bayesian modelling allows unknown correlations between reported values to be taken into
consideration by estimating them and to include constraints by using priors. The maximum a
posteriori (MAP) estimator was used because of several advantages [[136]]:

(a) An expansion factor given by MAP estimation is close to that obtained by the conventional
method when p =1 (only one stipulated value in the measurement interval),
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Table E1.5.1: Reported values x;(j) and associated standard uncertainties u;(j) with reference values
X.¢(j) and associated standard uncertainties u(x,(j)). Numbers in square brackets were not used in the
determination of reference values in accordance with reference [[141]]

Nominal length

175 mm 500 mm 500 mm 900 mm
i x;(1) u;(1) x;(2) u;(2) x;(3) u;(3) x;(4) u;(4)
/nm /nm /nm /nm /nm /nm /nm /nm
1 140 28 916 33 814 33 2033 42
2 122 13 915 16 807 15 1983 21
3 161 30 962 38 861 38 2057 52
4 142 16 908 23 781 23 2075 60
5 150 20 930 20 830 20 2020 35
6 125 27 881 67 786 66 2004 118
7 148 19 938 39 858 39 2070 68
8 194 19 1007 60 912 60 2160 136
9 154 23 885 50 818 50 1982 87
10 180 110 980 150 870 150 2010 250
11  [312] [21] 952 56 868 56 2165 100
xref(l) u(xref(l)) xref(z) u(xref(z)) xref(s) u(xref(g)) xref(4) u(xref(4))
/nm /nm /nm /nm /nm /nm /nm /nm
145 7 923 9 818 9 2016 14
(a) 175 mm (b) 500 mm
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Figure E1.5.1: CCL.K-2 gauge block data for four nominal lengths and weighted means as KCRVs (broken
horizontal lines). Vertical bars depict coverage intervals with coverage factor k; = 1.96
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(b) MAP estimation suggests that no expansion of the CMC uncertainty is required for a labo-
ratory whose performance is satisfactory in the KC, and

(c) The MAP estimator has an analytic solution (given in [[136]).

E1.5.6 Reporting the result

Defining L; as the MAP estimator of A;, the variance of d.,(j) is estimated as [1+ r;(j)]1L;u?(x;).
Since the variance is supposed to be [K; + r;(j)Ju?(x;) using the expansion factor K l.l/ 2 for the
standard uncertainty u(x;(j)), the following relation holds between L; and K;:

(K + 1 i)t () = (1 + 1 min) L (x)

when relation (E1.5.6) holds. Thus,

1/2
Kl' / = [Li(l + ri,min) - r'i,min]l/2

is the expansion factor for the CMC standard uncertainty in this study.

Table [E1.5.2| shows the values of the expansion factors Kl.l/ % and the MAP estimates p%VIAP of

p;. The symbol “~" indicates that the computed values are not recommended to be used in the
reassessment because relationship (E1.5.6) does not hold in these results. In [[136], we gave the
criterion K;/1; yax > 4 to check the appropriateness of relationship (E1.5.6).

Table E1.5.2: Estimated expansion factors Kl.l/ % and MAP estimates leAP of p;

Laboratory i Kl.l/ 2 pM¥
1 1.0 0.90
2 _ _
3 1.0 0.92
4 1.0 0.00
5 — —

6 1.0 0.91
7 1.0 0.83
8 1.3 0.67
9 1.0 0.72
10 1.0 0.96
11 3.3 0.19

E1.5.7 Interpretation of results

For seven of the 11 laboratories (1, 3, 6, 7, 8, 9, 10), the estimated correlation coefficient was
appreciable (between 0.67 and 0.96), implying the presence of systematic effects or biases in the
measured values provided by those laboratories

“4Since the model (EL.5.4) expresses the variation between the reported values, no bias is shown directly.
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Laboratory 4. The deviations from the reference values are nearly zero for two cases [d4(1) and
d4(2)], and considerably negative and positive respectively for the other two cases [d,4(3)
and d4(4)]. The fact that no systematic effect can be seen in these deviations implies that
the correlations are small, and p}'** is actually zero to two decimal places.

Laboratory 8. For the conventional method, the minimum permissible expansion factors are
1.4, 1.0, 1.0 and 1.0 for the four measurands, suggesting that for that laboratory only the
CMC uncertainty for the shortest gauge block requires expansion. However, if a common
expansion factor for the CMC uncertainty throughout the measurement interval is required,
the conventional method cannot suggest an appropriate value.

Laboratory 10. The correlation for laboratory 10, whose deviations are nearly zero for all four
cases, is estimated to be very large (p%AP = 0.96). Because the small deviations suggest
small random effects, the large uncertainties must depend on their systematic effects. Thus,

the large correlation is theoretically reasonable.

Laboratory 11. Laboratory 11 reported a value for the shortest gauge block that was far from the
KCRV, which is a likely cause for the resulting expansion factor of 3.3 for that laboratory.
According to the final report on this KC [|[141]], the laboratory found a problematic issue with
its measuring system (see section|[E1.5.4.5). For that laboratory, whilst all the deviations are
positive, the magnitudes are largely different. Consequently, the correlation is estimated
to be not so large (p)** = 0.19).

We conclude from these results and those for other KCs and CMC claims that the method exem-
plified here might also be useful in checking the validity of the measuring system over an interval
of the parameter. We also believe that these results show the rationale of the MAP estimator to
provide values for the expansion factors, and support the validity of the proposed method. Fur-
ther, the results indicate that the correlation existing among each laboratory’s measured values
can be estimated.
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Model-based unilateral degrees of
equivalence in analysis of a regional
metrology organization key
comparison

K. Shirono, M.G. Cox

Analysis of an RMO key comparison

E1.6.1 Summary

Measurement uncertainties associated with the unilateral degrees of equivalence (DoEs) in a KC
of a regional metrology organisation (RMO) are discussed. Unilateral DoEs are obtained through
assessing a linking invariant to relate the RMO results to the KC conducted by the International
Committee of Weights and Measures (CIPM). A new approach to derive the unilateral DoEs is
suggested, based on statistical testing. Since the mathematical model of the unilateral DoEs is
given by a linear combination of the reported values and the reference value in the CIPM KC, the
principle in the JCGM’s document JCGM 102 [[4] is applied to obtain the associated uncertainties.
The proposed approach may give different DoEs from those given by some existing approaches.
Since decisions are made on the basis of calculated DoEs, a conclusion is that it is valuable to
have adequate knowledge of the properties of available linking methods for analyzing the results
from an RMO KC.

E1.6.2 Introduction of the application

Calibration and Measurement Capabilities (CMCs) of a NMI are established through the frame-
work of the RMO [142]]. By maintaining CMCs, the progress of measurement science is delivered
to diverse industries. From a technical point of view, KCs support CMCs.

It is noted in the CIPM Mutual Recognition Arrangement (MRA) that “the technical basis of
this arrangement is the set of results obtained in the course of time through key comparisons
carried out by the Consultative Committees of the CIPM, the Bureau International des Poids
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et Mesures (BIPM) and the RMOs”. Further, it is described that “participation in a CIPM key
comparison is open to laboratories having the highest technical competence and experience,
normally the member laboratories of the appropriate Consultative Committee”. Technical and
economic reasons are often barriers to participation in a CIPM KC. In both senses, the linking of
an RMO KC to a CIPM KC is the only realistic way to establish global metrological traceability.
Moreover, such linking is explicitly required: technical supplement T.4 of the MRA states “the
results of the RMO key comparisons are linked to key comparison reference values established
by CIPM key comparisons by the common participation of some institutes in both CIPM and RMO
comparisons”.

For the linking process, the presence of laboratories that participate in both CIPM and RMO
KCs is technically required. Otherwise, statistical relations between the two KCs could not be
established. The laboratories participating in both KCs are termed linking laboratories. The
CMC information of these laboratories has been checked by the participation of the CIPM KC
before the implementation of the RMO KC.

Although no official guidance concerning the linking procedure has been provided by the CIPM,
several suggestions for the method of analysis have been made from the academic point of
view [|143-147]. One possible aproach is to determine a linking invariant (cf. [147]]) equal to
the difference between the measurands in the CIPM and the RMO KCs. The reported values
in the RMO are adjusted by a estimate of the linking invariant. The value components — see
section — of the unilateral degrees of equivalences (DoEs) are given as the difference
between the adjusted reported values and the KCRV in the CIPM KC.

In the study by Kharitonov and Chunovkina [[146]], we find two types of linking invariant. How-
ever, since no statistical models were given in [[146]], we cannot clearly specify what can be
estimated by these linking invariants. We could not find possible and reasonable models that
gave the mathematical forms in their study. Decker et al. [[147]] reported the application of one
of the linking invariants proposed in [[146].

There are other possible approaches for deriving a linking invariant. In this paper, we will de-
velop a method to derive a linking invariant using a generalized least squares (GLS) method. In
particular, we develop a method in which the measurand that is estimated by the KCRV of the
CIPM KC is not re-estimated using a least squares method, based on the premise that the CIPM
KCRV has been completed before the RMO KC is implemented. Consequently, we obtain a differ-
ent linking invariant from those in some previous studies. Statistical testing using the assessed
unilateral DoEs shows that the choice of linking invariant influences the performance evaluation
of laboratories.

E1.6.3 Specification of the measurand(s)

The principal measurands in this study are the unilateral DoEs in the RMO KC. (A measurand is
defined in the VIM as the quantity intended to be measured [89, definition 2.3].) We regard a
DoE as a measurement result, that is, as a single measured value and a measurement uncertainty,
in accordance with the VIM [|89, definition 2.9, note 2] and for compatibility with the MRA [[142,
appendix B]. In the MRA, a DoE is regarded as having a value component and an uncertainty
component, with the latter expressed as an expanded uncertainty at a 95 % level of confidence.
Here, the value component of the unilateral DoE for laboratory i is a statistic, denoted by d;, to
express the difference between the reported value after adjustment by a linking invariant. The
value component alone is often referred to in the literature as the DoE.
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The linking invariant is an intermediate measurand when obtaining DoEs. The linking invariant
as the population parameter is denoted by 1 and its estimate by hy;,,. When reporting y; from
laboratory i in the RMO KC, the relationship between d; and hy;y is

d; = ¥i + Njink — Xref, (E1.6.1)

where x ¢ is the KCRV in the CIPM KC.

The developed uncertainty evaluation is applied to a completed RMO comparison of EURAMET-
AUV.V-K1.1 [[148]], which was linked to CCAUV.V-K1 [[149]]. They were key comparisons in which
the charge sensitivities of transducers were measured.

E1.6.4 Measurement model

Suppose m laboratories participate in a CIPM KC and n laboratories in a corresponding RMO KC,
L of which participate in both comparisons and hence are linking laboratories. In this work, it
is assumed that the data have already been screened (that is, no outlier remains) and the data
corresponds to what the CC working group considers suitable for analysis in the RMO KC.

Let the reported values in the CIPM KC, assumed to be obtained independently, and their associ-
ated standard uncertainties be x; and u(x;), i = 1,...,m. When the KCRV is given as the weighted
mean (WM) of the reported values, the KCRV x,¢ and its associated standard uncertainty u(x,.¢)
are given by Cox [70]]:

m

m -1
Xref = uz(xref)z L uz(xref) = |:Z L:| . (E1.6.2)
i=1

u?(x;)’ —u?(x;)

Define the two sets {x1,...x;} and {x;,;,...X;;} to be the reported values from the linking and
non-linking laboratories, respectively, in the CIPM KC. Although the ordering in these two sets
is not unique, the results of the analysis do not depend on it. We consider only cases where the
reference value for the CIPM KC is given as the weighted mean of x;, i = 1,...,m, as given in

formula (EI1.6.2).

The data in the RMO KC are likewise classified into two sets: {y;,...y;} and {¥;41,...Yn}. The
correlation between x; and y; fori =1,..., L is denoted by p;, information to determine which
is typically obtained from the participants’ uncertainty budgets [|124}/144]. As in the CIPM KC,
the identification is not unique, but the results of the analysis do not depend on it. For i > L in
the RMO KC, laboratory i is identified as the laboratory that reports y; and u(y;) as its value for
the measurand and the associated standard uncertainty.

It is considered that x; for i = 1 to m and y; for i = 1 to n are realizations of random variables
having probability distributions with (unknown) expectations u, and u,, respectively. Define

=| = u?(x;) piu(x)u(y;) .
o [ i ], Vi [ piu(x;)u(y;) u’(y;) ]’ L€,

where V; is the covariance matrix associated with z; and I; = {1,...,L}.
To develop a testing method, we assume the following statistical model for the data in the CIPM

KC and the linking laboratories in the RMO KC:

z; ~N(u V), iel,

] E1.6.3
x; ~ N, u2(x), i€l (E1.6.3)
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where = (uy, y + 1) ', N(u, V) denotes the bivariate normal distribution with mean w and
covariance V,and I, = {L +1,...,m}.

Furthermore, we assume the following statistical model for the data from the non-linking labo-
ratories in the RMO KC:

¥i ~ N(uy —n,u*(y1)), iel,={L+1,...,n}. (E1.6.4)

E1.6.4.1 Estimation of the linking invariant

We yield the estimators of u, and 7 as the generalized least squares (GLS) solution xj;, and hy;gy
for u, and 7, using the data in model (E1.6.3). First we recall that xj;,;, must take the value x,¢
since the CIPM KCRV is to be preserved. Accordingly, only hy; is to be determined. The solution
vector for the according GLS problem is thus

hyg =argminf (h),  f(R)=> el Vile, (E1.6.5)
h i€l;
where
€; :ei(x:y): [xi_xrefa yi+h_xref]T' (E1.6.6)

At the minimum of f,
0
Ty-1 —
D elv; [ . } =0,
iel,

yielding, after some algebra whilst making use of expression (E1.6.6),

1
hlink =——= Z[pi(xi - Xref) + qi(yi — xref)], (EL6.7)
Q iel;
where
Pi —_y.—1 0 _ 1 —pi
[ qi } =V [ 1 ] T (1= pPulx)uly;) [ u(x;)/uly;) ] (E1.6.8)

and (also defining P, which is used later)

P=>p, Q=>4 (E1.6.9)

iel, iel,

For purposes (in section[E1.6.5) of evaluating the standard uncertainty associated with the degree
of equivalence d; for a non-linking laboratory in the RMO key comparison (that is, i € ), we
express d; explicitly and exactly as a linear combination of the values xi, y1, ..., X1, Y1, Xref and
y; on which it depends. Using expressions (E1.6.1), (E1.6.7), (E1.6.8) and (E1.6.9),

T
d; = CpopSiDok>

where
1
cgoE=—5[p1 @ ... pp @ —P —Q], (E1.6.10)
Sihr =L X1 Y1 - XL YL Xeet Vi ] (E1.6.11)

Note that we consider the unilateral DoEs only for non-linking laboratories in the RMO KC, since
the unilateral DoEs for the linking laboratories have already been evaluated in the CIPM KC.
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E1.6.4.2 Data

An example is EURAMET-AUV.V-K1.1 [[148]], which is an RMO comparison in the area of vibration
and shock. The results in the RMO KC were linked to CCAUV.V-K1 [149]]. This key comparison is
the first in that field, where measurements of sinusoidal linear accelerations were compared over
a wide range of frequencies. It was the task of the comparison to measure the charge sensitivity
of back-to-back and single-ended accelerometer standards. We focus on the reported values for
160 Hz and the back-to-back transducer.

There was one linking laboratory. It was noted in the final report that “the covariance of the
different results of the linking lab is considered negligible” [148]. The data is given in table

E1.6.1|and figure[E1.6.1

Table E1.6.1: EURAMET-AUV.V-K1.1 [[148]] and CCAUV.V-K1 [|149]] as an example of linking. The
only linking laboratory is laboratory 1. No correlation is assumed between the two reported
values from laboratory 1.

CCAUVVK1 EURAMET-AUV.V-K1.1
x;/ ux;)/x; il u(y)/yi

Laboratory pC/(m/s?) x10>  Laboratory pC/(m/s?)  x10?

1 0.126 64 0.05 1 0.12521 0.05

2 0.12670 0.25 2 0.12549 0.16

3 0.12660 0.15 3 0.12472 0.28

4 0.12660 0.23 4 0.12526 0.30

5 0.12660 0.25 5 0.12519 0.10
6 0.12660 0.25
7 0.12675 0.15
8 0.12649 0.18
9 0.12660 0.22
10 0.12682 0.20
11 0.12650 0.15
12 0.12660 0.17
Xoot 0.12663  0.04

E1.6.5 Uncertainty analysis

E1.6.5.1 Uncertainty evaluation for DoE estimation with linking laboratory data

Define V; pog as the covariance matrix of s; pog (with zero elements not displayed),

Vl V1,ref
Vi,DOE = - ¥L VI ref
2
v 1,ref v L,ref u (xref)

2
u ()

All elements in V; g are known except for those in the vectors v, ., i € I, which we now

establish. For this purpose, we use basic concepts of exclusive statistics as in [[136]].
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(a) CIPM data (b) RMO data
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Figure E1.6.1: Reported data in (a) CCAUV.V-K1 (the CIPM KC) [149] and (b) EURAMET-AUV.V-
K1.1 [148] (the RMO KC), which are given in Table The horizontal red line in (a) shows

Xref

The exclusive WM x., ; for laboratory j, that is, the WM after excluding laboratory j’s data, and
the associated standard uncertainty u(x.y ;), are given by

1
Xexj = U ( ex,]) Z 2(x) uZ(Xex,j) = Z uz(xi)‘.

i€l UL \j iel; UL \j

As a consequence, using expressions (E1.6.2), we can write

Xref = U (xref) Z ( ref) 2( )
iel; Ul \]
X
ex,] 2 J
= 1 (Xpef) 5 + U (Xyef) 57—
ref 2( eX,]) ref uz(xl)

Using this result, by defining

2 2
Xref u (xref)/u (xex,j)
2 2
2 ref = Xj | Cj,ref = | u*(xrep)/u (xj) 1 >
Yj 1
we have
- Xex,j
Zjref = Cj,ref Xj
Yj

Examples of evaluating measurement uncertainty First edition



Example E1.6. Model-based unilateral degrees of equivalence in an RMO key comparison 105

Applying the rule for propagating covariances [[4, clause 6.2], the covariance matrix associated
with 2 or is

=c/

2 T
u (xref) vj’ref
j,ref

vj,ref Vj

2
U™ (Xex 1)
<] o) o,
J,re V] J,re
In particular, after explicitly evaluating this product,

1

| ulxgxen) | u(y;) |u? E1.6.12
Vi ref |: u(yj, xref) :| o; u(xl.) u (xref)- (E1.6.12)
J

Using expressions (E1.6.10) and (E1.6.11) and once again the rule for propagating covariances,
the standard uncertainty u(d;) associated with d; is given by

209y _ T
u“(d;) = ¢pop Vi poECDOE-

Following some algebra, paying regard to symmetry we obtain

1 D; P Di p?
uz(di)=u2(}’i)+@Z[Pj CIj]Vj[ q; ]_zazvzref[ q; i|+§u2(xref)-

JEI;, JEI;

Now, using expressions (E1.6.8), (E1.6.9) and (E1.6.12),

Dj T Dj
cq; Vil ) =g, v I 1=o0.
[p; ;] J[ q; ] q; ],ref[ q; ]

Hence,

2 _ .2 1 P 2
u“(d;)=u ()ﬁ')‘*‘a"‘@u (Xref)-

The uncertainty component of the unilateral DoE is
U; = ku(d;)

where k is the coverage factor equal to 1.96 in this study as a consequence of the assumed
normality.

E1.6.6 Reporting the result

The unilateral DoEs are shown in table computed using the proposed method together
with the reported values in the final report of EURAMET-AUV.V-K1.1 [[148]]. Since the ratios
between the d; and the U; are the test statistics to be employed to check the statistical model
(E1.6.4), the values of d;/U; are also shown in the table. Since the magnitudes of those values
are all smaller than unity, the statistical model cannot be rejected. These test results sup-
port the equivalence of measurement that has been technically confirmed through the reviewing
processes.
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Table E1.6.2: Computed value and uncertainty components of unilateral DoEs and their ratios
for EURAMET-AUV.V-K1.1 [[148]] linked to the reference value in CCAUV.V-K1 [|149]] using the
proposed method together with a reference analysis proposed by Decker et al. [|[147]].

The proposed method Reference analysis
Laboratory d; U; d;/U; d; U; d;/U;
/fCm™'s®> /fCm™!s? /fCm™'s® /fCm™'s?
2 0.28 0.41 0.68 0.29 0.42 0.69
3 —0.49 0.70 —0.70 —0.48 0.70 —0.69
4 0.05 0.75 0.07 0.06 0.75 0.08
5 —0.02 0.27 —0.07 —0.01 0.29 —0.04

E1.6.7 Interpretation of results

In the analysis implemented in EUROMET-AUV.V-K1.1, the following linking invariant suggested
in the paper reported by Decker et al. [[147]] was employed:

Riink = X1 — ¥1-
The unilateral DoEs are hence computed as follows:

di:yi+hlink_xref:yi+X1_y1_xref fO]_’iGIy.

The variance associated with d; is
1

-1
Uz(di)z[ 1 -1 -1 1 ]Vi,DoE 1 =U2(}’i)+uz(x1)+U2(J’1)—U2(Xref),
1

since the covariance between x; and y; is zero. The identical mathematical method was reported
by Kharitonov and Chunovkina [[146]]. Moreover, for the case of a single linking laboratory, the
method proposed by Elster et al. [[145] gives the same values as the value components of the
unilateral DoEs. (When there are two or more linking laboratories, the method in reference [|145]]
is not identical to that in reference [[147]].) The computed values for U; in table[E1.6.2]are slightly
different from those in the final report [[148]], because k = 1.96 is used as the coverage factor
instead of k = 2 in [[148]], and some rounding of numbers in the computations in the final reports.
However, these minor differences do not influence the evaluation of the performance.

In the analysis applied in this work to the AUV.V-K1 key comparison, there is compensation for
the difference between x; and x,. This bias is evaluated to be insignificant in the CIPM KC, and
so no correction to the CMC information of the laboratory is applied. In general, consideration
should be given to the possibility of compensation for biases even if they are insignificant.

In the proposed method, since there is only one linking laboratory, the value components of the
unilateral DoEs for the AUV.V-K1 key comparison are computed as

di=yi—y1-

In fact, since no correlation is assumed for the two reported values from the linking laboratory, the
results in the CIPM KC do not affect the analyses for the RMO KC. In other words, the insignificant
bias in the CIPM KC is fixed to zero in this approach. Considering that the CIPM KC was conducted
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to check the equivalence between the reported values and no significant bias was found for
laboratory 1, the zero bias may naturally reflect the qualitative conclusion obtained through the
CIPM KC.

No serious difference is found between the values with the proposed method and the actually
assessed values in the case of EUROMET-AUV.V-K1.1, because x; is close to x,.;. In general, these
two approaches may differ appreciably depending on the data.

To show this possibility, a dummy example is given in table [E1.6.3|and figure [E1.6.2] As in the
actual example, Laboratory 1 is the only linking laboratory, which claims no correlation between
the two reported values. In this case, the proposed method gives

d2:d3:d4:1.9, U2:U3:U4:2.2, dz/Udeg/U3:d4/U4:O.9.
The method proposed by Decker et al. gives
d2=d3=d4=2.6, U2=U3=U4=2.3, dz/U2=d3/U3=d4/U4=1.1.

That |d;|/U; is less than unity for the proposed method and greater than unity for Decker’s method
may have significance in terms of any decisions made.

Table E1.6.3: Dummy example. It is assumed that x; and y; are dimensionless. Laboratory 1 is
the sole linking laboratory, and claims no correlation between x; and y;

CIPM KC RMO KC

Laboratory X; u(x;) Laboratory y;  u(y;)

1 0.00 0.50 1 0.00 0.50
2 ~1.30 1.00 2 1.90 1.00
3 —1.30 1.00 3 1.90 1.00
4 —1.30 1.00 4 1.90 1.00
5 —1.30 1.00

Xref —0.65 0.35

It should be noted that the unilateral DoEs given by the two methods are identical when p; =1,
because formula (E1.6.7) gives

hjink = X1 — Y1,

when p; — 1. The value of hy, is obtained using p;/q; = —pu(y;)/u(x;) = —p; — —1
for p; — 1. This result shows that the compensation implemented for the reference analysis
would be similarly applied for our proposed method if the bias would be implied through the
correlation information. However, when no correlation is suggested, no compensation is given.
Our proposed method is based on the reliability of the uncertainty and correlation information
given by the linking laboratories.

Moreover, since hj;; has no uncertainty when p; = 1, the unilateral DoEs are

[d;, U;]= [}’i X1~ Y1~ Xpefs K/ u(y) + uz(xref)]-

The uncertainty component of the unilateral DoE is determined to be smaller than that for the
case of no correlation. In general, since using the correlation information can make the analysis
more precise, the correlation information must be specified reliably.

The advantages of the proposed method and the method by Decker et al. can be summarized as
follows:
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(a) CIPM data (b) RMO data

: 2 3 4 5 1 2 3 4
Laboratory Laboratory

Figure E1.6.2: Dummy example in table The horizontal red line in (a) shows the CIPM
KCRV Xryef
1. The presently proposed method compensates insignificant biases in a CIPM KC only when
the possible biases are implied in the correlation information.

2. The method by Decker et al. compensates insignificant biases in a CIPM KC even when the
possible biases are not implied in the given information.

Moreover, since the method proposed here is based on statistical testing with a specific model,
the interpretation of the analysis result is statistically clear. Since the methods have different fea-
tures, the CC should choose an analysis method in accordance with its intention to implement an
RMO KC. Furthermore, when linking laboratories report smaller uncertainties than non-linking
laboratories in an RMO or the number of linking laboratories is large, the difference between
these two methods can be marginal as shown in EURAMET-AUV.V-K1.1.
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Example E1.7

Measurement uncertainty when using
quantities that change at a linear rate
— use of quartz He reference leaks to
calibrate an unknown leak

J. Greenwood, M.G. Cox

E1.7.1 Summary

There are numerous practical situations in which, a quantity of interest changes linearly with
respect to another quantity. The mass flow rate from a reference leak as a function of time is an
example of such a quantity. It is described here in terms of the depletion of helium from quartz
membrane reference leaks.

However, the main purpose of the work is to demonstrate what is a generally applicable process
for modelling the quantity and establishing the uncertainty associated with measured values of
the quantity, including those situations where there is covariance within the data.

The intention when presenting this example is to include many of the intervening steps that,
in published examples, might normally be omitted in providing the final result. Although this
may make the treatment rather protracted for those who already have sufficient understanding
of the subject, it is hoped that this approach will be useful to those readers wishing to gain
understanding by following the evaluation in smaller steps. In addition, the cases are presented
in terms of matrices and vectors (as in GUM-S2 [4]), and in the perhaps more familiar notation
of subscripted summations (as in the GUM [2]]). The matrix notation can be ignored with no loss
of completeness in the examples.

E1.7.2 Introduction of the application

E1.7.2.1 General

Leak detectors are commonly used instruments for identifying and quantifying the rate of gaseous
material leaving (or entering) an otherwise sealed system. They are routinely used in non-
destructive testing and as analytical tools in the vacuum industry.
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At the heart of many such instruments is a detector that is selectively sensitive to a gas of interest.
These detectors can be based upon a variety of principles ranging from solid state chemical sen-
sors to particle counters. One of the most commonly found types of leak detector is the helium
mass spectrometer leak detector (MSLD).

Gas reference leaks, such as the quartz membrane He reference leak, are often found within mass
spectrometer leak detectors where they are used to perform an ‘internal’ calibration of the gain
of the system.

Quartz membrane leaks usually consist of a sealed reservoir containing the gas; the reservoir has
an outlet connection that incorporates the membrane through which helium is able to permeate
at a rate that depends on temperature. To ensure a steady depletion rate the leak is stored under
stable conditions whilst not in use and is left ‘open’ (that is, not sealed) to maintain a stable
gradient of He across the membrane. An example of such reference leaks is depicted in figure

E17.1

The leaks can be calibrated using gas flow me-
ters of the type usually found in NMIs. This
would be normal practice for calibration of the .

‘master’ reference leaks belonging to a calibra- % .

tion laboratory. - ni . ‘ﬁ\
Alternatively, an ‘unknown’ leak can be cal-

ibrated by using two such reference leaks, '
which are chosen to ‘bracket’ the unknown
leak (see Case 3 — section [E1.7.8)). Typically,
the two reference leaks would be used to es-
tablish a linear calibration function for a mea-
suring instrument over the intervening range.
This would be normal practice for a calibra-
tion laboratory measuring ‘unknown’ leaks on
behalf of its customers and is the subject of the
scenarios presented here.

A, .

Both types of calibration are described in
ISO 20486 [[150], which in addition recom-
mends that uncertainty in calibrated leak rate
should be evaluated according to GUM prin- Figure E1.7.1: Reference leaks externally
ciples [2]], but does not provide details of the mounted on a leak detector (photograph cour-
evaluation process. A more general descrip- tesy of Vaseco Ltd.)

tion of leaks and leak detectors can be found

in [[151]] and the references therein.

E1.7.2.2 Scenarios

This example provides several scenarios that demonstrate the evaluation and use of values of a
quantity that change at a linear rate. The scenarios are presented in terms of the depletion of a
reference quantity over time, specifically, the depletion of He for a quartz membrane reference
leak.

In all cases leak rate is the dependent variable. The independent variable is time or instrument
response and measured values of both (time and response) have negligible uncertainty. Values
of leak rate do have associated uncertainty and in some cases are correlated.
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This example supports the related example [E1.1} however the scenarios are intended to have
general applicability for analogous measurements.

Case 1 sets out a basic situation in which there is no correlation. It is treated using the method
described in the ISO Technical Specification (ISO/TS 28037) concerned with the determination
and use of straight-line calibration functions [|77, clause 6].

Case 2 has correlations present. It is addressed by following the process described in the GUM
[2, annex E1.2] and in GUM-S2 [4] to calculate covariance. The covariance is then taken into
account in the evaluation of the fitting parameters using the method described in ISO/TS 28037
[77, clause 9].

Case 3 considers a situation where there are two independent reference leaks (each individually
corresponding to leaks described in Case 1). These are used together to calibrate a leak measuring
instrument, a mass spectrometer leak detector that is subsequently used to calibrate an ‘unknown’
leak. This scenario demonstrates how correlation arises between the values assigned to each leak
when both leaks are in use together.

Case 3 goes on to provide a demonstration of the treatment of correlation in the use of these
leaks. In practice this correlation is usually neglected. This example will demonstrate how it can
be appropriately incorporated in a LPU-type evaluation.

E1.7.3 Specification of the measurands

In all three cases, the measurand of primary interest is the leak (flow) rate Q of helium when
the leak is operating at reference temperature T,. There are also other measurands of interest at
intermediate stages within each scenario — these are the coefficients a and b of various straight-
line calibration functions for two reference leaks L; and L, and for the MSLD.

E1.7.4 Measurement model

The measurement model embodied in the following scenarios consists (in the first part) of steps
to establish estimates for the measurands a and b, the coefficients of a straight-line fit through
the given calibration data, and subsequently (in the second part) use of these coefficients and
other data to calculate a value for the measurand Q corresponding to leak rate at a defined
reference temperature. An underpinning concept, employed throughout, is that of a straight-line
calibration function as defined and elaborated in ISO/TS 28037 [[77]]. Case 1 uses clause 6, and
Case 2 uses clause 9 of that Technical Specification. Case 3 makes use of both clauses.

E1.7.5 Uncertainty propagation

There is uncertainty associated with each leak rate value and, in cases 2 and 3, there is correlation
between these quantities. The independent quantities are either time or detector response; it is
assumed that there is negligible uncertainty in their associated values during fitting. (If this
is not the case then the treatment of clause 7 in ISO/TS 28037 [[77]] applies in the absence of
correlations; otherwise the more general treatment of clause 10 becomes necessary.)

Measurement uncertainty evaluation follows the standard LPU-approach outlined in ISO/TS 28037
[77], the GUM [2] and GUM-S2 [4]]. In particular, it follows the guidance on treatment of corre-
lations elaborated in GUM Annex E1.2 and in GUM-S2 clause 6.2.
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E1.7.6 Case 1: No correlation within the data

Consider a reference leak L;. When not in use the leak is stored under fixed and stable conditions,
which are sufficient to maintain a linear depletion rate over the course of time. It is periodically
calibrated and it is assumed that there is no correlation within the calibration data. The calibrated

results for reference leak L, are given in figure|[E1.7.2[and table|E1.7.1
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Figure E1.7.2: Calibration results for a reference leak L;. Data points represent the reference
value with error bars corresponding to +1 standard uncertainty

Table E1.7.1: Calibrated results for reference leak L;

t/d Q/pmols™!  u(Q)/pmols~!
857 9.525 0.105
2571 8.250 0.103
3792 7.192 0.103
4689 6.623 0.094

The reference value Q corresponding to time t and temperature Ty, is to be established by forward
evaluation using a straight-line calibration function for the reference leak:

Q =a; + b]_ t, (E17.1)

where (a;, b) are the coefficients of the function.

Since there is no covariance in the data, a model corresponding to clause 6 of ISO/TS 28037 [|77]]
is assumed to apply. The associated evaluation can be readily implemented in a spreadsheet. It
should be noted that, if in addition there had been uncertainty in the time (independent variable)
data but still no correlations, the approach of [[77, clause 7] could instead be followed. This
approach is also relatively straightforward to implement in a spreadsheet calculation.
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The results are found to be:

a; = 10.185pmols™,
b, =—7.678 x 10*pmols~},
u(a;) = 0.119 pmols™!,
u(b;) =3.506 x 10> pmols—+d?,
u(ay, by) = —3.785 x 10 ° pmol?s—2d !,

The computed value Q has associated uncertainty u(Q) given by clause 11 of ISO/TS 28037
which is concerned with the use of the calibration function:

u*(Q) = CVqCas

where C, is an array containing the sensitivity coefficients, and V, is the corresponding covari-
ance matrix:

d
a_an 1 u?(a;) u(a;,b1) O

Co= aa_le =]t > Vo= ulay,by) u?(by) 0 >
2 b, 0 0 u2(t)

which is equivalent to
u?(Q) = u%(ay) + 2tu(ay, by) + t2u?(by) + b%uz(t),

where u?(t) is the variance associated with the time of use t.

The expression for u%(Q) is the same as that found by applying GUM equation (13) to equa-
tion (E1.7.1).

Suppose that the leak is to be used at t = 5000d and u(t) = 1d. Applying forward evaluation
using the above parameter values, the result for the computed value of the reference leak is

Q = 6.346pmols ™, u(Q) = 0.084pmols.

E1.7.7 Case 2: Correlation between leak rate data

Suppose there is a degree of correlation between each of the calibration results for reference leak
L.
E1.7.7.1 Measurement model

In this situation (following example in Annex D of [[77]]) the leak rate data Q j can be modelled
in terms of the observed rate Q,; and a common systematic effect, represented by e;:

Qj:on+es, (E172)

where j =1,...,m for m measurement data points.
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All known corrections are assumed to have been made; therefore, the best estimate of e, (its
expectation) is zero, with a standard uncertainty u(eg). In this scenario, as will shortly be seen,
a value of u(e,) is determined from available knowledge of the systematic effects contributing to
a calibration correction.

The observed values Q,, i have uncertainties u(Q, j) that are established in the normal LPU-manner
for all effects other than e.

Suppose that the estimate Q,,; is based upon an observed value to which a calibration correction
c; has been applied, where c; has standard uncertainty u(c;). Suppose also that the calibration
process is itself subject to certain effects that are essentially random in nature contributing a
standard uncertainty u(r;) to the overall standard uncertainty; and to ether poorly understood
systematic effects that will be the same each time a calibration is performed, contributing a stan-
dard uncertainty u(s) to the overall uncertainty. The calibration standard uncertainty u(c;) is
therefore given by

uz(cj) = uz(rj) + u?(s).

Suppose further (for sake of realistic demonstration) that besides calibration effects there are two
other, independent effects influencing the measurement of Q,; with corresponding uncertainties,
u(eq;) and u(ey;). These might for example be the uncertainty associated with correction of a
known bias and the uncertainty associated with finite resolution of observed indications.

In this scenario we therefore have

uz(on) = uz(elj) + Uz(ezj) + Uz(’”j),
u?(e;) = u’(s),

which when combined give the result

u*(Q;)) = u*(Q,y) +u’(es),
= uz(elj)+u2(ezj)+u2(rj)+u2(s). (E1.7.3)

To illustrate this scenario, consider the calibration results in table [E1.7.2

Table E1.7.2: Uncertainty contributions for reference leak L,

t/d Q;/pmols™  u(Q,;)/pmols™ u(e;)/pmols?
857 9.525 0.090 0.055
2571 8.250 0.087 0.055
3792 7.192 0.087 0.055
4689 6.623 0.076 0.055

As in Case 1, the reference value Q corresponding to a time t and temperature T is to be es-
tablished by forward evaluation using a straight-line calibration function for the reference leak:

Q=a+bt, (E1.7.4)

where (a, b) are the coefficients of the function.

Since the quantity e is common to all leak rate measurements, there will be correlation between
the quantities Q;; so a measurement model corresponding to clause 9 of ISO/TS 28037:2010 [[77]]
is adopted to establish values for the coefficients.
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Firstly though, a covariance matrix V, is needed that describes the correlations within the Q
data. This is established by following the process described, for example, in annex E1.2.3 of the
GUM and in GUM-S2, clause 6.2. This process involves defining functions f; of quantities x; such
that

Q; :fj(xi):

withi=1,...,N and j=1,...,m; thus

Q1 = f1(xi) = f1(Qo1,Qo2, Qo3, Qoss €5) = Qo1 + €5,
Q2 = folx;) = fo(Qo1, Qo2 Qo3, Qoss €5) = Qoz + €,
Qs = f3(x;) = f3(Q01, Q025 Q03, Qoss €5) = Qo3 + €5,
Q4 = fa(xi) = f4(Q01,Qo2,Qo3, Qo4 €5) = Qs + €5,

that is, the functions f; are defined in terms of all quantities x; that influence all Q;, even though
some of the quantities only have an effect in one or other functions.

In terms of matrices (as used in GUM-S2, clause 6.2)

Y =Q=f(X),
where
B 7 Qol
Q
Q02
Q,
Y = Q —] ; X = (203
Qs
Qo4
[ Q4
eS

The covariance matrix V, is given by

[ UZ(Q1) u(Qsz) U(Q1,Q3) U(Q1,Q4)-
Vo—c.v.cT = u(Q2,Q1)  u*(Qx)  u(Q2,Q3) u(Qs,Q4)
Q — MxVxby — )
u(Qs,Q1) u(Q3,Qy) u*(Q3)  u(Qs,Q4)

_U(Q4,Q1) u(Q4,Q2) u(Q4,Qs3) UZ(Q4) i

where
h . 2R 10001
9x oxn 0100 1
CX: =
T I
ox) xn 0001 1
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and
[2(Q1) 0 0 0 0 ]
0 u!Qp) O 0 0
Ve = 0 0 u*(Q3) 0 0
0 0 0  u*(Qu) O
o 0 0 0 u’(e)]

Alternatively, the components of the covariance matrix can be evaluated in terms of subscripted
summations. Thus, the variance, u?(Q j) for Q; can be calculated using GUM equation (E1) [that
is, GUM equation (10)]:

u(Q;)) = Z(af) u?(x,),
i=1 L

and the covariance terms u(Q;, Q) can be calculated using GUM (E.2):

o
u(Qj,quéj)_Zaf] afk u?(x;).

Note that in cases where any of the terms u(x;, xxx;) # 0, that is, off-diagonal terms are not equal
to zero, then GUM formule (E1) and (E2) can no longer be used and, noting that u(Q;,Q;) =
u*(Q j), all terms of the covariance matrix V, are instead given by

N N f f
u(Qj:Qk Zl: 3_8_ ,X¢). (E1.7.5)
Whichever approach is used, matrix or subscripted summations, the result is that
uZ(Ql) = uz(Qol) + uz(es):
uZ(QZ) = uz(Qo2) + uz(es):
uZ(QS) = UZ(QOS) + uz(es):
u?(Q4) = u*(Qoq) + u?(ey)-

and

u(Q), Quzy) = u(ey).

E1.7.7.2 Model fitting

In matrix form, the data for fitting by method ISO/TS 28037 clause 9, expressed in terms of the
quantities used therein, correspond to

ty Q u*(Q) u(Q1,Q2) u(Q1,Q3) u(Q1,Q4)
w=t=| | yoq=| 2| v o| Q) v(Q) uQ:2Q3) u@:Q)

ts |’ Qs |7 7Y u(Qs,Q1) u(Q3,Qy) u*(Q3) u(Q3,Q4)

t4 Q4 u(Q4,Q1) u(Qq,Q2) u(Q4,Q3) u*(Qy)

Examples of evaluating measurement uncertainty First edition



Example E1.7. Straight-line calibration of a leak flow rate 117

In this example we have

857 9.525

oo | BTNy ] 8250 e
3792 | 7.192 ’
4689 6.623

0.0111 0.0030 0.0030 0.0030
B 0.0106 0.0030 0.0030 )
Vy= 0.0106 0.0030 | (Pmol/s)™.

sym. 0.0088

In practice, the correlation matrix may be of more intuitive interest than the covariance matrix
(and has the advantage of being dimensionless). This is defined in terms of the covariance matrix
and component uncertainties by

u(yj, yi)

R(y;, =—;

O I = L0y ulrd)

hence
1 0.279 0.279 0.306
1 0.286 0.313
R, = 1 os13 |- (E1.7.6)

sym. 1

The results of the fitting are

a=10.184pmols !,
b=—7.671x 10"*pmols~1d !,
u(a) = 0.115pmols™?,
u(b) =2.939 x 10> pmols~1d !,
u(a, b) =—2.708 x 10~® pmol®s—2d ",

ISO/TS 28037 [[77] provides algorithms to perform the necessary calculations to evaluate a, b,
u(a), u(b) and u(a, b). Unfortunately, they are not generally amenable to implementation using
spreadsheet cell formulae and some other means of solving, such as a mathematical software
package or user-written code, is required. For example, ISO/TS 20837 [|77, Annex F] describes
software and source code that is provided free by NPL.

The standard uncertainty u(Q) for a forward evaluation using equation (E1.7.4) is evaluated by
a standard GUM-LPU approach. This can be expressed in matrix format as in ISO/TS 28037,
clause 11.2:

u*(Q) = CyVqoCaqs

where Cg, is an array containing the sensitivity coefficients, and V, is the corresponding covari-
ance matrix:

g—an 1 u?(a)  u(a,b) 0
Co=| 5 |=|t | Vo=| u(ab) u*b) o0 :
29 b 0 0 u?(t)
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which equates to
u?(Q) = u?(a) + t2u?(b) + b2u%(t) + 2tu(a, b).

This is the same expression that is found by applying GUM equation (13).

For example, a forward evaluation using equation (EI1.7.4) at say t = 5000d with u(t) = 1d
gives Q = 6.349 pmols~! and standard uncertainty u(Q) = 0.088 pmols™*.

If there was no correlation in the data ...

The corresponding results of fitting can be evaluated for the situation where there is no correlation
in the data, that is, the effect characterised by u(s) is in this case not common to each flow
calibration measurement. The data model is now described by:

Q; =Q,j, (E1.7.7)
u*(Q)) = u*(Qoj) = u?(eg;) + 1’ (ey;) + u(c)), (E1.7.8)

which corresponds to the data model in Case 1. For the data in table[E1.7.3] the process described
in clause 6 of [|77]] can be used to calculate the fitting results in this case, giving the following:

a =10.185pmols™* =a,,
b=-7.678 x 10 *pmols™d! =b,,
u(a) = 0.119 pmols™* = u(ay),
u(b) =3.506 x 10> pmols~1d* =u(by),
u(a,b)=—3.785x107° pmolzs_zd_1 =u(ay, by), (E1.7.9)

for which a forward evaluation at t = 5000 d with u(t) = 1d gives the estimate Q = 6.346 pmols™*
and standard uncertainty u(Q) = 0.084 pmols™*.

Table E1.7.3: Calibration results for reference leak L,

t/d Q;/pmols~  u(Q;)/pmols~*
857 9.525 0.105
2571 8.250 0.103
3792 7.192 0.103
4689 6.623 0.094

The difference between the results in the two different scenarios (correlation and no correlation)
is not large in this particular example; however, the extent of the difference is entirely dependent
upon the data.

Further data for a second leak

For later reference (in Case 3 — section [E1.7.8)), consider a second leak L, for which the data in
table [E1.7.4|is available, where the data model for L, is as described above for L; in equations
(E1.7.2) and (E1.7.3).
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Table E1.7.4: Data for reference leak L,
t/d Qj/pmols_1 u(Q,;)/pmol s! u(e,)/pmols™?
100 4.391 0.046 0.055
474 4.293 0.045 0.055
856 4.190 0.044 0.055
2568 3.724 0.041 0.055
3791 3.531 0.040 0.055
4692 3.402 0.037 0.055
The results of the fitting for leak L, are
a=4.376pmols™!,
b=-2.183x 10 *pmols™td!,
u(a) = 0.062 pmols™?,
u(b) =9.706 x 10~ pmols~'d ",
u(a, b) =—2.208 x 10~/ pmol?®s2d !,
with
[ 1 0.594 0.599 0.615 0.620 0.636 ]
1 0.604 0.621 0.626 0.642
1 0.626 0.632 0.648
Ry = 1 0.648 0.665 (E1.7.10)
1 0.671
| sym. 1

Correlation in this case is considerably higher than previously as seen by comparing the off-
diagonal terms in the correlation matrix with those in the matrix (EI.7.6). Such a statement

could not easily be made by examining covariance matrices.

Forward evaluation using equation (E1.7.4), again at t = 5000d with u(t) = 1d gives the esti-
mate Q = 3.284pmols™! and standard uncertainty u(Q) = 0.063 pmols™.

The corresponding results of fitting a straight line can again be evaluated for the situation where
there is no correlation, as detailed in equations (EI1.7.7) and (E1.7.8). In this case the data is

given in table [E1.7.5

Table E1.7.5: Calibration results for reference leak L,

t/d

Q;/pmols~  u(Q;)/pmols~*

100
474
856
2568
3791
4692

4.391
4.293
4.190
3.724
3.531
3.402

0.072
0.071
0.070
0.069
0.068
0.066
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The process described in clause 6 of [|77]] can again be used to calculate the fitting results in this
case, giving
a, = 4.380 pmols ™!,
b, =—2.200 x 10 *pmols™d},
u(a,) = 0.045 pmols™!,
u(b,) =1.620 x 10> pmols—+d?,
u(ay, by) =—5.713 x 1077 pmol®s—2d !, (E1.7.11)

A forward evaluation at t = 5000d with u(t) = 1d gives the estimate Q = 3.280 pmols™' and
standard uncertainty u(Q) = 0.054 pmols™!.

E1.7.8 Case 3: Use of two reference leaks to calibrate a third un-
known leak

In this scenario, the two reference leaks L; and L, are used to calibrate a leak detector at points
bracketing the value of an uncalibrated leak L,. The previously determined calibration functions
for the reference leaks are used to establish reference values at the time of use. Each leak rate is
then calculated for its prevailing temperature and the corresponding MSLD response is observed.
A linear fit is then performed to this stimulus-response data to calibrate the MSLD. Finally, taking
the MSLD response from the ‘unknown’ leak, the corresponding leakage rate is evaluated and
expressed in terms of a defined reference temperature.

E1.7.8.1 Specification of the measurands

In this scenario the principal measurand is the reference value Q, for the ‘unknown’ leak L,.
During the evaluation process it is necessary to evaluate intervening measurands ay; and by, the
coefficients of the MSLD calibration function.

E1.7.8.2 Measurement model
Reference values

The reference values Q; and Q, corresponding to a time t and temperature T, are established
by forward evaluation using the straight-line calibration functions for each reference leak:

Ql =a1+b1t, Q2 =a2+b2t. (E1.712)

Measured values

In use at temperatures T; and T, respectively, the two reference leaks L, and L, produce helium
at rates q; and g, given by:

g1 =Q[1+ a(AT, +8T)] = (a; + by t)[1+ a(AT; +8T)],

where
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a is the temperature coefficient for the depletion rate in the region of reference tempera-
ture Ty, assumed to be the same for both reference leaks,

ATy, =T, =Ty,
ATy, =T, — Ty,

T, is the temperature assigned to leak L;, for example, measured temperature of its leak
housing or coupling,

T, is the temperature assigned to leak L,, for example, measured temperature of its leak
housing or coupling,

T, is the reference temperature for the leaks,

0T isthe (unknown) temperature measurement error, corresponding to the difference between
the assigned temperature and the actual temperature of the quartz membrane (which con-
trols the rate of helium permeation). The best estimate (expectation) of 8T is zero but the
uncertainty is finite. This is an example of a poorly known systematic effect, as described
in GUM-6 [|5] clause 10.4].

MSLD Calibration

The MSLD responses corresponding to g; and q, are p; and p,, respectively, and it is assumed here
that the associated standard uncertainties u(p;), u(p,) are negligible. The calibration function
for the MSLD established from the data (p;,q;) and (p,, q,) and the associated covariance is

q = ay + byp, (E1.7.14)

where p is the MSLD response and q is the corresponding leak rate.

Calibration of unknown leak

The leak rate g, corresponding to MSLD response p, for a leak L, operating at temperature T,
can now be evaluated and the value Q, can be established that is referenced to a temperature
Ty; thus

qx = ay + bypx (E1.7.15)
and
dx
X = 5 E1.7.16
Q [1+ a (AT, +0T)] ( )
where

a, is the temperature coefficient for the depletion rate in the region of the reference temper-
ature,

AT, =T,—Tp

T, is the temperature assigned to leak L,, for example, measured temperature of its leak hous-
ing or coupling,

T, is the reference temperature for the leaks, assumed to be the same for all three leaks,

0T is the (unknown) temperature error, also assumed to be the same for all three leaks.
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E1.7.8.3 Uncertainty Propagation
Reference values

Correlation within the data for the reference leaks could appear in various forms that are, for rea-
sons of space, not considered here but are nevertheless treatable using the methods in ISO/TS 28037
[77]. The most likely two such scenarios are, firstly, the common effect described in Case 2 is
present for both leaks and for all values (as might arise when the leaks are calibrated using the
same method with the equipment having the same traceability for all reported results); or, sec-
ondly, there is a ‘pair-wise’ common effect between corresponding values for the two leaks, but
little or no correlation within the data for each leak (as might arise if the leaks are both calibrated

at the same time but the method, equipment and traceability are not fixed as in the first case).

In our example scenario we shall assume that the correlations within and between the data for
each reference leak are not significant and the results evaluated in Case 2, equations (E1.7.9)

and (E1.7.11)), will be used.

Measured values
Since the quantities t, & and 6T are common to both leak rate expressions [equations (E1.7.13))],
there will be correlation between the estimates gq; and g, of those quantities.

A covariance evaluation is needed that represents the correlations in the data. This can be es-
tablished by following the process described in matrix form in clause 6.2 of GUM-S2 [|4] and in
subscripted summation form in GUM Annex E1.2.3.

The process begins by defining two functions f; and f, from equations (E1.7.13) such that

q1 = f1(x;) = filay, by, ap, by, t,a, AT, AT,,6T) = (a; + by t)[1+ a(AT, +8T)],
qo = fo(x;) = folay, by,as, by, t,a, AT, ATy, 6T) = (ay + byt)[1+ a(AT, +8T)],

that is, f; and f, are defined in terms of all quantities x; that influence both q; and q,, even
though some of the quantities only have an effect in one or other function.

In the terminology of GUM-S2 [4] clause 6.2, the quantities are

X=(a1 b1 as b2 t a ATl ATZ 6T)T,
Y=(q )"

The covariance matrix V, is given by

Uz(‘h) u(q1,92)

V.=C.V CT =
y x Vb,
u(qz,92) Uz(‘lz)

where, in this example, N =9, m = 2 and we have
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o 1+ a(AT, +8T) 0
o t[1+a(AT; +6T)] 0
g & 0 1+ a(AT, +8T)
g_g g’% 0 t[1+a(AT,+5T)]
Co=| % %L |=|b[1+a(AT;+8T)] by[1+a(AT,+5T)]
IR (a + by t)(AT; +8T) (ay+ bot)(AT, +6T)
aaAflT1 aaAf%l a(a; +byt) 0
Ay aan 0 a(az+byt)
% % a(a; + byt) a(a, + byt)
and
u?(a;)  u(ay,by) 0 0 0 0 0 0 0
u(ay,by)  u?(by) 0 0 0 0 0 0 0
0 0 u?*(ay)  u(ap,by) O 0 0 0 0
0 0 u(a,, by)  u?(by) 0 0 0 0 0
V= 0 0 0 0 u}(t) 0 0 0 0
0 0 0 0 0 u¥(a) 0 0 0
0 0 0 0 0 0 u?(ATy) 0 0
0 0 0 0 0 0 0 u(AT,) 0
0 0 0 0 0 0 0 0 u?(8T)

Alternatively, the covariance matrix can be calculated in terms of subscripted summations in line
with annex E1.2 of the GUM [2]], albeit using equation (E1.7.5) rather than GUM equations (E1)

and (E2) as several of the quantities are correlated (namely a; with b; and a, with b,.

This gives (remembering that the expectation of 8T is zero),

Uz(ch) =u(q1,91)
= (1+aAT)*u?(a)) + t2(1+ aAT*u?(by) + bI(1 + aAT;)*u?(t)

+ AT;%(a; + b t)%u?(a) + a®(ag + by t)*u®(ATy) + a®(a; + by t)*u?(8T)

+2t(1 4+ aAT))?u(ay, by),
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u*(qs) = u(qs,9>)
= (14 aAT,)*u?(ay) + t2(1 + aAT,)*u?(by) + b§(1 + aAT,)%u?(t)
+ AT,%(ay + byt)?u?(a) + a®(ay + byt 2u?(AT,) + a?(ay + byt )?u?(8T)
+2t(1 + aAT,)?u(a,, by)

and

u(q1,92) = ulq2,q1)
= byby(1+aAT)(1 + aATy)u?(t)
+ (ay + byt)(ay + byt ) AT AT,u?(a)
+a?(a; + byt)(ay + byt u?(5T).

MSLD Calibration

In matrix form, the data for fitting by method ISO/TS 28037, clause 9 (expressed in terms of the
variables used in [[77]]) correspond to

2
_ . _| P1 _ | % _ | u(qy) u(qs1,92)
x—p—|: D> ]’ y—q—[ q> ], Vy_Vql’qz_[ u(qi,qo) u*(qy) ’

Solving the model establishes estimates for the coefficients ay; and by [for equation (E1.7.14))]
and the elements of the covariance matrix

V.. = Uz(aM) u(ay, byr)
ab ™~ u(ay, bu) Uz(bM) '

Note on calculations

Note that in general the calculations in ISO/TS 28037 clause 9, Steps 1 and 2 cannot easily be
implemented within a spreadsheet and some means of performing matrix algebra is required;
however, the solution when fitting to just two data points can be written out in a relatively short
form that is amenable to spreadsheet evaluation.

Step 1: described in clause 9.2.2 of ISO/TS 28037 requires factorisation of the covariance matrix.
For a matrix V suchasV, . established in Case 3 above, this involves calculating the components
of a lower left matrix L such that

V:( Y ):LLT
V2 V3
(L O
L_( L I3 )
which is satisfied when

11:\/V_15

and

Vo
ly=—,
VvV
vy
13 = V3 _ .
V1
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Step 2: described in clause 9.2.2 of ISO/TS 28037 requires solving several systems of equations
to establish values for variables identified as f, g and h. For the 2-point systems described above
the values are found to be:

1
fl_aa
1—(1,/11)
fzz%’
3
g =h
1 ll’
__ DPa—P1 (15/14)
gz_l—’
3
q1
hi ==
1 ll’
h _Q2_Q1(lz/11)
2— .

3

Calibration of unknown leak

Forward evaluation, to establish a value for an unknown leak rate g, and its associated standard
uncertainty u(qy) from an observed MSLD response p, and associated standard uncertainty u(p,),

uses equation (E1.7.15):
qx = am + bupy,

and again follows the process described in clause 11 of ISO/TS 28037 [[77]], giving in matrix form
u*(g,) = C; V,Cy,

where C, is an array containing the sensitivity coefficients and V, is the corresponding covariance
matrix

)
—33;[ 1 u?(ay) u(ay, by) O
3
Cx= ag;[ =1 pPx | Vi=| ulay,by) u®(by) 0 )
9y
e by 0 0 u*(py)

which is equivalent to
u?(qy) = u*(ay) + 2p,ulay, by) + piuz(bM) + biﬂuz(Px),

as is found by applying GUM equation (13) to equation (E1.7.15)

Calculation of reference value

The reference value Q, calculated using (E1.7.16), namely,

dx
[1+a,(AT,+08T)]

Qx=
has an associated uncertainty u(Q,) given in matrix form by

u?(Q,) = chvacQX,
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126
where
Cy. %, u¥(q) O 0 0
2
Ca, —L (AT +5T), 0 ua) O 0
CQx - = Q2 > VQx = 2
Car, -2, 0 0 u’(ATY) 0
Q2
Cst —oa, 0 0 0 u?(8T)

which is equivalent to
u3(Q,) = Ciuz(qx) + nguz(a) + CiTXUZ(ATx) + C52Tu2(6T),

as is found by applying GUM equation (13) to equation (E1.7.16)

E1.7.8.4 Numerical illustration

To illustrate, consider a calibration that is performed using the two reference leaks for which
calibration data is available as depicted in figure [E1.7.3|and tables|E1.7.6|and [E1.7.7}
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Figure E1.7.3: Calibration data for the two reference leaks. Data points represent the reference
value with error bars corresponding to +1 standard uncertainty

Table E1.7.6: Calibrated reference values for reference leak L,

t/d Q;/pmols™  u(Q;)/pmols*
857 9.525 0.105
2571 8.250 0.103
3792 7.192 0.103
4689 6.623 0.094
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Table E1.7.7: Calibrated reference values for reference leak L,

t/d Q;/pmols™  u(Q;)/pmols™*
100 4.391 0.072
474 4.293 0.071
856 4.190 0.070

2568 3.724 0.069
3791 3.531 0.068
4692 3.402 0.066

Reference values

Since there is no covariance in the data, a straight line can be fitted for each set of data following
the approach detailed in clause 6 of ISO/TS 28037 [[77]. The results of these operations are

a, = 10.185pmols?,
b, =—7.678 x 10 *pmols—td !,
u(a;) = 0.119 pmols ™!,
u(b;) =3.506 x 10> pmols™d?,
u(ay, b;) =—3.785 x 10 ®pmol?s—2d "

and

a, = 4.380 pmols™!,
by, =—2.200 x 10 *pmols~'d?,
u(a,) = 0.045pmols™?,
u(by) =1.620 x 10> pmolstd 1,
u(a,, b,) = —5.713 x 1077 pmol®*s—2d ™",

Note that values for the reference leaks do not need to be enumerated in this example; however,
for completeness the values found by applying forward evaluation using the above parameters
and the process described in clause 11 of ISO/TS 28037 for equations (E1.7.12)) above are found
to be:

Q, = 6.346pmols™*, u(Q;) = 0.084 pmols ™,
Q, =3.280pmols™!,  u(Q,)=0.054pmols~*

when t = 5000d and u(t) =1d.

Measured values

Suppose that the leak is to be used at t = 5000d, u(t) = 1d and the calibration conditions are

as in table [E1.7.8|for which it is calculated [equation (E1.7.13)] that

q; = 6.735pmols ™, g, = 3.473 pmols™L.
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Table E1.7.8: Conditions during use of reference leaks L; and L,

Quantity Value Standard uncertainty

AT, 2.11K 0.52K
AT, 2.03K 0.53K
a 0.029 K1 0.005 K1

The covariance matrix for the data is then

_ _ uz(Ch) u(q1,92)
Vy =Vara, _[ u(q1,92)  u*(q2) ]

[ 0.030 0.0066

2
0.0066 0.009 ](pm"l/ )

Hence, the correlation matrix is

|1 0.398
94~ | 0398 1

MSLD Calibration

Suppose that the MSLD indications (in display units, du) corresponding to q; and g, are observed:
p1 =149.2duy, P2 =52.1du.
The parameter values in the measurement equation (E1.7.14) are then found to be

ay = 1.722pmols™!,
by = 0.034pmols~'du?,
u(ay) = 0.139pmols™?,
u(by) = 0.0017 pmols—* du?,
u(ay, by) = —1.701 x 10~*pmol? s 2 du".

Calibration of unknown leak

Suppose now that when an unknown reference leak L, is connected to the MSLD the response

is 120du. Forward evaluation using the MSLD calibration function then estimates a leak rate of

gy = 5.754pmols~! and an associated standard uncertainty of u(q,) = 0.135 pmols™.

Calculation of reference value

Finally, a value for the unknown leak rate can be established that is referenced to a temperature
Ty. Suppose that the calibration conditions are those in table [E1.7.9

The reference value Q, at time ¢t is therefore calculated to be

Q, =5.427pmols™;  u(Q,) =0.158pmols™!.
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Table E1.7.9: Conditions during measurement of Q,

Quantity Value Standard uncertainty

AT, 2.01K 0.55K
oy 0.030K™! 0.005K™!

E1.7.9 Reporting the result

The estimate of the measurand Q and the associated standard uncertainty are directly reported
in the conventional manner according to the GUM [2] including the less common additional
reporting of covariance where required.

In practice two situations might arise. In the one case the evaluation of a leak rate may be a
multi-step process, in which case the intermediate measurands a and b will be reported and
taken as explicit inputs to the next stage of the evaluation process (perhaps by a different party).
In the other case a and b may not be explicitly evaluated at all; instead they may be directly
incorporated into the evaluation process which reports a result for the measurand Q.

In the scenarios presented here, for the sake of completeness, the first case is taken to apply.

E1.7.10 Interpretation of results

Case 2 demonstrates that when correlation is present the correlation matrix gives greater insight
as an indicator than the covariance matrix. Correlation in this case is considerably greater for L
than for L; as seen by comparing the off-diagonal terms in the correlation matrix (E1.7.10) with
those in the matrix (EL.7.6)). Such a statement could not easily be made by examining covariance
matrices.

The overall significance of correlation is dependent on the specific data and it cannot easily be
evaluated without a measurement model and a proper analysis.

The data for L, show signs of curvature, visually evident in figure [E1.7.3] even though a chi-
squared test for linearity is passed (a straight line just about passes through all error bars). A
higher order function such as a quadratic [[110]] would likely result in lower and more random
residuals. A similar approach to that described here could be applied, but this is beyond the
scope of the present work.
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Example E1.8

Factoring effects such as calibration
corrections and drift into uncertainty
evaluations

J. Greenwood, M.G. Cox, N. Fischer

E1.8.1 Summary

This activity comprises two examples that demonstrate potential danger in the practice of factor-
ing effects such as calibration corrections and drift into uncertainty evaluations as rectangular
distributions, and presents ways of handling these effects that is consistent with the GUM suite
of documents. These examples illustrate that, in spite of the availability of appropriate guidance,
significant known bias as a result of effects such as calibration corrections, drift or consumption,
hysteresis and non-linearity is often not properly handled. This abuse could bias conformity
decisions and thereby place either the consumer or supplier at an unfair disadvantage.

E1.8.2 Introduction of the application

Poor practice in the evaluation of measurement uncertainty can influence decisions on which it
depends. Still, known corrections are often not applied to observed values when computing a
measurement result and instead the uncertainty is enlarged in an attempt to compensate. This
poor practice inflates coverage intervals and could bias conformity decisions and therefore place
either the consumer or supplier at a disadvantage. The consequences of such poor practice are
demonstrated in several examples.

E1.8.3 Specification of the measurand(s)

Denote an output quantity by Z and an input quantity by Y representing an indicated value. The
measurand generically is

Zuncor =Y (E1.8.1)
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for an uncorrected model as in section [E1.8.4! For a corrected model it is
Zeor =Y +X, (E1.8.2)

where X is the quantity regarded as a correction.

E1.8.4 Measurement model

A ‘best estimate’ of Y is the arithmetic mean
1 n
y=;;_yi, i=1,...,n, (E1.8.3)

where the y; are unbiased observations made independently under repeatability conditions of
measurement.

A ‘best estimate’ of Z .., is then

Zuncor = Y- (E1.8.4)

A value x of a correction quantity X is often incorporated to account for a systematic effect:
Zeor =Y + X. (E1.8.5)

x is the correction for a known bias or systematic error in the measuring system. A further
term can be included in model (E1.8.4) or (E1.8.5) relating to the resolution of the measuring
instrument. Its inclusion is straightforward and is treated by Lira and Woger [|[152]]. We do not
consider that term here.

The ‘known systematic error’ can arise from a variety of sources including calibration, effects due
to temperature deviation, drift, hysteresis, consumption of material and ‘wear’, and effects due
to method or operator bias.

E1.8.5 Uncertainty propagation

Knowledge concerning Y is in terms of a set of repeated observations made under repeatability
conditions (section [E1.8.4). The arithmetic mean y of the observations is taken in (EI1.8.3) as
an estimate of Y. The associated standard uncertainty u(y) is given by [2} clause 4.2]

2 _ 1 C 2
COI= Ly 0

Knowledge concerning the systematic error is that a value x and an associated standard uncer-
tainty u(x) are available. The use of this knowledge in practice depends on whether a correction
is or is not to be made to y.

In expressions (E1.8.4) and (E1.8.5)), y can be considered as a realized value of a random variable
with that variable typically modelled by the normal distribution N(y, u?(y)), which is strictly valid
only for large n. In cases where n is small, the t-distribution should be used [2, annex G.3].
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E1.8.5.1 Case 1: Good practice

Good practice, as assumed by JCGM guidance, dictates that a correction is made for a known
systematic error. This is the situation represented in expression (E1.8.5)), in which x is a realized
value of a random variable. That variable is often modelled by a rectangular distribution with
mean x and standard deviation u(x).

The standard uncertainty u(z.,,) associated with the corrected value 2, in expression (E1.8.5)
is given by

U (20op) = 2 (y) + 12 (x). (E1.8.6)

There is a correspondence between the right-hand sides of expressions (E1.8.5) and (E1.8.6)) in
that the terms in the former are the means of the corresponding random variables and the terms in
the latter are the according variances of these random variables. That is, expression can
be regarded as giving the squared standard uncertainty associated with the corrected measured
value 2., in (E1.8.5). Said another way, expression is a realisation of measurement
model and expression gives the squared standard uncertainties corresponding
to the terms in the model.

For purposes of conformance assessment, we can regard the corrected value 2, as modelled by a
probability distribution with mean 2., and standard deviation u(z..,). When n is large and x has
a normal distribution, the distribution relating to z.,, can be taken as normal: N(2.., u*(2cop))- If
that is not the case, a Monte Carlo method [|3]] can be used to obtain its probability distribution
given probability distributions for Y (for example, Student’s t) and X (for example, rectangular).

E1.8.5.2 Case 2: Poor practice

Common practice [[152H156] often involves making no correction and increasing the uncertainty

associated with the value of the measurand. On this basis the reported uncorrected value would
be

Zuncor =Y (E1.8.7)

A variety of approaches have been adopted for evaluating the associated uncertainty [|154]]. For
the purposes of demonstration let us suppose that the associated ‘standard uncertainty’ u(2yncor)
is given by one of the commonly used approaches, for which it is assumed that

U (Zuncor) = U2(y) + u?(x) + x?/3. (E1.8.8)

The term x?/3 is included in the uncertainty evaluation as a consequence of modelling the sys-
tematic effect as a rectangular distribution with mean of zero and half-width equal to the mag-
nitude of x. Other assumptions would give rise to generally somewhat different contributions.

‘Standard uncertainty’ is given in quotation marks since, as stated in [[157]], it is not a standard
uncertainty as defined in the GUM [2]]. There is no one-to-one correspondence between the terms
in expressions (E1.8.7) and (E1.8.8) as in the expressions for the corrected value and the
associated variance (squared standard uncertainty) (E1.8.6). It does not possess the properties
of internal consistency, transferability and universality: see GUM [2, clause 0.4] and the strong
comments in [[157]].

The use of expression (E1.8.8) to obtain a ‘standard uncertainty’ for an uncorrected value con-
stitutes poor practice.
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It is not proper to attach a probability distribution to z,,..;- However, poor practice might assume
the normal distribution N(2yneor> U2 (Zyncor))-

Not correcting for a systematic effect can be serious. Molinar et al. [[158]] report in the context
of methods for evaluation of uncertainty increase due to chemical impurities:

‘If no correction is applied, an additional type B uncertainty component u ~ 0.2 mK
if a rectangular probability distribution is assumed. The additional component is
nearly one order of magnitude larger than the other uncertainty components of the
fixed-point realization.’

Further, Westgard et al. [[159]] state in the context of laboratory medicine:

“To characterize analytical quality of a laboratory test, common practice is to estimate
Total Analytical Error (TAE) which includes both imprecision and trueness (bias).
The metrologic approach is to determine measurement uncertainty, which assumes
bias can be eliminated, corrected, or ignored. Resolving the differences in these
concepts and approaches is currently a global issue [... ]

Elimination or correction of [...] biases is not always possible, even with calibration
based on comparative patient results; therefore, bias must still be measured and
monitored and should not be ignored or assumed to be accommodated by long-term
estimates of measurement uncertainty.’

E1.8.6 Reporting the result

E1.8.6.1 Impact on tests against specification or tolerance limits
General

Conformance probability [6l definition 3.3.7] is the probability p that the measurand Z lies in a
tolerance interval [a, b], with a < b, that is

b
p=Prla<Z<b)= f g(n)dn,
a
where g is the probability density function for Z [|6, clause 7.4]. An interval such as [a, b] is called
a coverage interval for Z and p is the associated coverage probability. Guidance on constructing
a coverage interval with a desired coverage probability given the probability distribution for Z is
contained in JCGM 101:2008 [3]].

Using the recommended practice in section when g is normal, resulting from Y and X
being normal, the integral can straightforwardly be computed. Otherwise, a Monte Carlo calcu-
lation [|3]] can be used to establish an approximation to g since a false assumption of normality
might lead to an invalid indication of conformance probability.

Conformity decisions based on poor and good practice

The consequences of the poor practice regarding corrections in subsection|E1.8.5.2|can be demon-
strated by example. Suppose the primary length of a product is tested using an appropriate mea-
suring instrument and there is an upper tolerance limit T; = 100 cm on the length. Suppose the
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known correction and its associated standard uncertainty are
x =0.20cm, u(x)=0.05cm.

A measured length value and its associated standard uncertainty are
y =99.75cm, u(y)=0.15cm.

Both x and y have Gaussian distributions.

Using expressions (E1.8.5) and (E1.8.6), the corrected value and associated standard uncertainty
are

Zeor =Y +X =99.95cm, U(2zeop) = [U2(y) + ?(x)]V? =0.16 cm.

The conformance probability is the area to the left of T;; = 100 cm under the normal curve having
mean 2., and standard deviation u(z.,). That probability is 0.62.

On the other hand, working with uncorrected values, expressions (E1.8.7) and (E1.8.8) give

Zuncor = Y = 99.75 cm, U(Zyneor) = [12(y) + u?(x) + x%/3]Y2 = 0.20 cm.

The conformance probability is now the area to the left of T;; = 100 cm under the normal curve
having these values as mean and standard deviation. That probability is 0.90, implying that a
significantly greater proportion of non-conforming items might be accepted.

Figure|E1.8.1|depicts these two situations.
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Figure E1.8.1: Using a corrected value, the conformance probability (0.62) is the shaded area in
the left figure, whereas using the uncorrected value, the conformance probability (0.90) is the
shaded area in the right figure; the latter (poor practice) approach allows a greater proportion
of non-conforming items to be accepted

Figure [E1.8.2shows the conformance probability for a range of values y.
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Figure E1.8.2: Conformance probability for a range of measured values y with corrected and
uncorrected bias in the example described in section|[E1.8.6.1

E1.8.7 Treatment of drift

In many practical situations it is difficult to model drift with any degree of confidence — in most
cases it is probably one of the least reliable among the influence quantities.

In general terms calibration drift usually corresponds to a change in a calibration value over
the course of time. This variation might occur in a predictable or not so predictable fashion
depending upon the underlying source of the variation.

In situations where a calibration function is established from data consisting of reference values
and corresponding observed values (as elaborated in [[77]] and [[110]). The drift could be mod-
elled in terms of a time dependent relationship for the fitted coefficients, perhaps resulting in a
linear function

Z(t)=a(t)+ b(t)Y, (E1.8.9)
in which a and b are time-dependent parameters whose value is influenced by historical calibra-
tion data as well as the most recent data.

This procedure is generally not straightforward and is unlikely to be widely adopted. In these
circumstances some other approach is usually adopted, such as analysis of any trend in estimated
values of the parameters.

However, in many situations such a calibration function that directly relates an observation to
an estimate of the measurand is not established. Instead the available calibration data is used to
estimate an additive (or multiplicative) correction, as for example

Z=Y+C. (E1.8.10)
In use, the measurand is estimated by

z(t) =y +c(t),
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where the estimate for the calibration correction c(t) at time of use t is based upon calibration
data

c=c(t;)=z—y,

and where z; = 2(t;) and y; = y(t;) are calibration values corresponding to a reference value
and observation obtained at time t;

These approaches usually seem intuitively more reasonable to laboratory practitioners, but in
practice problems remain due to the generally small amount of information available (say 3 or 4
successive annual observations) and the question of how much weight to give to historical data.

Where there is enough data to perform a fit to a trend in the ¢;, such a fit and use of an extrapo-
lated calibration value c(t) based upon a functional fit to historical data seems appropriate. This
approach is demonstrated in Models 1 and 4 below.

In other situations there is insufficient data to draw any strong conclusions about how c; varies
over time. Consequently, the most recent calibration correction c, is often taken to be the best
estimate of C. In other words, an estimate

c(t)=c,+d(t), (E1.8.11)

is made, in which d(t) is a poorly understood bias effect with an assumed mean value of zero.
This is the approach demonstrated in Models 2, 3, and 5 below. (Arguably the mean calibration
value could be chosen rather than c,,; however, there is usually a preference to give more weight
to the most recent value.)

The question that remains is how to evaluate the uncertainty associated with equation (E1.8.11).
If the expectation of the drift is genuinely zero (rather than this simply being a convenient as-
sumption) then assigning a distribution centred on zero is quite reasonable. Some guidance [[160]
suggests that in this case the data should be considered as a Type A contribution (see Model 5
below). In practice, however, the available data is often used to identify limit values for a rect-
angular distribution with expectation value zero and limits +ay.

Common estimates for a; are
ag = max(|d;]),

where d; is the difference between successive values ¢; and c¢;_; (see Model 2 below). Occa-
sionally the estimate is more sophisticated, for example (Model 3 below), the larger value when
comparing the average |d| of the absolute differences |d;|, and the most recent value d,,, that is

ag = max(|d|, |d,|).

E1.8.7.1 Example of treatment of drift

The issue is demonstrated in the following example in which the conformance probability p. is
calculated using GUM-consistent measurement models (E1.8.10) with various approaches taken
for evaluating drift.

In this example suppose that a test is defined with an upper tolerance Ty; = 10 for the measurand
Z.

Suppose that the available calibration data consists of four equally spaced results c; corresponding
to times t; for i = 1,...,n = 4 as shown in Table [E1.8.1} Let u(c;) = 0.15 and the evaluation be
conducted for some later time t > t,, say t = 42.
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Table E1.8.1: Annual calibration correction data c¢; and difference d; = ¢; —¢;_;

i ti Ci di
1 0 0.3
2 12 0.3 0.00
3 24 —0.15 —0.45
4 36 0.1 0.25

The conformance probability p,. is calculated for a range of measured values y using different
drift models as described below. Figure summarises the results. These drift models are
some that are used in practice. Note that many other variations on these models are possible and
are also encountered.

Model M1:

A straight-line fit to the data is performed to establish c(t) at the time of use; hence c(t) = ay+a; t,
where a, and a; are the coefficients of the fitted function and u(c,) is the uncertainty associated
with ¢(t), all of which can be established using ISO/TS 28037 [|77]]; hence

z(t) =y +c(t),
u?(z) = u*(y) + u®(c,).

Model M2:

The most recent calibration result c, is used. There is a genuine belief (perhaps due to some
metrological knowledge or experience) that the expectation of drift is zero despite the recent
albeit sparse evidence to the contrary. The drift is therefore assumed to have mean value of zero.
Its associated standard uncertainty is evaluated as the standard deviation of a rectangular distri-
bution with semi-width corresponding to the maximum absolute difference between successive
calibration results; hence

2(t)=y+c,+0,
u(z) = u?(y) + u®(c,) + ag/3,
ay; = max(|d;|).

Model M3:

The most recent calibration result c,, is used. Again, there is a genuine belief that the expectation
of drift is zero despite the recent evidence to the contrary. The drift is therefore assumed to have
mean value of zero. In order to give more weight to the most recent data, its associated standard
uncertainty is evaluated as the standard deviation of a rectangular distribution with semi-width
corresponding to the larger of a) the most recent absolute difference, and b) the mean of all
absolute differences between successive calibration results.

z2(t)=y+c, +0,
u?(2) = u® +u?(c,) + ay?/3,

ag = max(|d,|,d),

1S
d=;§|di|.
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Model M4

A straight-line fit c(t) = ay + a; t to the data is performed to establish c(t) at the time of use.
The coefficients ay and a; of the fitted function are established using ordinary least squares (for
example, using the Excel SLOPE and INTERCEPT functions). The standard uncertainty associated
with c(t) is evaluated as the standard deviation of a rectangular distribution with semi-width
corresponding to the maximum fitting residual; hence

z(t) =y +c(t),
u(z) = u?(y) + u®(cy),
u(c,) = u?(c,) +12,./3,

T'max = maX(|Ci - (aO + alt)D-

Model M5:

There is a genuine belief that the expectation of drift is zero despite the recent evidence to the
contrary. The drift is therefore assumed to have mean value of zero. Its standard uncertainty
u(d) is taken as the standard deviation of the set of available data for d;. It is assumed to be
characteristic of quantity with a t-distribution centred at zero having standard deviation equal
to u(d). The best estimate of the appropriate correction at the time of use is assumed to be the
most recent value, c,. (Arguably the mean value should be chosen; however, there is usually a
preference to weight towards the most recent value.)

z2(t)=y+c,+0,
u?(z) = u?(y) + u*(c,) + u*(d),
u'(z)
ut(d)’

Veif = (n—1)

The conformance probability is evaluated on the basis that z has a t-distribution with v effective
degrees of freedom (evaluated using the Welch-Satterthwaite formula [[2]]).

The conformance probability p. has been calculated for a range of measured values y with the
different drift models described above. The conformance probabilities are depicted in Figure
[E1.8.3]in which it is evident that the choice of drift model can have a significant impact upon the
measurement uncertainty and upon any subsequent decisions.

All of these models, when based upon little data, make more or less arbitrary choices for u(c) and
u(d). For this reason any significant assumptions should be clearly stated with the results and
the choice of model should be justified, either by additional measurements, or with supporting
information based upon metrological experience and expertise. For example, where a linear
model seems appropriate M1 might seem justified, whereas M2 is more conservative and may
be preferable if the risk of false acceptance is a key concern and no additional information about
the drift is available.

E1.8.8 Interpretation of results

As an alternative to correction, a number of methods have been proposed or adopted that in-
crease the expanded uncertainty to take account of bias. In [[161]], ‘all sensible combinations’ of
correcting or enlarging uncertainty for bias, whether considered significant or not, were modelled
by a Latin hypercube simulation of 1.25 x 10° ‘iterations’ for a range of bias values. The fraction
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9.0 9.5 10.0 10.5 11.0

Figure E1.8.3: conformance probability for a range of observed values y, evaluated at t = 42
using the various models, M1 to M5 and the data in Table

of results for which the value and the associated expanded uncertainty contained the true value
of a simulated test measurand was used to assess the various methods. The strategy of estimating
the bias and always correcting is consistently the best throughout the range of biases.

Laboratories are routinely faced with the question of whether they need to correct for biases
(such as temperature effects, calibration corrections or drift) with the associated investment of
time and effort in maintaining such a process. The attraction of a simple approach whereby such
biases are factored into an uncertainty budget makes this a commonly adopted approach in which
there is usually no appreciation of the potential problems that are created for others further along
the measurement chain, as demonstrated in section and in section

Unfortunately, however (as explained in section|E1.8.5.2)), there is no way to state the uncertainty
associated with an uncorrected value that is consistent with the GUM [12]].

On the basis of the explanation in section [E1.8.5.2| and supported by these simulations it is
strongly recommended that whenever possible a corrected value and the associated uncertainty

is reported as in section [E1.8.5.1

Otherwise, when an uncorrected value and an uncertainty are reported, it should be stated that
the result is inconsistent with the GUM in that a measurement model has not been used but
the result follows the advice of a publication that is cited. Reference [|154]] usefully categorises
several approaches.

The consequent impact on conformity decisions must also be considered. In some cases the effect
on conformance probabilities would be considerable, as seen in section [E1.8.6.1|and in section
E1.8.7.1]

Even when a model is consistent with the GUM, the choice of how to treat drift can have signif-
icant impact on conformance intervals and upon decisions, as discussed in the previous section.
It is strongly recommended that the practitioner gives sufficient details in the report on how drift
has been handled.
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Example E2.1

Conformity assessment of an influenza
medication as a multicomponent
material

E Pennecchi, M.G. Cox, PM. Harris, A.M.H. van der Veen and S.L.R. Ellison

E2.1.1 Summary

The main goal of the present study is to show how to calculate risks of false decisions in the
conformity assessment of a multicomponent material, taking into account both the measurement
uncertainties and the covariances for the measured content values of the components. As a case
study, a particular influenza medication (NyQuil tablets) is here considered.

E2.1.2 Introduction of the application

Medicinal products are typical examples of multicomponent materials, since they are made of
several active compounds and excipients. Conformity assessment has to be performed in the
content of each of its components. However, even when conformity assessment is successful for
all the components individually and relevant consumer’s and producer’s risks are acceptable, the
total probability of a false decision (total risk) on the conformity of the material as a whole might
still be significant.

An IUPAC Project [[162] was dedicated to the modelling of total risks of false decisions due to
measurement uncertainty for multicomponent materials or objects. The mathematical frame-
work was developed as a generalization of that suggested in [6]] for conformity assessment of
a single item. For this reason, the notation used here is consistent with the notation in [|6]
and [|163]], the latter being a relevant paper in which the reader can find more details on this
case study.

E2.1.3 Specification of the measurands

This case study concerns test results for NyQuil tablets [|[164]], a cold medication containing four
active components:
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* acetaminophen (APAP), as a pain reliever and fever reducer;

* dextromethorphan hydrobromide (DEX), as a cough suppressant;
* doxylamine succinate (DOX), as an antihistamine and hypnotic;
* phenylephrine hydrochloride (PE), as a nasal decongestant.

The measurands are the content valuesc;,i =1, ..., 4, of the components of the tested medication
tablets. Corresponding measured values (test results) c;.,, obtained according to the test method
described in [|[163]], undergo conformity assessment. Quantities are masses of the components in
a tablet expressed as a fraction (%) of the corresponding labelled amount [;. Labelled amounts
are [; = 325 mg for APAB [, = 10 mg for DEX, [3 = 6.25 mg for DOX, and [, = 5 mg for PE,
respectively, per tablet (a tablet mass is 775 mg on average).

E2.1.4 Measurement uncertainty and correlations

A full uncertainty budget for the test results of the components’ content is available in [|163]].
Relative measurement uncertainty is evaluated as 2.8 % of ¢;p,.

A total of 105 lots of the medication produced and released at the same factory during a year are
tested in the same laboratory belonging to the factory. Linear correlation among the test results
for different components is estimated by the Pearson’s correlation coefficients r;; [2, sec. C.3.6],
i < j. Only APAP test results are not significantly correlated with the other components’ contents,
whereas test results for the low-dose active components — DEX, DOX and PE - show to be signif-
icantly correlated (at a 99 % level of confidence) [[163]]. Correlation coefficients are reported in

table E2.1.11

Table E2.1.1: Correlation coefficients between components’ content values

Component Index APAP DEX DOX PE

i/j 1 2 3 4
APAP 1 1 0.107 0.125 0.177
DEX 2 1 0311 0.404
DOX 3 1 0.539
PE 4 1

E2.1.5 Specification or tolerance limits

The lower and upper tolerance limits, T;; and Ty;, for the product release are 95.0 % and 105.0 %
of the labelled amount [; for each active component, i = 1,...,4. The tolerance limits derive from
regulatory authorities controlling the quality of marketed medicinal products.

E2.1.6 Decision rule and conformity assessment

In the present case study, the “simple acceptance”, or “shared risk”, rule is considered as the deci-
sion rule for conformity assessment [|6} sec. 8.2.1], i.e., acceptance limits of test results coincide
with tolerance limits (A;; = Ty; and Ay; = Ty;)-
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The producer of the medication is the pharmaceutical company producing the drug, whereas
the consumer is any individual who may take that medication. In the present example, only the
calculation of consumer’s risks is shown, but the counterpart models for the producer’s risks are
easily obtainable as well.

E2.1.6.1 Bayesian framework

In the framework of the IUPAC project [|[162]], evaluation of total risks of false decision for mul-
ticomponent materials is based on a multivariate version of the evaluation of specific and global
risks for a single characteristic of an item, as defined in [|6} sec. 9.3.2 and 9.5.2]. The underlying
Bayesian approach requires defining a multivariate prior probability density function (PDF) g,(c)
for “true” values of the components’ content, where ¢ = [cy, ..., c4], and a multivariate likelihood
function h(c,, |c) for the corresponding test results, where ¢, =[cim,---» Cam]-

As discussed in [[163|], a multivariate normal distribution is used for modelling both the prior
knowledge and the likelihood function. The former multivariate normal PDE g,(c), has vec-
tor mean m = [my,...,my], where m; is the ith experimental sample mean, calculated from
the available production data (see table [E2.1.2), and covariance matrix S, made by terms
Se,, =Tij5iS), where r;; are the correlation coefficients in table [E2.1.1{ and s; is the ith exper-
imental standard deviation (see table [E2.1.2)). For each fixed vector value c, the multivariate
normal PDF modelling the likelihood function h(c, |c ) has vector mean ¢ and covariance matrix
S., made by terms Scmij =T U Uj, where u; = 0.028 ¢;,, % of labelled amount, is the ith associ-
ated standard uncertainty|'} The same correlation coefficients are used for both the prior PDF and
the likelihood function since it is supposed that no further correlation effect is attributable to the
analytical measurement process: just the correlation between “true” values, maybe due to tech-
nological conditions in the production of the medication, is effective and induces, consequently,

a correlation between the corresponding test results.

Table E2.1.2: Experimental mean and standard deviation of the components’ content values of
105 lots of the medication

Component Index Mean Standard deviation
i m;, % of labelled amount s;, % of labelled amount
APAP 1 99.18 1.37
DEX 2 97.70 1.02
DOX 3 99.33 1.05
PE 4 98.94 1.22

E2.1.6.2 Total specific risk

For a vector of test results ¢, of a specific multicomponent item, when all the c;,, are measured
within their own acceptance interval and hence the material is accepted as conforming, the total
specific consumer’s risk R} is defined as the probability of at least one of the “true” c; values
of the components’ contents being outside its tolerance interval. Therefore, it is calculated as

!Standard deviations s; are smaller than measurement uncertainties u;, since each released lot has passed several
quality tests (any out-of-specification test result preventing the lot release), whereas 2.8 % is a target relative standard
uncertainty (hence, the actual measurement standard uncertainty may be smaller).
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one minus the probability that all the “true” values c; are inside their tolerance interval. Such a
probability is provided by the posterior PDF integrated over the multivariate tolerance domain
[Ti1, Tu1] % [Tia, Tya] % [Tis, Tys] % [ T4, Tus)- The integral can be obtained by calculation of the
corresponding cumulative distribution function at the desired limits.

In the current study, since both prior g(c) and likelihood function h(c,, |c) are modelled by
multivariate normal PDFs, also the joint posterior function for the “true” components’ content
values results in a multivariate normal PDF with covariance matrix S, and vector of posterior
means cp respectively equal to [|65, eq. 3.13]:
-1 —1\1
Spost = (ST 4 NyepSo (E2.1.1)

Cpost = Spost (ST M + MyepShem) (F2.1.2)

rep~cm

where m is the vector of the prior mean values, ¢, is the vector of the arithmetic means of
replicated measurement/test results and n,,, is the number of such replicates (in this study, since
each component is measured once, n,., =1 and ¢, =[cip, - -+ C4m])-

Considering, for example, the special case in which all the test results c;,, are exactly equal to the
corresponding prior mean values m;, the total specific consumer’s risk is R, = 0.0029. When

Cim = Ty; for each i, hence R}, = 0.0117; when c;,, = Ty;, R}, = 0.0002. Details of the calcu-
lation can be found in the code file A121 Medicine_total specific_risk.r, where the “pmvnorm’ﬂ
function from the R package “mvtnorm” [51] is used for the calculation of the posterior cumula-

tive distribution.

E2.1.6.3 Total global risk

The total global consumer’s risk R, is defined as the probability that test results c;,, of all the
components’ contents of an item, drawn at random from the item population, are in their re-
spective acceptance intervals and at least one of the corresponding “true” values c; is outside its
tolerance interval. Such probability is the integral of the joint multivariate PDF of “true” and
test results, which is given by the product gq(c) h(cy, |c). It can be calculated by a Monte Carlo
(MC) simulation in which, for each vector ¢ randomly drawn from g,(c), a corresponding vector
¢, is drawn from h(c,, |c). Hence, the total risk is approximated by the frequency of cases in
which, within randomly generated vectors [c,, c], all the c;,, values are within their respective
acceptance intervals but at least one c; value is outside its tolerance interval.

In the present study, for a number N = 107 of MC simulations, such risk value is equal to
R, = 0.0018, being numerically stable up to the fourth decimal digit. Details of the calcula-
tion are in the code file A121 Medicine total global risk.r. The obtained result is slightly dif-
ferent from that reported in [[163]] (R,,; =0.0019), which was obtained by a composition of
several probability terms, arranged according to the law of total probability, each calculated by
the “adaptIntegrate” function of the R package “cubature”.

E2.1.7 Interpretation of results

The above-reported values of total specific risk are for illustrative purposes. Value R}, = 0.0029

means that, whenever test results coincided with prior mean values, for instance, there would be
a probability of 0.29 % of selling a nonconforming product, in the sense that at least one of the

2The absolute error of the reported values, provided as an output of the function, is about 10~ for R} =0.0029
and for R* = 0.0117, and 107° for R}, =0.0002.

tot
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“true” values of the components’ content would be actually out-of-specification. The dependence
of total specific risk on the test result of a particular component at a time (while the other ¢;,
values are fixed and equal to the prior mean values) is depicted in [|163|], showing that the risk
behaviour is not easily predictable.

The obtained total global risk R, = 0.0018 indicates that, out of 10 000 tablets chosen at random
from the whole medication production, 18 of them might be assessed as conforming without
actually being (i.e., presenting conforming test results for all the four component contents, while
actually having at least an out-of-specification “true” value).
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Example E2.2

Measurement models involving
additive or multiplicative corrections

A. Bosnjakovi¢, V. Karahodzi¢, J. Greenwood, M.G. Cox

E2.2.1 Summary

A common form of presentation for calibration results involves expressing the result as an additive
or multiplicative correction. This is the case for vacuum gauges and is illustrated with data using
the models described in [|165]]. The examples and conclusions do, however, have much wider
applicability.

This example demonstrates the effect of model assumptions concerning errors in the reference
value. In addition it demonstrates how conformance probability can be affected by these assump-
tions. The example concludes by demonstrating how correlation can be handled for calibration
corrections.

E2.2.2 Introduction

Calibration measurements are reported in a wide variety of forms. A particularly popular form
involves presenting measurement error as a calibration correction.

Often a limit or tolerance is defined for this correction and a conformity test is required. To make
such a conformity decision requires knowledge of the measurement uncertainty associated with
the correction.

Measurement uncertainty plays a crucial role, both here and in the decision processes found in
most activities concerned with product or process conformity assessment. Without some account
for measurement uncertainty the risk associated with a decision is undefinable.

The evaluation of measurement uncertainty and conformance probability are illustrated here
for the calibration of a vacuum gauge; however, the analysis and methods described have more
general applicability.

The calibration of vacuum (pressure) gauges is achieved by using a reference standard to es-
tablish the calibration pressure value at the inlet port of the unit under calibration (UUC). Of-
ten [[166]], this reference pressure is measured directly by a reference gauge and is obtained from
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a corrected reading from that gauge. A model for the evaluation of measurement uncertainty in
vacuum calibration is described in some detail in ISO 27893 [[165]], whose principles can readily
be transferred to other measurement applications.

Using the same set of calibration data, this example considers an additive (‘sum’) model, in which
the calibration pressure value can be used to determine a reading error Ap for the UUC; it consid-
ers a multiplicative ‘quotient model’ (applicable when the calibration value is used to determine
a correction factor, sensitivity coefficient, accommodation coefficient or gauge constant), and a
‘combined model’.

Three scenarios are considered, representing different practices, illustrating how these practices
can affect the associated conformance probability.

In the first scenario, following best metrological practice, a reference pressure correction (that is,
a known systematic bias, due for example to the calibration method, thermal transpiration, height
correction, etc.) is applied, and its associated uncertainty is incorporated in the uncertainty
evaluation.

In the second scenario, the reference pressure correction is not applied, and instead it is combined
with the associated uncertainty to establish a larger ‘correction uncertainty’. In metrological
terms this way of working represents poor (albeit common) practice when it is adopted for a
known bias, and can have significant consequences for conformity decisions [[167]]. In situations
where the correction is not known, but is perhaps considered to be in a defined range then this
approach is more justified [[168]].

In the final scenario, the correction and its associated uncertainty are simply neglected, repre-
senting what might be termed ‘bad practice’.

In each case the output PDF is assumed to be normal and conformance probability is calculated
using a standard normal cumulative distribution function.

Data for the analyses are taken from a calibration certificate IMT-LMT-80-2019, produced by the
Laboratory of Pressure Metrology, Institute of Metals and Technology, Ljubljana, Slovenia. The
UUC in this example is a capacitance diaphragm vacuum gauge with full scale range of 11 kPa.

The specification adopted for the UUC in our example requires that calibration errors should be
no larger than 0.5 % of the reading.

Finally, a physically different ‘sum model with correlation’ is presented, demonstrating how cor-
relation might be treated in that case.

E2.2.3 Measurands

Adopting the nomenclature of [[165]] the measurand is defined for the various classes of model
as one of the following:

Ap - pressure difference (sum model) having standard uncertainty u(Ap),
f — correction error (quotient model) having standard uncertainty u(f),

e — error of reading (combined model) having standard uncertainty u(e).

Other useful nomenclature:

Puuc, U(puuc) — pressure for unit under calibration and its associated standard uncertainty,
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Dstd> U(psiq) — reference standard pressure and its associated standard uncertainty,

Apn,u(Ap,,) — reference pressure correction term and its associated standard uncertainty.

E2.2.4 Measurement model

The measurement models are of the explicit, univariate type [4]]:

In such models, a single real output quantity Y is related to a number of input quantities X =
(X4,...,Xy) by a functional relationship f in the form Y = f(X) as stated in the GUM [2[]. The
estimate of the output quantity is taken as y = f(x). The standard uncertainty u(y) is associated
with y is evaluated from

N N
w(y) =Y > culx;, x;)c;,

i=1 j=1

where ¢; is the partial derivative 0 f /9X; evaluated at X = x and is known as the ith sensitivity
coefficient, u(x;) is the standard uncertainty associated with x;, and u(x;, x;) the covariance
associated with x; and x;. For independent input quantities, we would obtain the better-known
simplified expression

N N
w(y) =D [eulx) 2 = > ud(y),
i=1 i=1
where
ui(y) = lejlu(x;).

E2.2.4.1 Sum model

In the sum model, the measurand Ap is defined as the difference between the reading of the
unit under calibration (UUC) and the reference value, which is given by the pressure indication
of the reference standard corrected by a (possible) reference pressure correction term Ap,,:

Ap = pyuc — (Psta + APm)- (E2.2.1)

E2.2.4.2 Quotient model

The standard ISO 27893 [[165]] describes how a model can be established in general situations
where the UUC output and the reference standard output are not necessarily given in the same
units of measurement. For example the UUC output may be measured as a current, voltage or
frequency that is relatable to pressure through some functional relationship.

Xyuc

'yuc = D .
std

In this example we are only concerned with a simple case in which xyyc = pyyc and where
ruuc = 1/f defines a correction factor f as the measurand; hence
__ Psta + Apm
- >

DPuuc

f (E2.2.2)

Note that equation (E2.2.2) is not a pure quotient but is a simple example of a ‘combined’ model.
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E2.2.4.3 Combined model

In practice, realistic measurement models are seldom a pure sum or product of quantities and a
combined model is required. For example, the measurand e, the relative error of reading, can be
defined by

o — Puuc ™ (Psta +APw) _ _ Puvc
Psta T Apm Psta T Apm

(E2.2.3)

E2.2.4.4 Sum model with correlation

An example that demonstrates how to evaluate a sum model with correlation is presented in

section

E2.2.5 Uncertainty propagation

The GUM’s law of propagation of uncertainty (LPU) [2, eqn. (10)] is applied to establish the stan-
dard uncertainty associated with an estimate of the measurand for each of the three measurement
models.

E2.2.5.1 Sum model

The standard uncertainty in the sum model is

1/2
u(Ap) = [uz(pUUC) +u%(pgg) + uz(Apm)] / . (E2.2.4)
E2.2.5.2 Quotient model
The standard uncertainty in the quotient model is
+A u? u? u*(A 1/2
u(f) — Pstd Pm |: (ZUUC) + (pstd) > + ( pm) 2:| (E2.2.5)
Puuc Pyuc (pstd + Apm) (pstd + Apm)
E2.2.5.3 Combined model
The standard uncertainty in the combined model is
2 2 2(A 1/2
u(e) = Puuc [U (l;’UUC) u”(Psta) u“(Apm) ] (E2.2.6)
Pstd T AP Puuc (pstd + Apm)2 (pstd + Apm)2

E2.2.6 Measurand expanded uncertainty and conformance proba-
bility for three scenarios

In this section the measurand expanded uncertainty at the 95 % level of confidence (k = 2) and
the conformance probability are evaluated for three different scenarios, described below.
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For the purposes of these examples the reference pressure correction term Ap,, is taken to be
0.05% of p,q and the associated expanded uncertainty (k = 2) is assumed to be 1Pa for all
pressure values.

The calibration data, calibration corrections and associated expanded measurement uncertainties
are summarised in Table|[E2.2.1| This data applies to all scenarios and models.

Table E2.2.1: Calibration data used for all scenarios and models (data is given and used as
provided rather than in line with common reporting principles [[169]]).

Point, n Pswa/Pa U(psia)/Pa Puuc/Pa U(pyuc)/Pa
1 10.89 0.050 10.7 0.23
2 17.02 0.090 17.0 0.23
3 26.03 0.13 25.4 0.23
4 40.28 0.20 39.5 0.23
5 63.10 0.32 63.0 0.23
6 96.89 0.48 97.1 0.23
7 161.3 1.0 161.2 0.23
8 256.4 1.5 255.9 0.23
9 403.3 2.4 403.7 0.23

10 647.5 3.9 647.8 0.23
11 978.7 5.9 980.4 0.23
12 1610.6 5.0 1613.2 0.23
13 2505.4 5.0 2509.2 0.23
14 4075.9 0.50 4079.5 0.23
15 6278.6 0.70 6282.7 0.23
16 9069.2 1.0 9072.9 0.23
17 10932.8 1.1 10937.1 0.23

E2.2.6.1 Scenario 1

In the first scenario, following best metrological practice, the reference pressure correction Ap,,
is applied to the measured reference pressure pgq.

The calibration corrections and expanded measurement uncertainty are summarised in Table
E2.2.2| where the corrections Ap, f and e are evaluated using equations (E2.2.1), (E2.2.2)) and
(E2.2.3) respectively and standard uncertainties are evaluated using the corresponding equations
(E2.2.4), (E2.2.5) and (E2.2.6).

Figures[E2.2.1|and [E2.2.2] respectively, depict the correction factor f and the pressure difference
Ap as a function of UUC pressure indication.

The red broken lines on these and later figures represent the specification limits defined by the
UUC owner. These often, but not necessarily, correspond to limits defined by the equipment
manufacturer.

Conformance probability can be calculated regarding Ap, f and e. Since all three quantities
are linearly related their PDFs describe the same physical situation and the same conformance
probability will be established whichever is evaluated. We therefore arbitrarily choose f for the
purpose of these examples.
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Table E2.2.2: Calibration corrections for Scenario 1. All uncertainties are expanded (k = 2)

Point Ap/Pa U(Ap)/Pa e U(e) f u(f)
1 —0.20 1.0 —0.0179 0.093 1.0183 0.096
2 —0.03 1.0 —0.0017 0.061 1.0017 0.061
3 —0.64 1.0 —0.0247 0.039 1.0253 0.041
4 —0.80 1.1 —0.0199 0.0025 1.0203 0.026
5 —0.13 1.1 —0.0021 0.0017 1.0021 0.017
6 0.16 1.1 0.0017 0.0011 0.9983 0.011
7 —0.18 1.4 —0.0011 0.0088 1.0011 0.0089
8 —0.63 1.8 —0.0024 0.0071 1.0025 0.0071
9 0.20 2.6 0.0005 0.0065 0.9995 0.0065
10 —0.02 4.0 0.0000 0.0062 1.0000 0.0062
11 1.21 6.0 0.0012 0.0061 0.9988 0.0061
12 1.79 5.1 0.0011 0.0032 0.9989 0.0032
13 2.55 5.1 0.0010 0.0020 0.9990 0.0020
14 1.56 1.1 0.0004 0.00028 0.9996 0.00028
15 0.96 1.2 0.0002 0.00020 0.9998 0.00020
16 —0.83 1.4 —0.0001 0.00016 1.0001 0.00016
17 —-1.17 1.5 —0.0001 0.00014 1.0001 0.00014
115
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Figure E2.2.1: Correction factor as a function of UUC pressure indication (logarithmic scale),
scenario 1

To calculate the conformance probability we further assume that the PDF for f is normal:

— = Ax-m)*/(20%)]
O T ,

where m is the mean and o is the standard deviation.
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Pressure difference Ap /Pa

RIS

Measured pressure pyyc /Pa

Figure E2.2.2: Pressure difference as a function of UUC pressure indication, scenario 1

To demonstrate evaluation of the conformance probability, consider a point 13 where say m =
f =0.999 and o = u(f) = 0.002. The conformance probability is given by integrating the PDF
over the limits of interest, say 0.995 < x < 1.005:

1.005 1
— —[(x—0.999)/(2x0.0022)]
De= S — dx (E2.2.7)
¢ ngs 0.002 (27)1/2

This integral is not analytically solvable, but it can be expressed through tabulated functions such
as Q, ¢ or erfc. In this example the use of the Q function will be demonstrated where

+00 1 )
Q(X)ZJ e /24t

27'[1/2

Letting t = (x —m)/o, we find new limits for the integral

(1.005—0.999)/0.002 = 3,
(0.995—-0.999)/0.002 = —2,

and (E2.2.7) becomes

> 1

—t2/2

De = e dt
¢ J_2277:1/2

* 1 * 1
— s tE2g. Y
J;z 277:1/26 at L 277:1/26 dt

=Q(-2)-Q(3)
=0.977—0.001
=97.6%.

Note: To implement the calculations in Microsoft Excel, the Q(x) function can be evaluated using
the relation Q(x) = 0.5 erfc(x/+/2) and the Excel function ERFC.PRECISE().
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Table E2.2.3: Conformance probability — Scenario 1

Point  pyyc/Pa  Ap/Pa e f D/ %
7 161.30 —0.18 —0.00112 1.0011 72.4
8 256.40 —0.63 —0.00245 1.0025 74.5
9 403.30 0.20 0.000492 0.9995 87.3

10 647.50 —0.02 —0.000037 1.0000 89.2

11 978.70 1.21 0.001 236 0.9988  87.1

12 1610.60 1.79 0.001114 0.9989  99.3

13 2505.40 2.55 0.001016 0.9990 100.0

14 4075.90 1.56 0.000383 0.9996 100.0

15 6278.60 0.96 0.000153 0.9998 100.0

16 9069.20 —0.83 —0.000092 1.0001 100.0

The conformance probability for this scenario using the given data and the stated specification is
summarised in Table [E2.2.3| (restricted to data in the top two full decades for sake of clarity).

No general conclusions should be drawn from the values in this table. The results are however in-
formative for this specific calibration where, as might be expected for a well behaved instrument
of this type, conformance probability tends to be highest at higher pressures. The acceptabil-
ity or otherwise of the result can be based on a straightforward consideration of conformance
probability.

E2.2.6.2 Scenario 2

In the second scenario no reference pressure correction Ap,, is applied, that is, the model equa-
tions are

_ Psd
Puuc’
Ap = pyuc ~ Pstd>
o= Puuc 1.
Pstd

This situation might (correctly) arise because little is known about Ap, ; hence the best estimate
of its value is taken to be zero, albeit the uncertainty remains finite. It might also be the case that
the value of the correction is known but following common (albeit poor) practice it is instead
somehow combined with its uncertainty to establish a bigger uncertainty estimate which, it is
argued, accounts for the failure to apply the correction. (See [[167]] and [[157]] for explanations
of why this is considered to be poor practice.) This latter situation is evaluated in this scenario.

In this case, the standard uncertainty u(Ap,,) associated with the unused correction term is
calculated using

1/2

in which Ap,, =0.05% pyq4 is assumed to be the semi-range of a rectangular distribution.

The quantities Ap, f and e and their uncertainties are again recalculated and given in Table

E2.2.4

Figures|E2.2.3|and [E2.2.4} respectively, depict the correction factor f and the pressure difference
Ap as a function of UUC pressure indication.
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Table E2.2.4: Data for scenario 2. All uncertainties are expanded (k = 2)

Point Ap/Pa U(Ap)/Pa e U(e) f u(f)

1 —0.19 1.0 —0.0174 0.093 1.0178 0.096

2 —0.02 1.0 —0.0012 0.061 1.0012 0.061

3 —0.63 1.0 —0.0242 0.039 1.0248 0.041

4 —0.78 1.1 —0.0194 0.026 1.0197 0.027

5 —0.10 1.1 —0.0016 0.017 1.0016 0.017

6 0.21 1.1 0.0022 0.012 0.9978 0.012

7 —0.10 1.4 —0.0006 0.0089 1.0006 0.0089

8 —0.50 1.8 —0.0020 0.0071 1.0020 0.0071

9 0.40 2.6 0.0010 0.0065 0.9990 0.0065
10 0.30 4.0 0.0005 0.0062 0.9995 0.0062
11 1.70 6.0 0.0017 0.0061 0.9983 0.0061
12 2.60 5.1 0.0016 0.0032 0.9984 0.0032
13 3.80 5.3 0.0015 0.0021 0.9985 0.0021
14 3.60 2.6 0.0009 0.000 64 0.9991 0.000 64
15 4.10 3.8 0.0007 0.00061 0.9993 0.00061
16 3.70 5.4 0.0004 0.00060 0.9996 0.00060
17 4.30 6.5 0.0004 0.00059 0.9996 0.00059

As would be expected from equations (E2.2.1)), (E2.2.2) and (E2.2.3) the uncertainty for scenario
2 is always larger than the corresponding uncertainty for scenario 1. In this case the difference
is not large, but this is dictated by the data and may be more (or less) significant for other data.

The conformance probability for this scenario using the given data and the stated specification is
summarised in Table [E2.2.5 (restricted to data in the top two full decades for sake of clarity).

Table E2.2.5: Conformance probability — scenario 2

Point  pyyc/Pa  Ap/Pa e f /%
7 161.30 —0.10 —0.0006 1.0006 73.4
8 256.40 —0.50 —0.0020 1.0020 77.8
9 403.30 0.40 0.0010 0.9990 85.9

10 647.50 0.30 0.0005 0.9995  88.6

11 978.70 1.70 0.0017 0.9983 84.2

12 1610.60 2.60 0.0016 0.9984  98.3

13 2505.40 3.80 0.0015 0.9985 100.0

14 4075.90 3.60 0.0009 0.9991 100.0

15 6278.60 4.10 0.0007 0.9993 100.0

16 9069.20 3.70 0.0004 0.9996 100.0

The behaviour for conformance probability is generally more complex than is the case for mea-
surement uncertainty. In this example the conformance probability for scenario 2 is generally
lower than for scenario 1, which can be explained by one or both of the measurand (based upon
uncorrected reference pressure) being closer to a tolerance limit, and the uncertainty being larger,
and hence the PDF being ‘wider’ and extending more beyond the tolerance limits. It is however
quite possible for a value to be closer to the centre of the tolerance interval when no correction
is applied, which may have a larger influence on the calculation of conformance probability than
the increase in uncertainty, as is seen for example for our point no. 8.
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Figure E2.2.3: Correction factor as a function of UUC pressure indication (logarithmic scale),
scenario 2
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Figure E2.2.4: Pressure difference as a function of UUC pressure indication, scenario 2

E2.2.6.3 Scenario 3

The third scenario is obtained when the correction term and associated uncertainty are excluded,
which is equivalent to setting Ap,, = u(Ap,,) = 0 in our three models, yielding the results shown
in Table in which the conformance probability p, is again given for all points in the second
and third decade.
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Table E2.2.6: Data for scenario 3. All uncertainties are expanded (k = 2)
Point Ap/Pa U(Ap)/Pa e U(e) f u(f)
1 —0.19 0.24 —0.0174 0.022 1.0178 0.022
2 —0.02 0.25 —0.0012 0.015 1.0012 0.015
3 —0.63 0.26 —0.0242 0.010 1.0248 0.011
4 —0.78 0.30 —0.0194 0.0075 1.0197 0.0078
S —0.10 0.39 —0.0016 0.0062 1.0016 0.0063
6 0.21 0.53 0.0022 0.0055 0.9978 0.0055
7 —0.10 1.0 —0.0006 0.0064 1.0006 0.0064
8 —0.50 1.5 —0.0020 0.0059 1.0020 0.0059
9 0.40 2.4 0.0010 0.0060 0.9990 0.0060
10 0.30 3.9 0.0005 0.0060 0.9995 0.0060
11 1.70 5.9 0.0017 0.0060 0.9983 0.0060
12 2.60 5.0 0.0016 0.0031 0.9984 0.0031
13 3.80 5.0 0.0015 0.0020 0.9985 0.0020
14 3.60 0.55 0.0009 0.000 14 0.9991 0.00013
15 4.10 0.74 0.0007 0.00012 0.9993 0.00012
16 3.70 1.0 0.0004 0.00011 0.9996 0.00011
17 4.30 1.1 0.0004 0.00010 0.9996 0.00010

Figures[E2.2.5|and [E2.2.6] respectively, depict the correction factor f and the pressure difference

Ap as a function of UUC pressure indication.

The conformance probability for this scenario using the given data and the stated specification is
summarised in Table [E2.2.7| (restricted to data in the top two full decades for sake of clarity).

Table E2.2.7: Conformance probability — scenario 3

Point  pyyc/Pa  Ap/Pa e f P/ %
7 161.30 —0.10 —0.0006 1.0006 87.7
8 256.40 —0.50 —0.0020 1.0020 83.8
9 403.30 0.40 0.0010 0.9990  88.8

10 647.50 0.30 0.0005 0.9995 89.9

11 978.70 1.70 0.0017 0.9983 84.8

12 1610.60 2.60 0.0016 0.9984 98.6

13 2505.40 3.80 0.0015 0.9985 100.0

14 4075.90 3.60 0.0009 0.9991 100.0

15 6278.60 4.10 0.0007 0.9993 100.0

16 9069.20 3.70 0.0004 0.9996 100.0

As was the case for scenario 2, the behaviour for conformance probability is complex. In this case
the conformance probability is generally higher when compared to scenario 1. The difference is
entirely due to the nature of the data and the unused reference pressure correction and will vary
depending upon the data and corrections in question. Conformity decisions based upon these
(scenario 3) conformance probabilities would therefore likely be unreliable.
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Figure E2.2.5: Correction factor as a function of UUC pressure indication (logarithmic scale),
scenario 3
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Figure E2.2.6: Pressure difference as a function of UUC pressure indication, scenario 3

E2.2.7 Measurement model: sum model with correlation

Suppose that by some mechanism not already accounted for, both pyy and pyyc are both de-
pendent upon another common quantity, say for example a potential systematic error AT in
measuring gas temperature due to placement of temperature probes. This situation might be
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modelled as:

Psid = p;td(l + Agq AT);
Puuc = Puyc(l + ayuc AT), (E2.2.8)

where, for example, p; q and Pyyc how represent the observed values and agqy and ayyc are cor-
responding temperature coefficients. Suppose also that a reliable estimate of AT is not available;
hence the ‘best’ estimate is taken to be AT = 0K with an associated standard uncertainty u(AT).

For this example we will also assume that the reference pressure correction Ap,, is fully inde-
pendent and is not affected by the possible temperature error; hence the measurands are to be

calculated using equations (E2.2.1)), (E2.2.2) and (E2.2.3).

The standard uncertainties associated with the quantities py 4 and pyyc in equation (E2.2.8) are
therefore

uz(Pstd) = uz(Pétd)(l + Qg AT)Z + uz(astd)(p;tdAT)Z + UZ(AT)(P;tdastd)z,
u*(pyuc) = uz(p{jUC)(]- +agyc AT + uz(aUUC)(p{JUCAT)Z + UZ(AT)(P{;UCO‘UUC)Z-

To illustrate the situation, let u(AT) = 0.57K, agq = ayyc = 1/300K™! and u(agy) = u(ayyc) =
1/3000K™!; hence, for example, at calibration point 8, p;t 4 = 256.4Paand Phyc = 255.9Pa. We
find from equation (E2.2.1) that Ap = —0.63 Pa and

u(psa) = 0.90Pa,
u(pyyc) = 0.51Pa.

Combining these without taking account of the correlation between p,4 and pyyc gives, using
equation (E2.2.4), a standard uncertainty of u(Ap) = 1.14Pa.

In this case the estimate is about 25 % larger than is obtained by taking account of the correlation,
as can be achieved by following the process described in matrix form in clause 6.2 of GUM-S2 [[4]]
(demonstrated below) and in subscripted summation form in the GUM []2, Annex E1.2.3].

Equations (E2.2.1), (E2.2.2) and (E2.2.3) are real univariate measurement functions of the form
Y = f(X) where in the case of equation (E2.2.1)) we have

Y = Ap,
X = (pswas Puucs APm) -
Applying the LPU, the variance in this case is given by
u*(Ap) =Vap = C A, VinCap, (E2.2.9)

where C 5, is an array containing sensitivity coefficients, and V;, is the corresponding covariance
matrix for the input quantities:

0 Ap

apstcl _1
= dAp =
CAP dpuuc 1 ’
JAp
JAp, -1
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u?Pgra) ugpstd:pUUC) u(Psed> APm)
Vin=| u(Puuc,Psa) u*(Puuc) u(pyuc, APm) | - (E2.2.10)
U(Apm, Psta)  U(APm, Puuc) UZ(APm)

Equation (E2.2.9)) is the matrix representation of the equation obtained by applying GUM equa-
tion (13).

The covariance matrix (E2.2.10)) is obtained from
T
Vin =CxVxCy,

where, in this example we have

9Psd dpuuc dApy 1 AT
ap;td ap;td 3p;td + aStd O 0
9Psid dpuuc  9Apm ’
d Ased 0 Astd d Ased pStd A T O O
9Pstd dpuuc dApy 0 1
7 7 7 +a AT O
cl = Ipyuc 9Puuc 9Puuc | — uue
X 9psa 9puuc  9APp /
st 1919 m
dayyc  dayuc  Favuc 0 Pyuc AT 0
9Psd dpuuc  9Apm / /
AT  JAT  OAT Dgq Fstd Pyuc @vuc O
9Psd dpuuc 3Apy
| 9Apyn,  OAp,  9Apy | | 0 0 1_
and
u?(p! 0 0 0 0 0
p std)
0 u?(ogiq) 0 0 0 0
0 0 u?(plie) 0 0 0
uucC
VX -
0 0 0 u?(agyc) 0 0
0 0 0 0 u?(AT) 0
0 0 0 0 0 u*(Apm)

Alternatively, the elements of can be calculated in terms of subscripted summations in
line with annex E1.2 of the GUM [2]] using GUM equations (E1) and (F2). As we have assumed
that the reference pressure correction Ap,, is fully independent and is not affected by the possible
temperature error, off-diagonal covariances involving Ap,, are zero. The remaining covariance
u(psa> Puuc) = U(Puuc, Psta) i non-zero since both pyq and pyyc depend upon AT. Its value is
given by

u(Psea> Puuc) = (Plig std) (Pyuc uuc)u®(AT).

Evaluating the uncertainty by either equation or GUM equation (13) yields a value
of u(Ap) = 0.91Pa and a conformance probability of p. = 0.75 rather than a probability of
p. = 0.67 that is obtained when correlation is neglected. The impact of such a difference in
conformance probability is dependent upon the particular application of interest, but clearly any
such differences have the potential to affect conformity decisions.
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E2.2.8 Interpretation of results

This example has demonstrated the evaluation of measurement uncertainty and conformance
probability for various related calibration models under several common scenarios. It has also
demonstrated how correlation between quantities (arising from dependency on a common effect)
is treated within the GUF. In each case the consequences for conformity decisions are complex,
depending as they do upon the particular data, model, and assumptions. No general rule can
easily be established. For some data points the conformance probability decreases when sim-
plifying assumptions are made, in others it increases. Caution is therefore needed unless best
practice (scenario 1) is followed to avoid the risk of making poor decisions.
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Example E2.3

Conformity assessment of mass
concentration of total suspended
particulate matter in air

E Pennecchi, F Rolle, A. Allard, S.L.R Ellison

E2.3.1 Summary

The main goal of the present study is to show how to calculate risks of false decisions in the
conformity assessment of test results, according to the framework of [|6]], in the case in which a
normal distribution is not a valid assumption for modelling prior information on the measurand.
As a case study, test results of mass concentration of Total Suspended Particulate Matter (TSPM)
in ambient air are considered.

E2.3.2 Introduction of the application

A total of 496 test results of mass concentration of TSPM in ambient air, collected in 2009 in the
proximity of three stone quarries located in Israel, were obtained according to the Environmental
Protection Agency (EPA) method I0-2.1 [[170]. Such results were compared with the national
(Israeli) regulation limit for air quality to study the occurrence of Out-Of-Specification (OOS)
test results, as detailed in [|[171]] and in [|172].

In the present example, the focus is on the calculation of global and specific risks of false decision
in the conformity assessment of such kind of test results. The risk of underestimating the pollutant
concentration is the consumer’s/inhabitants’ risk and that of overestimating is the producer’s
risk. Calculation of such risks is as important for the Regulator (the Ministry of Environmental
Protection) protecting the inhabitants’ quality of life in the area surrounding the quarries, as for
the Manufacturers’ Association acting in the interests of the stone producers in the country.

Risk values of false decisions on conformity of the TSPM concentration are here calculated for
each quarry separately. Nonetheless, total risks of false decisions concerning the environmental
compartment as a whole can also be calculated, hence characterizing the conformity of the TSPM
concentration in the overall region encompassing the three quarries. Such total risks were mod-
elled on the basis of the law of total probability in [[173]], but are out of the scope of the present
example.
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E2.3.3 Specification of the measurand

For characterization of TSPM, the EPA method 10-2.1 [[170] indicates the use of a high-volume
sampler for collection of particles with aerodynamic diameters of 100 um or less. A large volume
V of air, in the range 1600 m® to 2400 m®, was typically sampled at an average rate and the mass
m of the matter in the sampled air volume, collected on the sampler filter, was measured as the
difference between the results of weighing the filter before and after sampling. The measurand is
the average value of the TSPM mass concentration over the sampling period: ¢ = m/V (mgm™3).
In this study, TSPM from the i-th quarry, i = 1,2, 3, is considered as the i-th pollutant.

E2.3.4 Test results and associated measurement uncertainty

Three quarries were monitored by the Israeli National Physics Laboratory (INPL) at four points
in the compass approximately 1km to 3km from each quarry, four to five times per month. A
total of 496 test results were collected (220 relevant to quarry 1, 176 to quarry 2 and 100 to
quarry 3), each test lasting 24 h. In [[171]] it was demonstrated, by means of analysis of variance
(ANOVA), that the monthly variation was not a significant factor in the data variability, whereas
TSPM mass concentration seemed significantly influenced by the factor ‘quarry’. Thus, it was
concluded that the anthropogenic contributions to TSPM mass concentration due to the activity
of the quarries were dominant and the test results for each quarry had to be studied separately.

Measured TSPM concentration values c,, are reported (in mgm™) within Qldata.txt, Q2data
and Q3data.txt files for quarry 1, 2 and 3, respectively (available in the repository [[17]]), and

depicted in figure [E2.3.1

Quarry 1 Quarry 2 Quarry 3
o o 2
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Figure E2.3.1: Histograms of the measured TSPM mass concentration values for each quarry and
corresponding lognormal probability density functions smoothing the data.

Examples of evaluating measurement uncertainty First edition



Example E2.3. Mass concentration of total suspended particulate matter in air 167

A full uncertainty budget for the considered test results is available in [[171], where it was shown
that the major contribution to the combined measurement uncertainty associated with the results
is that coming from the measurement of the sampled air volume. The combined relative standard
uncertainty associated with a typical test result was evaluated as 7.0 %. No correlation among
test results from different quarries was observed.

E2.3.5 Tolerance limits

The Israeli national regulations of ambient air quality prescribe an upper tolerance (regula-
tion) limit Ty = 0.2mgm™ for TSPM mass concentration for 24 h sampling. This limit holds
for any location, also close to the quarry. Hence, for each quarry and at any sampling point,
Ty; =0.2mgm ™2, fori=1,2,3.

E2.3.6 Decision rule and conformity assessment

Regulations require direct comparison of measured values c;,, with Tyj;. In the present example,
acceptance limits Ay; will be made varying in order to show their impact on the risk values of
false decisions. When acceptance limits are taken to coincide with the tolerance limits (that is,
Ay; = Ty;), a “shared risk” rule is considered as the decision rule for conformity assessment [|6}
sec. 8.2.1].

In the present example, the consumers are the inhabitants living in the area surrounding the
quarries, whereas the producers are the owners of the stone quarries.

The global and specific risks of false decisions in conformity assessment are defined in [|6, sec. 3.3]
for both the consumer and the producer, and have different interpretations. While a specific risk
is the risk of an incorrect decision made for a particular measurement result, global risks refer to
the probability of an incorrect decision based on a future measurement. Both kinds of risks rely
on a Bayesian framework but require the calculation of different probability objects. Indeed, the
posterior distribution (obtained through Bayes’ theorem) is used for specific risks while the joint
distribution is used for global risks.

E2.3.6.1 Bayesian framework

In the framework of the JCGM document on the role of measurement uncertainty in conformity
assessment, the evaluation of risks of false decisions on a characteristic of an item is described in
[6, clause 9.3.2 and 9.5.2] for specific and global risks, respectively.

The underlying Bayesian approach requires defining a prior probability density function (PDF)
go(c;) for the “true” values of TSPM mass concentration. Based on the Kolmogorov—Smirnov
criterion of goodness-of-fit, the widely-used null hypothesis of a normal PDF was tested on the
data available for each quarry and had to be rejected [[171]. The normal distribution was found
instead to be the best-fitting distribution for the experimental results after their logarithmic trans-
formation. Therefore, for each quarry i, a lognormal distribution was chosen for modelling the
actual values of TSPM mass concentration c;:

1 [ (In(c;) — py)? }
T P T o |
C;o;V2T 20

1

golci) = (E2.3.1)
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whose distributional parameters are reported (on the logarithmic scale) in table They
were taken respectively as the mean and the standard deviation of the log-transformed data.
The corresponding lognormal prior PDFs are the curves approximating the histograms in fig-
ure

Table E2.3.1: Location and scale parameters of the prior PDF for each quarry.

Quarry Location parameter  Scale parameter

i u; (adimensional) o; (adimensional)
1 —2.325 0.434
2 —2.031 0.279
3 —2.337 0.402

The distribution of the measurement results c;, at an actual concentration c¢; was modelled by
a normal distribution with expectation equal to ¢; and standard deviation equal to the standard
measurement uncertainty u; = 0.07¢;, [171]. The corresponding likelihood for each quarry is
hence a normal distribution:

2
exp [—M] ) (E2.3.2)

2
2”1’

1
hCi Ci)=—
(Cmle) = 7=

When both the prior PDF and the likelihood are normal distributions, the posterior PDF [6),
Eq. (1)] is also normal [|6, Sec. 7.2.1ﬂ In such a case, the evaluation of specific and global
risks is straightforward, as detailed in [|6]]. In the present example, instead, the prior PDF is log-
normal, for each quarry, hence requiring some numerical approximation of the consumer’s and
producer’s risks.

E2.3.6.2 Global risks

For each quarry, and for any considered (upper) acceptance limit Ay, global risks for the consumer
and the producer were calculated as a numerical approximation of the (double) integral of the
product of the prior PDF and the likelihood (E2.3.2)), according to [[6, equations (19)
and (20)]. In the considered case, since all the involved PDFs were defined on the positive axis
only, the lower integration limits (both T; and U;) were taken as zero. Details of the calcula-
tion are in the code file A123 Global risk TSPM.r (available in the repository [[17]]), where the
R-function d1norm [|11]] was used for evaluating the density of the considered lognormal distri-
butions, whose logarithms have the mean and the standard deviation, reported in table
for each quarry, of the data distributions on the log scale (note that the log-transformed data
have a normal distribution by the definition of the lognormal distribution). The integration of
the joint PDF was performed by means of the R function integrate.

The obtained consumer’s (red line) and producer’s (blue line) global risks are displayed in fig-
ure for Ay values varying in the interval [T — 0.05, Ty + 0.05] mgm™. Considering,
for example, the special case in which Ay = Ty, consumer’s and producer’s global risks were
respectively 0.58 % and 0.74% for quarry 1, 1.04% and 1.52% for quarry 2, and 0.46% and
0.62% for quarry 3. Focusing on quarry 1, for example, one could be interested in finding the

L1f the prior information is meagre and the likelihood function is characterised by a normal distribution, then the
posterior PDF is approximately normal [6l Sec. 7.2.2].
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Figure E2.3.2: Consumer’s (red line) and producer’s (blue line) global risks versus acceptance
limit values.

maximum acceptable Ay in order to have a desired small consumer’s risk, let us say 0.01%: it
turns out that such an acceptance limit should not exceed 0.17 mgm™>. However, in this case,
the global producer’s risk would increase from 0.74% to about 5%. The other way round, Ay
should be at least equal to 0.23 mgm™ in order to assure a producer’s risk smaller than 0.01 %,
again. In this case, the global consumer’s risk would increase from 0.58 % to about 2 %.

E2.3.6.3 Specific risks

For each quarry i, and just for the special case Ay = Ty, specific risks for the consumer and
the producer were calculated according to the framework of [6, Sec. 9.3.2]. For a specific value
Cim < Ay (that is, the measured TSPM mass concentration is assessed as conforming to the
regulation limit), the consumer’s specific risk is the integral of the posterior PDF h(c;|c;y,) on the
region [Ty, o], that is on the region of true values which would not be actually conforming.
For a specific value c;, > Ay (that is, the test result is not conforming to the regulation limit),
the producer’s specific risk is the integral of the posterior PDF on the region [0, Ty ], the region
of actually conforming true values. In both cases, the posterior PDF h(c;|c;,) [6, equation A.11]
was needed, but in the considered case it does not have a closed form because the prior PDF is
lognormal.

Details of the calculation are in the code file A123 Specific_risk TSPM.r (available in the repos-
itory [[17]]), where, for each c;;, value, the posterior PDF was evaluated as the exponential of the
log-posterior PDF, the latter being implemented as the sum of the log-prior PDF, evaluated in ¢;,
and the corresponding log-likelihood function at c;,, (i.e., the logarithm of a normal PDF, with
mean ¢; and standard deviation equal to 0.07 ¢;,,, evaluated at c;,,). The integral of the posterior
PDF was calculated by means of the R function integrate.

The obtained consumer’s and producer’s specific risks are displayed in Figure (when
Ay = Ty) for quarry 1 — blue line, quarry 2 — green line and quarry 3 — red line. They are
plotted versus values c;,, varying in the interval [0.15, T;;] mgm™ and [T, 0.25] mgm™2 for the
consumer and the producer, respectively.
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Figure E2.3.3: Consumer’s and producer’s specific risks versus test results, for quarry 1 (blue
line), 2 (green line) and 3 (red line).

These results have been validated against those from CASoft [|[174], which relies on simulation
using a Metropolis-Hastings algorithm to estimate the posterior distribution used to calculate the
specific risks. The results agreed within the small random variation expected for Monte Carlo
estimates of small probabilities.

E2.3.7 Interpretation of results

Studies on global risks, such as that conducted in section [E2.3.6.2] can allow the involved par-
ties (consumers and producers) to agree on an acceptance limit (balancing the safeguarding of
the inhabitants’ health and the economical interests of the quarries’ owners, in the considered
example).

The approach in section [E2.3.6.3| provides risks of false decision for a specific test result and for
a particular acceptance limit (Ay = Ty, in the considered case). From a practical point of view,
no action will be undertaken when a measurement result is under the acceptance limit, that is
when it is conforming with the requirements. However, when a test result exceeds the limit, it
will be declared as non conforming and some corrective action will be required. In this case,
the producer has at hand a tool for assessing the extent of his/her responsibility for such failure
and possibly elaborate an appropriate reaction. As an example, for a non-conforming test result
c1m = 0.225 mgm™3, the specific producer’s risk for quarry 1 is about 12 %, meaning that there
is a non-negligible 12 % probability of such a test result to correspond to an actually conforming
true value c;.
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Uncertainty evaluation of nanoparticle

size by AFM, by means of an optimised
Design of Experiment for a hierarchical
mixed model in a Bayesian framework

approach

T. Caebergs, B. de Boeck, J. Pétry, N. Sebaihi, M.G. Cox, N. Fischer, J. Greenwood

E2.4.1 Summary

This example presents a comprehensive framework for uncertainty evaluation for measurement
of the mean size of nanoparticles in dispersion samples by Atomic Force Microscopy (AFM). No
comprehensive measurement model exists for this measurement and a statistical model is built
up for measurement uncertainty evaluation. Random effects and fixed effects are simultane-
ously considered and interactions cannot be neglected, a priori. This is realised by a Design of
Experiment (DoE) for a hierarchical model |indexhierarchical model, and following a Bayesian
approach. An optimised DoE is used instead of a full DoE to speed up the acquisition of data
by reducing the number of AFM images. A calibration curve obtained by measurements of step-
height of certified topography standards provides the traceability of the measurements to the
metre definition of the Systéme International d’unités (SI).

This example is intended to be adaptable as a template example for commercial calibration ser-
vice application: balancing the need for limited manpower while keeping the uncertainty evalu-
ation to the best accuracy. It is based on a scientific paper already published [175]], giving here
more importance to the explanation of the methodology. It has also been successfully applied to
ISO/IEC 17025 [7]] accredited activities in Belgium.
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E2.4.2 Introduction of the application

The properties of a chemical substance are usually associated with its bulk form. For example,
gold is a yellow metal as ingots or in jewellery (solid gold or coating), being a good electrical
conductor. The properties of a material can drastically change when the size of the functional
element is of the order of 1nm to 100nm - the nanometre scale. Size is thus the first-line
measurement in the physico-chemical characterisation of the product.

Gold is yellow in its bulk form and red in its nanoparticle form. Upon agglomeration of the
nanoparticles, some blue tints additionally appear. Other than just colour, the functional prop-
erties are also different. For example, silicon dioxide acts as an anti-caking agent for powders
(whether food or not). By reducing the physical size of items in a sample of the elements while
keeping the same mass (quantity of matter of bulk material), the contact surface increases. For
chemical reagents or catalysts, kinetics therefore increase, leading to explosive behaviour in ex-
treme cases.

The discovery of the creation of these properties has led to recent technological development and
new industrial applications have rapidly been discovered. The market has already experienced
a boom in recent times. Unfortunately, adverse effects on health are not yet known and under-
stood in detail. Following ideas of precautionary principles, several EU regulations have been
established [|[176-178]]. Two examples are to be cited: regulation on labelling of consumer prod-
ucts [|[177]] and the more recent regulation on medical devices [|[179]]. In addition, some countries
have set up registers to monitor their nano-material market [[180-182]]. The common point of
these regulations is the sizing, the EU has agreed on a formal definition [[183[]. These reasons mo-
tivate the work on a metrological approach for nanoparticle sizing: through traceability to the SI
and rigorous uncertainty evaluation. The field of metrology at the nanoscale is nowadays facing
challenges. Numerous techniques have been developed to size nanoparticles but they provide
different measured sizes, with results sometimes incompatible between techniques. A deeper
metrological understanding is thus needed.

This example presents an instance of uncertainty evaluation when no full measurement model
is available: a statistical modelling (top-down) approach is thus followed. This application is
related to example [|184], which deals with one source of uncertainty in detail: the pixel size of
the raster image. In the following example, this source of uncertainty is kept under control (that
is, giving negligible uncertainty) by appropriate choice for the purpose of this study, in order to
avoid unnecessary complication of the problem.

AFM belongs to the class of methods termed Scanning Probe Microscopy (SPM) and produces a
topography of the specimen. In its classical use, the tapping mode, the topography is measured by
scanning the surface by keeping a small tip probe (see figure in intermittent contact with
the specimen. In tapping mode, the probe is kept in intermittent contact with the sample. The
specimen is less affected by the measurement in this mode. This form of contacting is carried
out by oscillating the probe near its resonance frequency and this oscillating probe is brought
nearer to the sample by a piezoelectric actuator. When contact is made, some absorption occurs
and the oscillation amplitude (measured by mirroring a laser beam onto the back of the probe)
diminishes. The ratio of the amplitude when in contact to the amplitude when not in contact is
the amplitude ratio. The smaller is the amplitude ratio, the greater is the interaction between
the probe and the specimen. The feedback control (by a Proportional Integral Derivative (PID)
controller) to keep this intermittent contact at a constant amplitude ratio by moving the piezo
actuator is used to make measurement of the vertical topography of the specimen.

Examples of evaluating measurement uncertainty First edition



Example E2.4. Uncertainty evaluation of nanoparticle sizing by AFM 173

Figure E2.4.1: Electron microscopy picture of an Olympus AC160TS-R3 AFM probe
The scanning of the surface to measure the topography and render the latter as a raster image
is carried out line by line in a back-and-forth movement of the tip, at a given speed (the scan
speed). Two raster images of the topography are thus obtained: the “trace” image with all the
lines scanned in the forward direction, and the “retrace” image made from all the lines scanned
in the backward direction. The “retrace” image is usually used as the measurement. This back-
and-forth scanning is illustrated by a figure in example [[184]].

Assuming a spherical shape for nanoparticles, the height at the top of the nanoparticle with refer-
ence to the flat substrate — on which the nanoparticles are deposited — is equal to the diameter of
the spherical nanoparticle, and acts as a measurand for it. An example of topography is presented

in figure [E2.4.23)

(a) 3D view of AFM topography of a polystyrene (b) AFM topography of a grid surface topogra-

100 nm nanoparticle sample deposited on flat phy standard. The standard height is the height

mica substrate difference between the black and orange areas
(the colour stands for the z-scale)

Figure E2.4.2: AFM topographies of the two types of samples considered in this example

Some influence factors have been identified by the experimenters, and some of them have been
studied individually, like in [[185]]. The feedback control parameters are adjusted manually by the
operator, based on image quality (by eye) and independently for each sample. In addition, the tip
probes are consumables subject to wear, which can also be dirtied during measurement and are
often to be replaced. Unfortunately, no full measurement model exists to relate the measurement
parameters, as would be needed for the GUM LPU [2]], or a Monte Carlo approach as in [3[] for
uncertainty evaluation. Furthermore, correlations between effects are unknown but cannot be
neglected, a priori. The effects can be categorised into fixed effects (feedback parameter, imaging
parameter, type of tip probe), on which the experimenter has some control, and random effects,
time dependent at different time scales (ambient conditions, tip wear, tip dirtied), which are very
difficult to control. Human factors are a priori also present: as operator for image collection and
for image analysis, with their own prior experience, skills and thus their potential biases.
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The statistical model — an optimised DoE for a hierarchical mixed model, in a Bayesian framework
— is built upon several features here briefly explained:

hierarchical mixed model : presence of uncertainty sources from fixed effects and hierarchical
model for random effects to extract intermediate precision conditions with several levels
of nesting — an ANOVA test would fit that purpose if only random effects were considered;

Design of Experiment (DoE) : in order to appreciate the influence of the fixed effects (indi-
vidually and also jointly, by the interaction terms) and to structure the random effects
(intermediate precision conditions);

optimised : it is an optimised DoE: not all the combinations of effects are considered to reduce
the time needed for measurements, but this subset is optimally selected in order to minimise
the induced bias;

Bayesian : parameters are estimated using the Bayesian approach instead of the frequentist
approach, using a MCMC method (with the rstan library [[186]]).

In order to simplify the model and limit the number of images to be acquired, only significant
effects are kept after a first analysis with topography standards (in addition to providing calibra-
tion data). This analysis results in a reduction of data and experimental time and is a second
“optimisation” feature of the model, important for commercial applications.

Two main criteria are to be met to claim metrological quality for a measurement: the measure-
ment should be traceable to SI units and an evaluation of the uncertainty on that measurement
should accompany it. Surface Topography Standards are used as calibration artefacts, externally
calibrated: it is a calibration by comparison. This z-scale (vertical) calibration provides the trace-
ability of the measurement. The raw measurement data are the raster images of the topography;,
on which image analysis is performed to obtain the measured heights. The uncertainty contribu-
tions are evaluated at the same time as the central “mean” value for the measurement. For fixed
effects, the central value is an averaged opinion over the different factors, for each uncertainty
source. Each factor represents a reasonably valid choice (from expert knowledge), also for con-
tinuous variables, and can thus reasonably be represented as categorical variables, each value
(“level”) being considered as equally valid as the others.

The experiments have been performed on an Asylum Research MFP-3D Infinity AFM (Oxford In-
struments, USA), in tapping mode. Only “retrace” images were considered for measurement. The
Surface Topography Standards (VLSI Standards Inc., Milpitas, CA, USA) are grid standards for
x-y lateral and gz vertical dimension calibration (see figure the black parts represents the
reference holes) and were externally calibrated by means of a metrological AFM. Their specifica-
tions are listed in table Gold nanoparticles of this work are RM8012 (NIST, Gaithersburg,
USA) reference material, with a (24.9 = 1.1)nm (k = 2, 95% coverage probability) certified
size [[187]]. Deposition on substrate is performed following the procedure explained in [|188]].
The tip probes are the consumables part of the uncertainty evaluation and they will be detailed
together with other uncertainty sources later in the text.

E2.4.3 Specification of the measurand(s)

The height of the nanoparticle is the measurand acting for its size, under the assumption of
the nanoparticles being of spherical shape. Figure [E2.4.3|illustrates the measurement of the
topography along one scanning line, and how the size h of the nanoparticle would ideally appear
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Table E2.4.1: Properties of the VLSI Surface Topography Standards used for AFM calibration

Grating Product name Nominal step height Calibrated step height (k = 2)

Uy /nm Uo/nm
St STS 3 180p 18 15.6+1.0
Si2] STS 2 440p 44 42.3+1.2
Sia) STS 3 1000p 100 99.0+1.2
Sta] STS 3 1800p 180 177.4+1.3

in it. The height of a nanoparticle is extracted as the height of the pixel of maximum height
within the set of pixels identified as belonging to the nanoparticle, in the 2-dimensional raster
image of the topography. For the topography standards (grids or gratings), the characteristic
height is the step height, which is obtained by comparing the height between the valleys and the
plateau in the pattern (see figure[E2.4.4), and averaging the height at their centre with removal
of the edges to avoid some instrumental effects (ISO 5436-1 [|189]]) by only using the greyed
parts of figure This averaging is done by a modified least square fit, taking into account
the step shape.

Figure E2.4.3: Measurement of nanoparticle size by AFM. The tip probe is represented at several
positions along its path, and the broken line represents the measured topography

Figure E2.4.4: Height measurement for topography standards along an AFM scanning line. Only
the regions in grey (i.e. regions away from the steps) are considered for measurement

The mean size of the sample is extracted, together with uncertainty evaluation, simultaneously.
Each nanoparticle under measurement is assigned the same weight; it is the number-based mean
size, like other microscopy techniques but unlike other measurement techniques such as light
scattering or light-absorption based.
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E2.4.4 Measurement model

The measurement data are collected according to a D-optimised DoE computed by the SAS JMP
software [|[190]], in order to limit the experiment time: 150 images for nanoparticles and 69, 24,
105 and 75 images for grids of 18 nm, 44 nm, 100 nm and 180 nm nominal step height (further
labelled S; 47 in the text), respectively. Not all the combinations of effects are considered,
but only a limited number of them without introducing much bias; this is the purpose of the
optimised DoEs. It took about one month of full-time measurement, with the optimisation already
applied. Common procedures are used but some parameter adjustment is still needed on the
instrument, dependent on the sample at hand and operator skills, which could introduce some
uncertainty. The measurements are extracted from the processed raster images. After subtraction
of the background (substrate), the analysis of the images is performed by an operator to identify
the relevant pixels for the measurements: sets of contiguous pixels for nanoparticles and sets of
lines passing through the central areas of patterns for step height standards. Again, some skills
are needed and the image analyst could potentially introduce some bias in the results.

No physical measurement model can be obtained; a statistical modelling of the measurement is
used instead, taking into account the different aspects listed above. Its global equation is

mg
e = Bo_ + D XpijBr + D YreiBre +ai+byj+cije + €ijus (E2.4.1)
" = —
grand mean f=1 i 78 random effects

fixed effects

where h;j; represents the measured height and where indices i, j, k and [ are for different days,
positions, images and nanoparticle size measurements respectively. It contains three parts: the
grand mean f3,, which is the bare mean measured size in the absence of uncertainty sources (said
another way, the average opinion among the fixed effects, and when removing the random ef-
fects), the latter being in fixed and random effect parts. The unknown m; fixed effects (labelled

by f) are considered in ﬁf, with their DoE matrix X; ;. coded for each effect and their 2-way

interactions f¢g. Y¢g ik is the combined DoE with coded effects matrix expressed as the tensor
product of the matrices for single effects. Random effects form the third part, where the hier-
archical structure with 3 nested blocks (hierarchical layers, see figure can be understood
from the indices. In this model a; ~ A(0, ai), where o, is the actual estimated parameter; and
similarly for b; j (with parameter Ubij) and ¢; i (with parameter O-Cijk)’ where A (u, 0?) denotes
the normal distribution with mean u and standard deviation . €;jy is the residual fitting term
and has a particular significance for the measurement that will be later explained. The DoE is
defined as the set of values i,j,k together with the ﬁ ¢ coded in it and its blocking structure. The
blocking structure is the roadmap of measurements in timely order and grouping, that is, the in-
termediate precision conditions (day, position, image). Priors are chosen to be non-informative.

Each opinion of the categorical variables is considered equally valid, and thus should be modelled
as balanced. In the coding, a contrast between each categorical value (“level”) is desired; this is
the aim of orthogonality. The effect-type coding matches these purposes [[191,(192]]. Effect-type
coding codes n effects into n — 1 variables by using an identity matrix for the first n — 1 effects
and a vector with its n—1 elements set to —1 for the last effect. This choice brings n—1 degrees
of freedom for the uncertainty evaluation of the considered fixed effect, and 1 degree of freedom
to the estimation of the grand mean value: estimation of the mean size, in our example. The
fixed effects considered here are:
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tip probe type 3 levels: Olympus AC160TS (illustrated in figure [E2.4.1), Olympus AC240TS,
NanoSensors PPP-NCHR (classically used probes with different geometric tip shape, stiff-
ness constant and resonance frequencies),

tapping force 4 levels: 65 %, 70 %, 75 % and 80 % (set-point amplitude ratios for the feedback
control in tapping mode; the ratio is relative to the free oscillation of the tip: the smaller
is the ratio, the more the tip pushes on the specimen),

scan speed 3 levels: 1.8 yms™!, 3.6 ums ™! and 5.4pms~! (lateral scan speeds along the scan-
ning line),

operator, image analysts 3 levels each, all operators/analysts were trained but with different
experience with AFM.

° ° ° day

position

image

Figure E2.4.5: Nested design schema for the random variables, with its 3 stages of blocks

Considering all these possible effects would lead to a large amount of data and a huge time
needed for experiment (recall that the AFM is considered as a slow measurement technique). A
first DoE is thus followed for step height standards, which are somewhat faster to measure, and
data are then processed to identify significant effects and interactions (with the mixed procedure
in the SAS software [[193]], with 95 % confidence level criterion). The operator and image analyst
effects turned out to be not significant, for both step height standards and nanoparticles. For step
height standards, only the probe effect was significant. Only interaction terms between the probe
type and the scan speed, and between the amplitude ratio and the scan speed were found to be
significant. The set of considered parameters is then reduced to those that are significant and
the new restricted optimised DoE is applied on nanoparticle measurements.

E2.4.4.1 Calibration

Measurement data are calibrated according to height measurement performed on Surface Topog-
raphy Standards, based on measurement reported in section[E2.4.6] These step height standards
were purchased from VLSI Standards Inc. and externally calibrated by a metrological AFM, re-
sulting in directly traceable measurement and small uncertainties.

The proposed calibration model is
e = a+7qm+ 595 +e€, (E2.4.2)

where q. is a certified value, q,, a measured value, and a, y, 6 and € are adjustable parameters.
In the Bayesian approach, all these terms are to be understood as random variables rather than
simple real numbers. The parameter € is a normal deviation from the quadratic model and «a, y
and 6 are calibration curve parameters.
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Calibration parameter estimation

Information at hand are certified values for the step height standards together with their uncer-
tainties. In the model, they were assigned normal distribution with relevant information from
certificate (this would form the prior). A thorough analysis of the step height standard was car-
ried out by following the full procedure of this DoE (see results in other sections of this text).
For each standard, the information was summarised in the form of a mean value with an asso-
ciated uncertainty. A normal distribution with parameters adopted from summary information
was used for q,, for each standard. The validity of the approximation by a normal distribution
was checked by eye.

The approach of establishing estimates of the calibration curve coefficients is similar to MCMC
that would be applied in rstan [[186], but without the merit function optimisation. The use
of ordinary least squares regression is the single optimisation step present. The joint density
for (a,y, 8, €) is approximated by sampling N times from its distribution through the following
procedure:

take N samples (,umj,ucj)[r] (for j =1,..,N) from the 4 calibration points (r =1,2,3,4);

— calculate for j =1, ..,N the estimated coefficients aj, ¥j and 6, and the mean squared er-
ror sf by performing N times an ordinary least-squares method (OLS) quadratic regression
with regression data (,umj,Mcj)[r] forr=1,2,3,4;

— sample a random value ¢; from N(O,s?) (for j=1,..,,N);

— collect the sample (a;,7;,8;, €;)-
The joint distribution of (a, v, 6, €) is approximated by merging the N samples (a;,y;,6;,€;) for
j=1,.,N. Thetablein ﬁgureshows the results obtained for the parameters with N = 10°.
Given the value of §, the calibration curve can be defined as linear. The 95 % confidence interval
of the calibration curve and the mean calibration curve are also illustrated in figure The
random trials of all 4 parameters (a,y, 0, €) are saved as tuples and form the calibration curve
information, as a joint PDF. Full correlations inferred from the Bayesian fit are thus kept.

£
£
= 3 o
£
k<2
Parameter E[.] s[.] 2 3 ]
a/nm —0.2059 0.7724 5]
Y 1.0025 0.0252 < s
§/nm™? 0.000 003 0.000135 £
€/nm —0.0007 0.6919 p2
s © T T T

50 100 150
Certified step height p/nm

Figure E2.4.6: Expected values and standard uncertainties for the calibration curve parameters
— graphical representation of the 95 % confidence interval of the calibration curve
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Calibrating measurements

To apply the calibration on a real measurement (a nanoparticle height, for example), each data
value is applied to the calibration curve, with all the saved trial information. For each original
data point, a set of certified values is thus obtained.

E2.4.5 Uncertainty propagation

The uncertainty evaluation is performed by MCMC in rstan. It is important to keep in mind that
the evaluation is not a full Bayesian inversion. The main estimated parameter is the mean height
(i.e. mean nanoparticle size or mean step height, depending on the case of application), and
the other parameters are uncertainty contributions, which were unknown a priori. In parallel, a
frequentist methodology has also been followed in the SAS software (version 9.4) and its mixed
procedure [[193]]. Measurement uncertainties derived in the Bayesian approach are generally
slightly smaller, although not significantly, for the fixed effects and comparable for the random
effects.

E2.4.6 Reporting the result

The results to be reported are extracted using the distributions obtained from MCMC. A com-
bination of variables can be constructed by using the random trials. For example, if only fixed
effects are considered, the measured mean size is:

my
Pixed = Po + ZXf,ijk Br + ZYfg,ijk Brg- (E2.4.3)
f=1 f#g

If random errors are also considered:

my
Ufix, rnd = Bo + ZXf,ijk B + Z Yegijk Brg +ai+ b +ciji- (E2.4.4)
f=1 f#g

From the distributions provided by MCMC, the expected value (I£) and the standard deviation (s)
are extracted to report the mean parameters. For the random effects, the mean of the MCMC
estimation of the o parameters is reported. For the fixed effects, the standard deviation will be
reported to evaluate the uncertainty coming from this effect, after merging the MCMC PDFs of
all effect levels into a single PDF. It is important to note that these are only summary information
and the real information is instead the distribution underlying the estimated values, i.e. the full
set of MCMC trials (less those associated with the MCMC warm-up stage). The full sets are
presented in several figures of the PDFs, for nanoparticles and for illustration purposes, not only
for the main fixed effects, but also their interactions.

E2.4.6.1 Step height standards

The results of parameter estimation for the step height standards are summarised in table [E2.4.2
for the estimated mean size. The intermediate precision uncertainties estimated from this statis-
tical model are presented in table [E2.4.3] Day and position (very approximately chosen position
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before starting any measurement) effects are coarsely of similar magnitude, for each step height
standard considered apart. One possible explanation for this effect is the difficulty in arriving
at exactly the same position with an AFM. This means that in attempting to image the same
position, a nearby position is imaged instead. Variability is thus present, which behaves in a sim-
ilar way to the day-to-day variability. A further consequential uncertainty arises that increases
with increasing nominal step height. One possible explanation would come from fluctuations (of
different spatial frequencies) in the lithography process, which would scale with nominal step
height.

Table E2.4.2: Expected values and standard uncertainties for the measured mean step height u,
for each reference standard grating

Grating IE[u,]/nm s[u,]/nm

St 15.91 0.13
Spa] 42.15 0.01
Sts] 99.06 0.54
Sy 177.04 0.70

Table E2.4.3: Variance of the random effects influencing the step height measurements for each
grating

Effect o?/nm? for S;y3  o®/nm? for S;y;  o?/nm? for S;3; o/nm? for Sy
day 0.0075 0.0001 0.5439 1.0923
position 0.0149 0.0016 0.1623 0.6170
image repeat. 0.0000 0.0003 0.0002 0.0018
within image var. (€,) 0.0309 0.0455 0.0105 1.4797

It is also observed that image repeatability has almost null contribution; and this effect is thus
not considered for nanoparticles, again considering the experiment time issue. The within-image
variability (residual) is the main contributor to observed variability of results.

Table E2.4.4: Standard uncertainty of the probe fixed effect for each grating

Grating S [ ﬁ probe ] / nm

St 0.11
St not significant
St3) 0.25
St not significant

Details for the probe fixed effects are given in table [E2.4.4} for which the effect is significant
for standards Sp;7 and Sp3y and not for the other two standards. No explanation could be found
for this peculiar effect: the standards come from the same manufacturer and are produced in
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a similar way. This effect possibly results from the different number of images and in relation
to the difference enhanced by the optimisation of the DoE. The observed effect is nevertheless
taken into account in further calculations.

E2.4.6.2 Nanoparticles
Main effects

Figure presents the general estimated distributions for the means By, Ufixeq and WUgix nd
from the mixed model, showing that the main contributor is from the random effects. Summary
values are provided in table where h, is the measured gold nanoparticle height (raw
data, from equation (E2.4.1))) and u,, is the estimated mean measured height (ugyeq in equation
(E2:4.3))). The estimated mean value is E[u,,] = 23.40nm, s[u,] = 1.19nm.
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Figure E2.4.7: MCMC PDFs of the means, scaled to their maximum peak heights. The grand
mean f3 (intrinsic mean) is in red, the mean when taking into account from fixed effects pgyeq

(eq. (E2.4.3)) in blue and when considering all uncertainty factors, gy mq (€q. (E2.4.4)), in
green.

Table E2.4.5: Expected values and standard uncertainties for the measured particle height h,
and the mean measured height u,, of the gold nanoparticle sample

E[hy]/nm  s[hy]/nm  Eluy]/nm - s[uy,]/nm
23.39 3.18 23.40 1.19

The contributions of intermediate precision conditions (hierarchical random effects) are pre-
sented in table[E2.4.6] where parameters are summarised blocking level per blocking level. As for
the step height standards, the main source of variability of the measurement is the within-image
variability (residual €,.). The position random effect seems to bring a little more variability than
the day of measurement.
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Table E2.4.6: Evaluated variance of the random effects influencing the nanoparticle height mea-
surements

effect u?[.]/nm?
day E[O‘(an] =0.16
position ]E[apos] =0.88

within image variability (€,5) E[02,]=7.61

More detailed investigation of the fixed effects is presented in figures[E2.4.8} [E2.4.9]and [E2.4.10}
An amplitude ratio of 80 % shows higher estimation of the size, compared to other amplitude
ratio parameter values. No clear effect of the scan speed nor the probe could be observed. Note
that a null average is expected over the whole effect (if merging all effects levels into a single
PDF), because of the choice of effect-type coding. If a bias were present in the data for a given
fixed effect, its contribution would be propagated and included in the grand mean 3. The
fixed effect contributions to uncertainty are summarised in table by taking the estimated
standard deviations (after merging the MCMC PDFs from all levels of the fixed effect) as fixed
effect contributions. The different fixed effects lead to contributions of similar magnitude, about
0.5nm.
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Figure E2.4.8: MCMC fixed effect coefficients PDFs for the amplitude ratio (related to tapping
force). The amplitude ratio of 80 % has a tendency to increase the size; this value has a smaller

tapping force (free and contact amplitudes are closer). The other values have very similar be-
haviour

Interactions

Interrelations of the various quantities are investigated via the estimated interaction terms. A
trend with the scan speed is observed from figure [E2.4.11|at high amplitude ratio (80%). Its
magnitude is as high as 1 nm, but only visible via the interaction terms.
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Figure E2.4.9: MCMC fixed effect coefficients PDFs for scan speed
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Figure E2.4.10: MCMC fixed effect coefficients PDFs for the probe model
The PPP-NCHR probe displays different behaviour from that of the other probe types, and seems

to measure higher nanoparticles at high speed, as can be seen from figure|[E2.4.12] The observed
effect would be of the order of 1 nm in magnitude.
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Table E2.4.7: Estimated standard deviation of the respective fixed effects significantly influencing
the nanoparticle height measurements

Effect u[.]/nm

probe $[Bprobe] = 0.49
amplitude ratio  s[Biapping force] = 0-52
scan speed $[Bspeea] = 0.39
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Figure E2.4.11: Interaction PDFs between the amplitude ratio and the scan speed parameters,
grouped by amplitude ratio

E2.4.7 Interpretation of results

Only the interpretation of nanoparticle results is reported here, because the interpretation of
results on step height standards was already carried out in the previous section, and the purpose
of step height measurement is more to derive a calibration curve than to be the subject of the
main measurement, itself.

Bo is the “central-intrinsic” mean value of the sample. This is the average response over the differ-
ent fixed effects, with their levels all considered on an equal footing. To consider the uncertainty
sources from fixed and random effects, Ufyeq and Uy ;nq are computed as MCMC distributions.
€jx carries the remaining variability in the model: for nanoparticles, it is the variability within
the image and thus relates to the spread of the nanoparticle size distribution (intrinsic, physical).
As the interest here is in measuring the mean size of the nanoparticle sample by parametric esti-
mation, €;;; (being equal to €, on average) is left aside. For characterisation of the object under
measurement and comparison with other measurement techniques, the value with fixed effects,
WUfixed> 1S to be considered. If biases are present for some fixed effects values, they should be
covered as an uncertainty, and averaged out because of the effect-type coding, and this average
part propagated to the grand mean. The following result for the gold nanoparticle sample is ob-
tained from the MCMC distribution: E[u,,] = 23.40nm, s[u,,] = 1.19nm (table[E2.4.5). Under
normality assumption, these values can be used, after calibration, to compare with other results
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Figure E2.4.12: Interaction PDFs between the probe and the scan speed parameters, grouped by
scan speed

Table E2.4.8: Expected values and standard uncertainties for the certified particle height h, and
the certified mean height u. of the gold nanoparticle sample

E[h ] /nm s[h.]/nm E[u.]/nm  s[u.]/nm
23.24 3.28 23.25 1.44

obtained via a classical GUM-LPU method. The final result E[u.] = 23.25nm, s[u.] = 1.44nm
(table[E2.4.8) is compatible with the certified value of the sample: (24.9+1.1)nm (k =2, 95%
coverage probability), validating the approach.

With this approach, ugyeq and Wy mq cannot be obtained by splitting contributions from each
contribution and summing them up quadratically, as in a GUM-LPU approach. This is, again,
related to the fact that numbers are only summary information and not the full distribution
information. Furthermore, correlations and non-linearities of the model are better accounted for
by the Bayesian approach. In the present case of uncertainty evaluation by means of an optimised
DoE, correlations appear via estimated interaction termsﬂ but also in simultaneous trials among
the estimated variables (Bayesian approach), and this, non-linearly. It would only be linearly in
the GUM-LPU approach.

More precisely, interactions and correlations are different in several respects. Correlations relate
to simultaneous fluctuations of variables, while interactions, defined in the paradigm of contin-
uous variables, more relate to non-linearities of the physics here statistically modelled. In this
example, the continuous variables (i.e. scan speed and amplitude ratio) are encoded as categor-
ical, to be implemented in the same way as naturally categorical variables (i.e. probe type). The
continuity aspect is lost, which could be damaging in case of modelling, but not in this case,
as occurrences of these continuous variables are all equally valid, experimentally speaking, and

n [[191]] (p.221), a note is inserted to make clear the distinction between interaction and correlation. However,
in the present context of uncertainty evaluation and potential comparison with a classical approach, the distinction is
not so straightforward
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should thus be considered on an equal footing (not necessarily in their sequence order, 65 %,
70%, 75 % and 80 % amplitude ratio, for example). In an ideal non-optimised DoE, all probed
combinations of parameters would be equally populated : no correlation is present among the
parameter input quantities, only the response variable (the measured height h, here) fluctuates.
The estimated interactions thus reflect properties of the underlying physics, which is statistically
modelled.

We now continue with the amplitude ratio example (a similar discussion holds for the scan
speed). Experimentally, its continuous values are manually typed into the machine, and any
fluctuation in the parameter adjustment by the machine will be reflected in the result. The cov-
erage of the valid range is made through this choice of the four values. As a reminder, the
amplitude ratio is the ratio of the amplitude set point (when in contact) to the free amplitude
(when not in contact). A bigger amplitude ratio means less contact with the specimen, which
can cause bad tracking of the specimen, resulting in a parachuting effect. With this effect, the
measured height (hence nanoparticle size) can be greater, as can be clearly seen in figure[E2.4.8]
This is also one interpretation of the behaviour seen of interactions for the 80 % amplitude ratio
with scanning speed variation, as can be seen on figure the faster is the scan, the more
pronounced is the parachuting effect and the higher is the measured size. Note that this effect
might be related to pixel size effect described in example [|[184]]: the higher size coming from av-
eraging higher points in the vicinity of the apex over the pixel, its being measured higher because
of the parachuting effect. From expert knowledge, no parachuting effect is expected from the
lower amplitude ratio values, the topography being more closely tracked. The other fluctuations
present in the estimated effect magnitudes could be attributed to non-ideality of the optimised
DoE and fluctuations in data, enhanced by the chosen effect-type coding which makes the global
average null and forces some shuffling of the estimated effects around zero. This effect should be
further investigated with more data but it is not visible without looking at interactions, because
it is averaged out by the methodology of effect-type coding for the main effect. If looking at
correlation among variables without use of categorical variables, this effect would be much less
pronounced and could have gone unnoticed because of dilution of the information with data at
the three other amplitude ratios.

Unfortunately, no sensible explanation could be provided for the different behaviour of the
PPP-NCHR probe at high scan speed, compared to the other probes, as seen from figure
Some speculation can however be drawn about its origin. The PPP-NCHR has a different tip shape
than the other probes, and maybe some discrepancies could be observed in non-ideal conditions,
like it is for the high scan speed. In addition, it is also possible that the different spring constants
play some role, through the interplay of several adjusted factors. Despite the lack of explanation,
this effect is nevertheless taken into account in the calculations.

Both of these effects at high amplitude ratio and for the PPP-NCHR probe were not visible from the
analysis of the main effects. If not considering these significant interaction terms, the fixed effect
estimations could be biased and some correlation be present among the estimated fixed effects
(if not averaged out). In an ideal case, a DoE should be balanced among all the levels, meaning
that input quantities (experimental parameters of the fixed effects) do not present correlations.
By reducing the number of combinations in the DoE, some correlations between estimates can
appear by imbalance among the effects (at their levels). It is the case here because an optimised
DoE is used, although the D-optimality criterion was applied, mitigating the problem. Some
enhancement of this issue can also potentially occur because the number of nanoparticles in an
image can vary. It is also to be noticed that the magnitude of the observed effects is rather small,
being less than 1 nm.
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E2.4.8 Conclusions

This example illustrates uncertainty evaluation when no full measurement model is available.
For the present example of nanoparticle size measurement, some models to describe behaviour
of single effects can be found in the literature, but they unfortunately do not permit to take into
account their interrelations into a single full measurement model. A statistical model is thus
adopted (in the spirit of [|5, clause 11]), and the uncertainty evaluation is carried out within
a common framework for intermediate precision conditions and fixed effects. When several
parameter values are to be considered on an equal footing for a given effect, categorical variables
is used instead of continuous variables. These variables are also effect-type coded for equally valid
experimental parameter values. An optimised DoE is followed to limit measurement time, and
significant parameters are identified to reduce further this time. The mean of the size distribution,
with size being the height measured by the AFM, is the measurand. A Bayesian approach is
followed for this parameter estimation, using rstan.

This method allows for a better handling of these interrelations, at several steps of the process:
for the calibration curve and by using categorical variables. For the calibration curve estimation,
full correlations among the calibration parameters are kept by retaining the vector of parameters
(and not their individual PDFs) for each trial. By using categorical variables, some insight is lost
on modelling the physics of the effects, but one has access to interrelations under the form of
interactions, value-per-value (= level-per-level) of each effect and not effect-per-effect as in the
conventional methodologies. This phenomenon was highlighted for the case of amplitude ratio
of 80 %, together with the scan speed variation. The main goal of the methodology developed
here is to provide a measurement and its uncertainty evaluation in more affordable time, and
not a to provide a detailed investigation of the various effects. Some interesting features could
nevertheless be observed and discussed.

The relevant variables and relevant interactions were first identified by a frequentist estimation
with the SAS software and the final parameter evaluation by MCMC (rstan). The two methods
however yield similar results for this parameter estimation, with slightly smaller uncertainties
for fixed effects with the Bayesian approach.

This approach has already been successfully applied to ISO/IEC 17025-accredited activities by
the authors in Belgium, and could be adapted to other commercial application where no full
measurement model exists and time savings are important.
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Example E2.5

GUM-LPU uncertainty evaluation —
importing measurement traceability
from a conformity statement

J. Greenwood, A. Bosnjakovi¢, V. Karahodzi¢, P Pedone, E Manta, M.G. Cox

E2.5.1 Summary

Measurement traceability is commonly obtained from calibration measurements that provide a
result in terms of a single value and its associated uncertainty. However, there are circumstances
where instead, the result may consist of a range of possible values. Such circumstances might
arise when a result is provided in the form of the output from a conformity decision process, for
example as a conformity statement in which a range of acceptable values rather than a specific
value is reported. In terms of metrological traceability this style of result provides less informa-
tion than a specific value, but it may be sufficient to obtain an acceptable target measurement
uncertainty for a given application. The standard ISO/IEC 17025 acknowledges the provision of
such information in informative annex A. This example describes how such information might
be used to propagate traceability.

E2.5.2 Introduction

Under typical circumstances, evaluation of measurement uncertainty following the GUM [2]] law
of propagation of uncertainty (LPU), involves assigning a probability density function (PDF) to
the measurand that usually has a normal distribution (or sometimes a t distribution). This ‘out-
put’ PDF corresponds to a combination of the PDFs for all the inputs to the measurement. It is
characterised by a location parameter — the mean value corresponding to the estimate y of the
value of the measurand; and a dispersion parameter — the corresponding variance u%(y) associ-
ated with that estimate. If this result subsequently becomes an input to a further measurement,
the variance is ‘imported’ into the corresponding uncertainty evaluation.
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However, suppose instead that whilst we still obtain information that allows us to establish the
variance u? = u?(y), we are not given a specific value for y. Instead we receive only information
about the interval A, e.g. [—a, a], in which the estimate y is located. In other words, we know
the dispersion of y, but we do not have a value for the location of y, only a range of possible
values.

In this case, the information can be still be brought into a subsequent uncertainty budget, but
now since two independent PDFs, say for example a normal distribution N(O,u) characterising
the dispersion of values around any given value of y, and a rectangular distribution R(—a, a)
characterising the available information about the location parameter. For ease of explanation
we will usually assume here that intervals A for y are centred on zero, but this is not a necessary
requirement.

This situation is of potential interest to those concerned with meeting the requirements of
ISO/IEC 17025:2017 since this standard [|7, Informative Annex A.2.3] accepts that metrologi-
cal traceability could be provided by statements of conformity.

Ideally, a statement of conformity will include (i) the specification or tolerance interval C for
the measurand Y (such that —c <Y < ¢), (ii) an acceptance interval A for the estimate y (such
that —a < y < a) defined by a decision rule that takes direct or indirect account of measurement
uncertainty, and (iii) a conformance probability p., which is the basis for (or a consequence of)
how the acceptance interval is defined. In fact, in many practical situations a so-called ‘Simple Ac-
ceptance’ criterion is used to define the limits for deciding conformity, in which case A = C. In this
case, in order to meet the requirements for a decision rule appropriate for ISO/IEC 17025:2017,
uncertainty is taken into account indirectly, usually by specifying an upper limit u,,, that, as a
prerequisite, must not be exceeded for the Simple Acceptance criteria to be applied.

The aim here is to provide examples with various forms for the statement of results and to show
whether they allow the results to be traceably propagated. We begin by describing some likely
scenarios and then provide two extended examples.

E2.5.3 Examples

In all the following examples it is assumed that the estimate y € A, that is, the outcome is accepted
as conforming, and that intervals are centred on zero. For this (two-distribution) model to be
applied it is therefore necessary to identify A and u in each case.

E2.5.3.1 Information given: Acceptance interval and measurement uncertainty
for any specific value

For purposes of metrological traceability, it makes no difference how the interval A has been
established (A # C or A = C), only that it is somehow defined. Given A and u the approach is
straightforward; the information can be brought into a subsequent uncertainty budget as two
distinct distributions e.g. R(—a, a) and N(0, u) respectively.

In this situation the information might be obtained from a statement such as

“The measured value y has a standard uncertainty u = 1.3 and is within the range
—10.0< y <£10.0.7

Note that such a statement is not a conformity statement, as no specification or tolerance interval
is given, nor is there an associated decision rule.
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E2.5.3.2 Information given: Acceptance interval is the same as the tolerance in-
terval

This scenario, in which we only know that y € Aand A = C, corresponds to ‘unconstrained’ simple
acceptance, as there is no account of measurement uncertainty either ‘directly’ or ‘indirectly’. (For
this reason alone it would not meet the decision rule requirements of ISO/IEC 17025:2017.)

For example, suppose that a result is stated as:

“The specified tolerance interval is from —2.0 to +2.0; the measured result is ‘con-
forming’ as it is within the tolerance interval”

In this case there is insufficient information to establish a PDF for the outcome. The ‘uncon-
strained’ simple acceptance conformity statement is therefore insufficient to provide metrological
traceability. It could not be ‘imported’ into an uncertainty evaluation, nor could any statement
of risk be made on the basis of this information.

To make use of such a statement it would be necessary to establish uncertainty by other (external)
means, e.g., to request the value of u from the information provider.

E2.5.3.3 Information given: Tolerance and acceptance intervals and a statement
about limits of probability or risk of acceptance

In this case, as well as stating C and A, a statement may include the minimum conformance
probability p.  or the related quantity, maximum probability of false acceptance R’émax (in the
notation of [6]), which for the usual specific risk scenario is given by R, =1—p .

The information might be found in a statement of conformity, for example, a statement such as

“...the specified tolerance interval is from —2.0 to +2.0; the measured value is con-
forming as it is within the acceptance interval —1.5 to 1.5. The minimum confor-
mance probability is 0.97”

An acceptance interval A has been provided for which we see that —1.5 < y < 1.5, thatis,a = 1.5.
The standard uncertainty u is not given, but can be calculated from the information provided
since p._occurs when y = +a; hence, for a normal distribution, measurement uncertainty u is
calculable from

u=(c—a)/r (E2.5.1)

where r is the guard band multiplier [6]] (sometimes called the guard band factor) by which the
standard uncertainty has been scaled to obtain the particular conformance probability,

r=G"'(p.,), (E2.5.2)

and G~(p) is the inverse of the cumulative standard normal distribution G.

In Microsoft Excel, r can be evaluated using r = NORM.S.INV(p, ) for situations where a sig-
nificant proportion of the PDF lies beyond only one or other of the tolerance limits. Otherwise,
in situations where the PDF is broad with respect to the tolerance interval, r must be established
by other means (for example, UKAS LAB-48 ed 2, appendix D [|194]])

In this example we find that ¢ = 2, a = 1.5 and r = 1.88; hence u = 0.266. As above, this
information can be brought into a subsequent uncertainty budget as two distinct distributions
N(0,u) =N(0,0.266) and R(—a, a) = R(—1.5,1.5).
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Special case 1: interval not centred at zero

For a tolerance interval that is not centred at zero, say [c;, ¢, ], with corresponding (co-centred)
acceptance interval [a;, a, ], the uncertainty is instead

u=[(cg—cq)—(az—ay)]/(2r). (E2.5.3)

Special case 2: Simple acceptance

Consider the special case when A = C, which corresponds to the so-called Simple Acceptance
criteria. In this scenario it is usually reported that p, = 50%. For such a case (where A = C,
P, = 50%) we find that u is undefined since (c —a)/r = 0/0, that is, there is insufficient
information to calculate u; therefore the information is not sufficient to provide metrological
traceability.

Note that this simple acceptance scenario (A = C) is sometimes misleadingly referred to as ‘shared
risk’, referring to the situation when an accepted value corresponds to the tolerance limit (y =
+a). In fact, this equality of risk is only true for single-sided specifications, or situations where
u < c. In other situations where u is sufficiently large that both tails of the PDF have a significant
portion outside C, then p. < 50% and the risk is no longer ‘shared’ equally. Fortunately, in
those cases (Where A= C and p. < 50%), it is possible to calculate u for a normal PDF from

_ 2c
- G (p., +0.5)

u (E2.5.4)

Alternatively, for a tolerance interval that is not centred on zero, say [c;, ¢, ], the uncertainty is
instead

Co— (0
u= .
G—l(pcmin +0.5)

(E2.5.5)

In Microsoft Excel G_l(pCmin +0.5) is given by the cell function NORM.INV([p,, +0.5],0,1).

E2.5.3.4 Information given: Acceptance intervals and a statement about limits of
probability or risk of acceptance

This case corresponds to that described in section but without information concerning
the tolerance interval C. There is now insufficient information to establish a PDF for the outcome
as u is not provided and cannot be calculated from the information given. The information is
therefore not sufficient to provide metrological traceability (as it could not be ‘imported’ into an
uncertainty evaluation).

Note that, for accredited conformity decisions under ISO/IEC 17025:2017 it is a requirement to
define and report the specification (or standard), which usually corresponds to providing C.

E2.5.3.5 Information given: Tolerance and acceptance intervals and a statement
about limits of global conformance probability or global risk of accep-
tance

In certain situations, it is possible that the conformance probability p. may be presented in terms
of global risk [|6]]. Global risk is a measure of the risk associated with future measurements,
i.e. measurements that have not yet taken place. Although it is an important quantity in the
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evaluation of risk in general quality processes, it is arguably not consistent with the definitions
of calibration [|89, clause 2.39] or of a metrological traceability chain [|89, clause 2.42], being a
“sequence of measurement standards and calibrations that is used to relate a measurement result
to a reference’.

The information needed to implement the approach described in this example is therefore not
generally available in such a conformity statement.

E2.5.3.6 Traceability from a statement of conformance to an OIML weight classi-
fication

In this example we demonstrate how traceability might be propagated when the available infor-
mation consists only of an OIML R111-1 [[195] weight classification. This example corresponds
to the case in section[E2.5.3.3|above and is depicted graphically in Figure [E2.5.1

C

A

C, = my—&m my Cy =my +O6m

A =my— (bm —U) Ay =my+ (dm —U)
Figure E2.5.1: OIML Guard Band criteria [|[195]]

From OIML R111-1, for each weight, the expanded uncertainty U of the conventional mass shall
be less than or equal to one-third of the maximum permissible error: U < 6m/3, where U relates
to a coverage interval with a 95 % coverage probability.

Also, for each weight, the conventional mass, m. shall not differ from the nominal value of the
weight m, by more than the maximum permissible error (dm) minus the expanded uncertainty.
The acceptance interval A is defined such that

my—(dm—U) <m,<mgy+ (dm—1U) (E2.5.6)

and the tolerance interval C is defined by [my — dm, mq + dm].

Following the approach described above, the standard uncertainty associated with a classified
weight value can be evaluated by combining the standard uncertainties of the PDFs describing
the acceptance interval (information about location) and the standard uncertainty associated
with dispersion.

For example, for an E, class weight of nominal value 2kg, OIML R111 defines the maximum
permissible error dm as [[195]]

dm = 3mg. (E2.5.7)

The corresponding maximum expanded uncertainty (95 % coverage, assumed normal distribu-
tion) is defined as

d
U= ?m =1mg (E2.5.8)
with the related standard uncertainty
u —L—051m (E2.5.9)
17196 & o
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Note that the standard uncertainty characterising dispersion in this and similar scenarios is based
upon an upper limit of possible values. In situations where this standard uncertainty is likely to
represent a significant contribution to the overall uncertainty it may be appropriate to seek further
information.

The limits of the acceptance interval for dm are +a, where
a=0m—U=2mg. (E2.5.10)
If A is represented by a rectangular PDF, then the corresponding standard uncertainty is

_dm—U
V3

The standard uncertainty u. associated with the nominal mass value can therefore be evaluated
by combining these uncertainties:

u.=4/ud+ui=13mg. (E2.5.12)

More generally, if the expanded uncertainty U is required to be some factor D less than a max-
imum permissible error dm (D = 3 for the example above), and if the coverage probability p is
obtained using a coverage factor k,, then

Uy =1.15mg. (E2.5.11)

5
Uy = (£2.5.13)

k,D

and

dm(1—-1/D
= 21 =1/D) (E2.5.14)
V3
Figure [E2.5.2| shows how the standard uncertainty varies with factor D for a maximum permis-
sible error dm = 3mg.

Note that as the standard uncertainty u; decreases with increasing D, the overall uncertainty u,
increases (due to the proportionately greater contribution corresponding to a). In this situation
(where, in use, the value assigned to a weight will be the nominal value) we might perhaps
conclude that it is not in the interest of a purchaser for U to be low when the weight is classified,
whereas it is in the interest of a supplier of weights, as fewer potentially conforming products
will be rejected.

Note also that the PDF associated with u, is not normal since it results from the convolution of
normal and rectangular distributions. However, provided that u, is not a dominant quantity in
the budget into which it is subsequently imported, the shape of the corresponding output PDF
would be approximately normal.

Comment on ISO/IEC 17025:2017 Annex A.2.3

Those readers familiar with ISO/IEC 17025:2017 [7]] and in particular Annex A.2.3 might per-
haps interpret that (informative) Annex to suggest that metrological traceability can be obtained
from a rectangular PDF with limits corresponding to the tolerance interval C = [—c,c]. An-
nex A.2.3 cites “The use of OIML R 111 class weights to calibrate a balance”, which might be
interpreted as an example of that practice.
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Figure E2.5.2: Maximum permitted standard uncertainty u; (E2.5.13), standard uncertainty u, corre-
sponding to the acceptance interval (E2.5.14), and the combined standard uncertainty u, fora
range of values of U = dm/D

However, such an approach does not make best use of the information available: whereas the
approach described in this example correctly converges to the appropriate ‘combined’ PDF in the
limits of small and large u;/c, the A.2.3 interpretation as stated above employs a rectangular
PDF throughout, even though the normal distribution becomes proportionately more significant
as u;/c increases. As a consequence, that particular interpretation of A.2.3. can significantly
overstate the uncertainty. This overstatement is demonstrated in Table where, for the
particular scenario given, we see that the difference between standard uncertainty evaluations
can exceed 50 %.

Table E2.5.1: Comparison between standard uncertainty evaluations obtained for the interpreta-
tion of ISO/IEC 17025 A.2.3 described above, identified as “u,”, and evaluations based upon the
two-PDF approach described in this example, identified as “u;,”. PDFs are centred at zero. Esti-
mates are for model data over a range of tolerance intervals [—c, ¢] and corresponding acceptance
intervals [—a, a] with u; = 1 and guard band w = ¢ —a = 2u;.

c/mg a/mg  u,/mg  u,/mg
1000 998 577 576

10 8 5.8 4.7
9 7 5.2 4.2
8 6 4.6 3.6
7 5 4.0 3.1
6 4 3.5 2.5
5 3 2.9 2.0
4 2 2.3 1.5
3 1 1.7 1.2
2 0 1.2 1.0

For the OIML E2 — 2kg weight discussed in this example, c = dm = 3mg and w = U = 1mg;
hence u; = 0.51mg, yielding u, = 1.7mg and u;, = 1.3mg, a difference of nearly 40 % (based
on unrounded data).
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E2.5.3.7 Calibration and verification of a caliper according to Geometrical Prod-
uct Specification (GPS) standard ISO 13385-1:2019

In this example, we demonstrate how traceability can be obtained from a verification statement
for an instrument certified under a Geometrical Product Specifications (GPS) standard.

In general, laboratories accredited for the calibration of calipers adopt the GPS standard
ISO 13385-1 [[196]]. According to this standard — which includes requirements for test meth-
ods, default values for maximum permissible errors (maximum permissible errors (MPEs)) and
related decision rules — laboratories are variously required to provide two different uncertainty
evaluations: one for the measured calibration values of the instrument, u.,, and the other for its
verification ‘test uncertainty’ u,., as defined in ISO 14253-5:2015) [[197]].

Certificates that meet the requirements of ISO/IEC 17025:2017 [[7]] concerning the reporting of
calibration results (variously described in clauses 7.8.4, 7.8.6 and A.2.3 of that standard) could
present the information in various forms, as considered in the following scenarios:

1. Calibration certificate containing indication errors with the associated calibration standard
uncertainty U,

2. Calibration certificate containing statement of conformity with a specification (MPE), as-
sociated test standard uncertainty u, and decision rule, without indication errors (con-
sistent with paragraph ;

3. Calibration certificate containing only a statement of conformity with a specification (ex-
pressed in terms of MPE) with no reported indication errors, calibration measurement un-
certainty or test verification uncertainty, but with a GPS decision rule that has somehow
accounted for these quantities (consistent with paragraph [E2.5.3.3).

Note that the purpose of calibration is to establish a traceable link to the SI, whereas the purpose
of verification is only to decide conformity with a specification. In the case of specifications such
as those represented by the GPS standards, the calibration standard measurement uncertainty
U, (scenario 1) is therefore different from the test verification uncertainty ..

In the case of GPS, a specification is defined in terms of limits (MPE) that somehow already ac-
count for various influence quantities such as repeatability and resolution that would normally
be incorporated into a calibration uncertainty evaluation. The evaluation of test verification un-
certainty therefore does not include these quantities and is therefore less than the calibration
measurement uncertainty (for further details see ISO 14978:2018 [|198, Annex D]). In principle
however, all relevant influence quantities are present and, if combined correctly, the test verifi-
cation uncertainty and information represented by the specification can be used to provide an
evaluation of calibration measurement uncertainty required for dissemination of measurement
traceability.

Scenario 1

In this straightforward scenario, the calibration of the caliper produces indication errors with
associated calibration measurement uncertainty. Following best practice, the errors can be cor-
rected and the calibration measurement uncertainty can be propagated through the measurement
chain.

[167]], the GUM suggests a method to achieve this [[2, clause E2.4.5].
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Scenario 2

In this case no quantitative information on the indication errors is available other than their values
being within specification limits. In the absence of any other information, the best estimate of
the error is therefore zero.

The uncertainty when in use by the customer, can be evaluated from the PDF resulting from
the convolution of a normal probability distribution N(O, 1) and a rectangular distribution
R(—a,a), where

a = MPE — kit;og (E2.5.15)
and, for a two-sided specification, k can be calculated iteratively by applying equation (11) of
JCGM 106:2012 [6]], given the values of p. and ueg;-

For example, figures |[E2.5.3|and [E2.5.4| present the PDFs for conformance probability values p,
equal to 50 % and 95 % respectively, for a range of values for measurement capability index C,,,
where

_ 2xMPE

Aot

(E2.5.16)

m

PDE —  Cm=1
Cip = 2
i :
Cip==6

Cp = 10

05 yas AN 1

Figure E2.5.3: PDFs for p. = 50%, MPE = 0.2 and various C,, values

Once the PDF is established, its standard deviation u can be determined, for example by combin-
ing variances:

2 _ (MPE B kutest)2 2
- 3 Upest-

u (E2.5.17)

Assuming that the specification limits and u, account correctly for all influence quantities that
contribute to the calibration of the caliper (as is the premise of the GPS standard), then u corre-
sponds to the calibration standard measurement uncertainty (that is, u.,; = ).
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Figure E2.5.4: PDFs for p. = 95%, MPE = 0.2 and various C,, values

Note that in general the standard uncertainty alone provides insufficient information for prop-
agation of measurement results; knowledge of the PDF is needed, for example, whether it can
be described by a known distribution such as a normal distribution. In cases where the shape
of the PDF is dominated by the specification it will be more ‘rectangular’ than normal. In that
case some other means of conveying information about the PDF is needed, such as in figures
[E2.5.3| and [E2.5.4] or as might be provided by using a numerical approach for evaluating the
uncertainty [|3]].

A standard uncertainty uypg associated with the specification can also be established by taking
it to be the standard deviation of a rectangular PDF with limits +MPE:

MPE
- (E2.5.18)

UpmpE = .
V3

In some situations, uypg is used as an estimate of the calibration standard measurement uncer-
tainty.
Figure |[E2.5.5|shows in the ordinate the standard deviation u of the PDF divided by uypg and in
the abscissa C,, for various p,. values.
Note that for p, values greater than 85 %, uy;pp provides a conservative overestimate of u., for
all C, values considered.
It is also clear that it is not possible to ensure values of p. higher than 95 % for low values of
C,. As an example, considering the curve corresponding to the probability of 99 %, the smallest
value of C,, that allows this probability is about 1.3.
For p. values lower than 85 %, the use of the uy;pr can lead to an understatement of measurement
uncertainty for low C,, values, which happens for example in the case of p. equal to 70 % and
for C,, values lower than about 1.6.
For p, values of 50 %, in order not to understate uncertainty, it is possible to multiply upr by a
‘safety factor’ which can be determined by the graph for C,, less than 4. For higher C,, values the
underestimation of the uncertainty is less than 1% and therefore may not be significant.

Examples of evaluating measurement uncertainty First edition



Example E2.5. Metrological traceability from a conformity statement 199

pe = TR

tj UNPE,
1.9 I'll e o7.5 %
L pe = 05 7
pe = W R
pe = B W
pe = 80 %
pe = 70 %
e = %

09

08r

0.6

(-1111
0.5 1 1 L 1 L L 1 L 1 i

Figure E2.5.5: u/uypg as a function of C, for various conformance probabilities p..
Scenario 3

In this case, no quantitative information on the indication errors and test uncertainty is available.
The decision rule comes from ISO 13385-1:2019 [[196]]. However, the standard provides two
different rules depending on the agreement with the customer:

Decision rule A If no decision rule is stated with the specifications, and no special agree-
ment is made between supplier and customer, then the default rule of ISO 14253-1 [|199]] ap-
plies (ISO 13385-1 [[196, clause 6.3]). In this case the default conformance probability limit is
P = 95%, which corresponds to a false acceptance probability less than or equal to 5%. This
information, combined with the MPE, can be used to evaluate the uncertainty to be attributed
to the instrument when used by the customer, ensuring traceability. From this information (MPE
and p.), assuming that the distribution associated with the test uncertainty is normal, it is possi-
ble to provide an upper limit of standard uncertainty u,,,,. This value can be calculated from ISO
14253-1 [|199, annex A, figure A.3], considering the most conservative condition with the ratio
of the specification and the test uncertainty equal to 3.92, which corresponds to C,, = 0.98:

2 x MPE
— =3.92. (E2.5.19)

umax

This case is equivalent to scenario 2 with p. = 95% and C,, = 0.98 (see figure [E2.5.5)).

Decision rule B If there is an agreement with the customer to verify the caliper with respect
to the MPE values reported in [[196, table B.1], the decision rule that applies shall be simple
acceptance, with the measurement capability index C,, being four or larger (ref. annex B of
ISO 13385-1) [|196]. Although the test uncertainty is not reported in the calibration certificate,
it is possible to calculate a limit value of uncertainty u,,,, from the limit value of C,, = 4:

MPE _ MPE

_ MPE £2.5.20
max =50 "= g ( )
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This case is equivalent to scenario 2 with p. = 95% and C,, = 4 (see figure [E2.5.5).

E2.5.4 Additional notes and comments

E2.5.4.1 Notes on risk in relation to uncertainty

The GUM is concerned with the propagation of PDFs (or in the case of the LPU their variances).

Estimates of risk are given by integrals over certain ranges of a PDF (or a joint PDF) as described
in [6]]. They are not in a form that is directly propagated using GUM methodology.

Risk is usefully evaluated at times when a decision is needed concerning the acceptability of a
result, normally at the end of a measurement chain. It may be of passing interest at intermediate
points in the chain, but for propagation of traceability it is the underlying PDF that is of interest.

Therefore a statement of conformity and risk is generally not a useful alternative to a description
(or summary) of the PDF for the measurand. An accredited laboratory, for example, would be
expected to ensure that customers are aware of this lack of utility when their customers request
a statement of conformity.

E2.5.4.2 Notes on Simple Acceptance

It is worthwhile re-iterating the point that assertions of conformity based upon Simple Accep-
tance criteria on their own, with no account for measurement uncertainty whether it be direct or
indirect, are not sufficient to provide traceability (or to define a meaningful decision rule, as the
associated risk is undefinable).

Further, it is not possible to take indirect account of uncertainty by simply stating the value of the
uncertainty after the decision is made, which corresponds to a situation in which the decision is
made regardless of uncertainty or risk at the time the decision is being made.

E2.5.4.3 Single sided specifications

The examples presented here have all been presented in terms of two-sided specifications that
define an upper and a lower limit for the measurand. A key point is that such specifications
allow a rectangular PDF to be established to describe the location of the quantity of interest,
which would not be possible with a truly single-sided specification for which no such PDF can be
established, there being only one defined limit.

E2.5.5 Conclusions

The examples presented here have demonstrated various situations in which there is no explicit
statement of a measurement result (in terms of a specific value and associated uncertainty),
yet metrological traceability can be obtained from a statement of conformity together with a
suitable specification and decision rule. (Such a situation is anticipated in [7]].) Making optimum
use of available information to establish metrological traceability is demonstrated for several
general scenarios and is illustrated with two extended examples. The process recommended
involves identifying two or more independent PDFs to represent the information that has been
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provided. Typically this approach results in a PDF that characterises the location of possible
quantity values for the measurand, and a PDF that characterises the dispersion of possible values
around any given value of the measurand. In practice, these PDFs are likely to have the well-
known rectangular and normal distributions respectively and can be individually ‘imported’ into
uncertainty evaluations based upon the LPU or Monte Carlo Simulation as independent input
quantities.
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Evaluation of measurement uncertainty
in average areal rainfall — uncertainty
propagation for three methods

A. S. Ribeiro, M. G. Cox, M. C. Almeida, J. A. Sousa, L. L. Martins, C. Simoes, R. Brito,
D. Loureiro, M. A. Silva, A. C. Soares

E3.1.1 Summary

Precipitation measurement has diverse applications in contexts such as hydrology, meteorology
and climatology, and is of increasing importance for the assessment of climate change, both as
an indicator and as a parameter applied in modelling aiming at the interpretation of climatolog-
ical phenomena and forecasting. To obtain the quantities of concern (precipitation and rainfall
intensity) there are several methods, for which it is relevant to determine the measurement un-
certainty associated with an estimate of the quantity as a comparative element in order to relate
its magnitude to the intended evaluation. For a long-term analysis, several methods are avail-
able for calculating the accumulated values of the precipitation quantity and the average values
observed in given catchment areas and in certain time intervals. However, it is not common
to promote information about the impact that the selection of method has on the results. This
selection is one of the main objectives of the comparative analysis proposed in this study, that
is, the difference that results from this selection regarding the estimate of the quantity and its
associated uncertainty. In addition, the examples given are used to illustrate the adequacy of the
approaches recommended by the Guide to the expression of Uncertainty in Measurement (GUM)
and GUM Supplement 1 (GUM-S1) .

E3.1.2 Introduction to the application

The growing awareness of the impact of climate change and the United Nations’ sustainable de-
velopment goals [200] show the need to have reliable measurements of quantities to support ur-
ban and water resources management. Precipitation and rate of rainfall (or rainfall intensity) are
quantities widely measured, being applied in hydrology, climatology and meteorology, namely,
in modelling, studying patterns and in forecasting. The definition of precipitation according to
the World Meteoroligical Organization (WMO) [201] is the following:
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Precipitation is a quantity defined as the liquid or solid products of the condensation
of water vapour falling from clouds, in the form of rain, drizzle, snow, snow grains,
snow pellets, hail and ice pellets; or falling from clear air in the form of diamond
dust.

From this definition (being the quantity interpreted as the mass or volume of the liquid or solid
products), precipitation intensity is a quantity defined as the amount of precipitation collected per
unit time interval. The unit of precipitation is linear depth in mm (corresponding to a volume per
area) and for liquid precipitation, kgm—2 (corresponding to a relation of mass per unit area). The
difference between rainfall and precipitation is that rainfall is related to water in its liquid state in
the form of precipitated condensed droplets from atmospheric water vapour, while precipitation
is related to the product of the condensation of atmospheric water vapour that falls under gravity.
The measurement unit of rainfall intensity is linear depth per hour (mmh™!). Rainfall intensity
is usually obtained at a time intervals of 1 min, being lower in case of extreme events or systems
with high variability or intensity.

In practice, rainfall and precipitation are measured in different geographical locations, in order
to model the behaviour of meteorological and climatic phenomena in a spatial and temporal
dynamic regime. Observation of these quantities can be strongly affected by influence conditions,
namely, exposure, wind and topography, thus limiting the accuracy of measurement. Wind effect
is critical for the performance of instrumentation, leading to different shapes of gauges as seen in
figure [201]], illustrating how streamlines of wind deformation are expected to affect the
trajectory of precipitation particles, promoting a relevant error contribution to the measurement.

Figure E3.1.1: Different shapes of gauges induce the way that streamlines of wind deformation
affect the trajectory of precipitation particles [201]]

The recommended use of recording precipitation gauges is to have sufficient information related
to the time scale and time resolution to cater for the high variability of the precipitation intensity.
Such information is used in the technical process of reducing evaporation and wetting losses
as sources of error and uncertainty that can affect significantly non recording devices. Three
types of automatic precipitation recorders to measure rainfall are commonly used: weighing-
recording type; tipping-bucket type; and floating type. The study carried out considered the use
of the weighing and tipping-bucket types, for which data were available. There are many types of
instruments and methods to take observations of rainfall intensity [202]]. The study carried out
considered the use of the weighing and tipping-bucket types, both of which collect precipitation
using an orifice and a funnel directed into receptacles allowing the volume to be weighed, in the
first case, or multiples of volumes collected in a pair of buckets each having a reference volume
quantity per second.
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The WMO establishes reference conditions for the installation and use of these gauges [|203]],
namely, the orifice height above the ground (commonly between 0.5 m and 1.5 m), the conditions
of the surrounding ground to avoid in-splashing from the ground and specific geometries adopted
for the orifice and the gauge. Wind field in the surroundings can be a major influence on the
measurement. Special care is highly recommended by including in the setup of windshields,
by establishing the type of surrounding surface (for example, short grass instead of hard and
flat surfaces to avoid in-splashing), by adopting the suggested relations with the vertical angle
obstacles in the surrounding of the site, and by choosing an appropriate gauge size and shape in
order to minimize the wind effect [[201].

To obtain the data needed for meteorology, climatology and hydrology predictive models, net-
works of stations are distributed in areas of interest in a way that properly represents the dis-
tribution of rainfall, being required to obtain rainfall intensity measurements at single points
and combine them in order to calculate the volume of precipitation that falls over a given catch-
ment area [[204]. To achieve this aim, there are several methods that use a set of single point
measurements to obtain the average areal rainfall.

For this study the following were considered: arithmetic mean method, Thiessen polygons’ method
and isohyetal method. These methods use distinctive interpretations of the physical quantity in

relation to the geometric context. For this reason, uncertainty in the common output plays a

relevant role, namely, because that allow the comparison of the accuracy of the methods. A brief

description of each method for estimating the average areal rainfall is presented:

a) Arithmetic mean method: evaluates the arithmetic mean of considered single point obser-
vations for a certain area;

b) Thiessen polygons’ method: applies a graphical approach that defines relative polygonal
areas related to each single station observations, providing a weighted sum of the obser-
vations;

¢) Isohyetal method: applies a graphical approach based on the drawing of isohyet lines of
equal rainfall, combining the observations weighted by the coverage areas between these
isohyetal lines.

In this framework, two steps are required to obtain the average areal rainfall: first, the evalua-
tion of the measurand (rainfall intensity) at each single point (gauge station); and second, the
propagation of these uncertainties to the combined output (average areal rainfall).

Receiving
funnel

|- Catch
bucket

Metal cover

|- Balance

Datalogger and
transmission system I

Weighing type rain gauge

(a) Elements of a weighing gauge (b) Weighing gauge installed in field

Figure E3.1.2: Weighing gauge
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Weighing-recording gauges effectively are balances that record the weight of accumulated pre-
cipitation volume over time. The container should have a large capacity considering that this
system does not empty itself. Solutions for its use in harsh climate conditions are also required
(for example, use of oil to avoid large evaporation effects and antifreeze solutions).

\/— Receiving funnel
Tipping bucket _ﬁ
e

Metal cover

44— Catch plate
44— \Water storage
Datalogger and
transmission system

Tipping-bucket rain gauge

a) Elements of a tipping-bucket gauge
@) pping gaug (b) Tipping-bucket gauge installed in field

Figure E3.1.3: Tipping-bucket gauge

The operation of tipping-bucket gauges allows water collection and guidance to a twin bucket
balance with both parts having an equal weight and reference volume. Every time a bucket is
full the balance changes position within a pivot axis, and the other bucket moves into position to
collect water while the first one will empty the collected water. In this process, the time between
each change (tipping) can be measured, allowing the calculation of the rate of rainfall quantity.
Tipping-bucket gauges employ a contact closure (reed switch or relay contact), such that each tip
produces an electrical impulse as a signal output. This output must be recorded by a data logger
or an ADC (data acquisition system equipped with reed switch reading ports). This mechanism
provides a continuous measurement without manual interaction.

The rainfall intensity is an intermediate measurand that depends on the height, h in cm (the
observation is usually expressed in mm), being related with the volume, V in cm®. Although
not used explicitely in this work, the collected water volume V is given by expression (1) being
related with the ratio of the mass content, m in g, of the bucket by the density of water, p of

1gcem™, or by the ratio of the height, h, and the area of the surface of the collector, S in cm?.

E3.1.3 Specification of the measurands

This study employs a two-step approach. The first step is the observation of rainfall intensity, P;,
at several locations, i. The second step is the combination of observations from those locations
to obtain the average areal rainfall.

Considering the use of the weighing recording gauges (figures|E3.1.2aland [E3.1.2b)) and tipping-
bucket gauges (figures [E3.1.3al and [E3.1.3D)), two types of transduction of the quantity are ap-
plied. In the first case the collected amount of water generates weighing observations (m) over
time while, in the second case, impulses are generated for a fixed volume (V).

V=—=h-S. (E3.1.1)
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The rainfall intensity for non-corrected tipping-bucket gauges is based on the number of tips, n
in a periodic sampling rate At (typically 6s or 10s) and averaged over a chosen time interval
(for example, 1 min). The estimate of the rainfall intensity is

Pi: (nh)
At

(E3.1.2)

The primary measurand, P,,, is the average areal rainfall as a function of the rainfall intensity
values or averages obtained at the k locations of measurement stations, being the function a
weighted linear combination of the P;:

m
PaV:f(Pla---;Pk):ZWiPi- (E3.1.3)
i=1

This function is applied to all the methods studied, the arithmetic mean method, the Thiessen-
polygons’ method and the isohyetal method.

E3.1.4 Measurement models

The nature of the measurement of precipitation, being affected by many natural conditions,
implies the need to account for corrections and to evaluate the effect of errors in the meth-
ods [[205,206]. Reports issued by WMO point out the need to use models to adjust the measured
precipitation [[207]], based on corrections obtained from statistical data. Regarding errors (sys-
tematic effects), WMO also collected information provided by research, being able to state [203]]:
“The amount of precipitation measured by commonly used gauges may be less than the actual
precipitation reaching the ground by up to 30 % or more.”. Considering the interest of this study
in the rainfall intensity measurements obtained using tipping-bucket gauges and weighing gauges
(other types like floating gauges and optical gauges were not considered for this purpose), data
provided in the WMO reports [202,208] were taken into account.

The assessment of errors in precipitation measurement usually relates its origin to the effects
of wind, wetting and evaporation losses [207]]. A general description of these sources is given
in [203]], including estimates based on [|207]], is the following:

(a) Error due to systematic wind field deformation above the gauge orifice: typically 2% to
10 % for rain and 10 % to 50 % for snow;

(b) Error due to the wetting loss on the internal walls of the collector;

(c) Error due to the wetting loss in the container when it is emptied: typically 2% to 15% in
summer and 1% to 8 percent in winter, for (b) and (c) together;

(d) Error due to evaporation from the container (most important in hot climates): 0% to 4 %;
(e) Error due to blowing and drifting snow;
(f) Error due to the in- and out-splashing of water: 1% to 2 %;

(g) Systematic mechanical and sampling errors, and dynamic effects errors (i.e. systematic
delay due to instrument response time): typically 5% to 15 % for rainfall intensity, or even
more in high-rate events (see [|208]]);

(h) Random observational and instrumental errors, including incorrect gauge reading times.
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Considering these sources of error and uncertainty, a functional relation for precipitation (rain
and snow contributions) was proposed by WMO [[203], adapted in 1990 by Legates and Willmott
[209] as

pk = krpcr + ksp

Cs»

where

Py = Py + APy, + APy + APy + APy, (E3.1.4)
PCS = Pgs +AP15 +APZS +AP35 +AP4S.

The quantities in expression (E3.1.4)) are as follows:

subscript r — relates to liquid precipitation “rain”;

subscript s — relates to “solid” precipitation;

P, — adjusted precipitation;

k — adjustment factor for the effects of wind field deformation;

P. — amount of precipitation caught by the gauge collector;

P, — measured amount of precipitation in the gauge;

AP; — adjustment for the wetting loss on the internal walls of the collector;
AP, — adjustment for wetting loss in the container after emptying;

AP; — adjustment for evaporation from the container; and

AP, — adjustment for systematic mechanical errors.

The adjustment factor k is a variable obtained from studies developed by Ne$por and Sevruk
[210], in which the ratio of correct to measured precipitation or rain and snow was studied
using two unshielded gauges in different weather conditions of wind speed and intensity. The
measurement of rainfall intensity, in mmh™! units, using weighing-recording gauges or tipping-
bucket gauges, starts respectively with the measurement of mass or volume in units of time. The
measurand is affected by sources of uncertainty according to the relational function presented in
equation (E3.1.4), considering only the liquid contributions,

Py = k;Pey =k (Pg + APy, + APy + AP3 + APy, ). (E3.1.5)

The measurement uncertainty related to the output quantity of this function can be evaluated
using the conventional LPU [)2[] or using a MCM as described in GUM-S1 [3]].

As mentioned above, single location measurements are a first step to obtain information about
precipitation in a certain area, thus requiring the estimation of the average areal rainfall, calcu-
lated using the mentioned common methods to achieve this purpose.

The primary measurand, P,,, is the average areal rainfall as a function of the rainfall intensity
values or averages obtained at the m locations of measurement stations, being a function of a
weighted linear combination of the P;:

Py =f(Pr,....PR) = > .wiP.. (E3.1.6)

The function (E3.1.6) is considered generic, being applied to all three methods studied. In a
general approach the methods consider that there are m measurement stations able to obtain
rainfall values P;(i = 1,...,m) distributed across a basin. To illustrate the approach adopted in
each method, as a starting point consider m = 4 measurements at rainfall stations located in a

basin, as in figure [E3.1.4
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Inflow

Outflow
@ Rainfall stations

Figure E3.1.4: Location of four rainfall stations in a basin
The arithmetic-mean method evaluates the average of the estimates obtained at each location
without establishing a relation between the position of the stations and the geometry of the area
of observation. The average areal rainfall considers that all weights are equal to 1/m

m m
1 1
Pavzzl:wipi:;lei:;(p1+...+pm)_ (E3.1.7)
i= i=

The second method studied is the method of Thiessen polygons, which uses a given set of loca-
tions in the plane to make a partition of the plane into convex polygons (Voronoi tessellation),
each of which comprises the points closest to one of the given locations. It uses a geometric
division of the space that can be explained in three steps: (1) connect the rainfall measurement
locations by straight line segments (figure [E3.1.54), (2) draw perpendicular bisectors to these

segments (figure[E3.1.5b)), and (3) divide the area using polygons (figure [E3.1.5c]).

@ Rainfal stafions @ Rainfall stations @ Rainfall stations

(a) Step 1 (b) Step 2 (c) Step 3

Figure E3.1.5: Steps 1, 2 and 3 of the geometric approach in Thiessen polygons’ method

The average areal rainfall (equation (E3.1.8) (8)) using the Thiessen polygons’ method, P,y is
given by a weighted approach to the arithmetic mean:

Payp :ZWiPi :Zzlpi, (E3.1.8)
i—1 i—1

where w; denotes the weights given by the relative areas of the polygons obtained, A; is the area
of the polygon related to station i, and A is the total area of the basin. Any change of rainfall at
the stations does not affect the geometry of the polygons.

The third method studied uses weights proportional to contour map areas according to the lo-
cation of isohyets (lines on a map or chart connecting areas of equal rainfall). The isohyetal
method (figure uses the single-point station information to establish contour map ar-
eas [211,[212]], with weights obtained by multiplying each contour area by the average rainfall
in the area.
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In the example (where m = 4), using the same basin and considering locations, m + 1 isohyets

(Py,..., P, ) are defined (P,, Py, P., Py, P, in figures E3.1.6) dividing the basin into m
contour areas (Aj, . ..,A;;), allowing the determination of the areal rainfall average, P,y json, using

o~ N, s Ik Pi+ Py
pav,isoh_ZWiPi_ZAiPl_ZZAI' — ) (E3.1.9)
i=1 i=1 i=1

@ Rainfall stations

Figure E3.1.6: Defining isohyets and contour areas to apply the isohyetal method

E3.1.5 Uncertainty propagation

The propagation of uncertainty in this study of the average areal rainfall intensity has two stages.
The first stage requires the evaluation of the uncertainty related to the measurement of rainfall
intensity in the individual locations, using either weighing-recording gauges or tipping-bucket
gauges. The second stage requires the evaluation of the uncertainty of average areal rainfall
intensity using one of the three methods mentioned.

Given the nature of precipitation phenomena and the variability inherent in the main sources of
measurement error, the quantification of the resulting effects is usually difficult to establish. For
the purpose of obtaining estimates of these quantities, references [[213-218]] were consulted. In
the first stage, for both type of gauges, the input quantities are described in expression (E3.1.2).
A probability density function (PDF) was assigned to each quantity based on knowledge of that
quantity. The mean of that PDF was used as an estimate of the quantity and the standard deviation
as the associated standard uncertainty. The input quantities are shown in table together

with the assigned PDFs and their relative standard uncertainties (in the table the index “r” was
suppressed).

Since the PDFs for wetting loss are not symmetrical about zero, a correction was made to the esti-
mate equivalent to the half width of the PDF and a zero-centred PDF was used in the uncertainty
evaluation.

The second stage accounts for the uncertainty associated with the measurement of rainfall inten-
sity at each location, for both types of gauges considered, having as input the combined average
areal rainfall uncertainty obtained in stage 1. In this case, the evaluation of measurement uncer-
tainty does not account for possible correlation between measurements at the different locations.

Examples of evaluating measurement uncertainty First edition



Example E3.1. Evaluation of measurement uncertainty in average areal rainfall 213

Table E3.1.1: Input quantities, relative standard uncertainties and assigned PDFs related to rain-
fall intensity measurement using weighing gauges and tipping-bucket gauges

Quantity Description Standard uncertainty/% PDF

Weighing gauge Tipping-bucket gauge

k Error due to systematic wind field 5 5 Gaussian

deformation above the gauge ori-

fice

Error due to the in- and out- 2 2 Uniform

splashing of water

Py, Random observational and instru- 2 2 Uniform
mental errors

APy Error due to the wetting loss on n/a 5 Uniform*
the internal walls of the collector

AP, Error due to the wetting loss in the 1 5 Uniform*
container when it is emptied

AP, Error due to evaporation from the 2 1 Uniform
container

AP, Systematic mechanical and sam- 5 10 Uniform
pling errors, and dynamic effects
errors

Pgl

* The uniform PDFs adopted have intervals from 0% to 5% (asymmetric with respect to 0 %), consid-
ering that loss quantity would increase the estimate and negative values are not achievable.

E3.1.6 Reporting the results

The evaluation of the uncertainty for a measurement of rainfall precipitation of 10mmh™!, was
made using R/RStudio programming [[11,49], with 1x 10® Monte Carlo trials for each calculation.
The evaluation allowed, for both gauges, the PDF for the output quantity, P;, and the relative
expanded uncertainty, U, os5(Py), for a confidence interval of 95% by applying GUM [2] and
GUM-S1 [3], to be provided. The values obtained and the related PDFs are shown in table
and in figures[E3.1.7|and [E3.1.8| for the weighing gauge and tipping-bucket gauge, respectively.
These figures also show the scaled histograms produced using GUM-S1 and used as a basis for
the (continuous) PDFs shown in blue and obtained using the mean and standard deviation values
as parameters of the normal distributions.

The results show consistency with the normal distribution in the case of the weighing gauge
and a small deviation from normality in the case of tipping-bucket gauge, identified by skew-
ness and kurtosis parameter values that differ slightly from normal reference values of 0 and 3,
respectively.

For the second stage, a comparison of the measurement uncertainty of the average areal rainfall is
made for the three methods considering that local measurement was made using either weighing
gauges or tipping-bucket gauges.

For this study, figure was adopted as being representative of a certain territory having
four measurement stations with the following daily average rainfall: P; = 12mm, P, = 18 mm,
P; = 36mm and P, = 28 mm. The relative expanded measurement uncertainty considered for
each estimate was based in the evaluation obtained at stage 1, respectively, 12 % for weighing
gauges and 16 % for tipping-bucket gauges.

The first approach to calculate the daily average areal rainfall used the arithmetic mean method,
applying equation (E3.1.7). To evaluate the measurement uncertainty for this linear model, the
GUM approach gives an exact solution, making the assumptions that considering that measure-
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Table E3.1.2: Parameters and expanded measurement uncertainties obtained for the weighing
gauge and tipping-bucket gauge using GUM and GUM-S1

Weighing gauge / (mmh™1) Tipping-bucket gauge / (mmh™1)
GUM GUM-S1 GUM GUM-S1
Mean (P) Uys(P) Mean (P) Ugs(P) Mean (P) Uys(P) Mean (P) Ugs(P)
10.05 1.2 10.05  [8.9,11.3]  10.5 1.6 105  [9.0,12.1]
Skewness (GUM-S1) 0.08 Skewness (GUM-S1) 0.11
Kurtosis (GUM-S1) 2.96 Kurtosis (GUM-S1) 2.73

0.6 0.7

0.5
|

0.4

Probability density / (h mm™)

0.2

0.1

0.0

Precipitation P,/ (mm h™)

Figure E3.1.7: Weighing gauge PDFs obtained using GUM (red line) and GUM-S1 (blue line) and
scaled histogram of output numerical sequence
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0.2 0.3 0.4 0.5

Probability density / (h mm™)
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L
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Precipitation Py / (mm h™)

Figure E3.1.8: Tipping-bucket gauge PDFs obtained using GUM (red line) and GUM-S1 (blue
line) and scaled histogram of output numerical sequence

ments at the different stations are not correlated,

4 2
oP 1
u?(P,,) = ; (a—;iv) u?(P) = e [u? (P) +u? (Py) +u? (Py) +u?(Py)]. (E3.1.10)
In the given catchment area, using the values given above for P; to P,, the estimate of P,, (daily
average areal rainfall) is 23.5mmh™!. Considering that u (P;) = 0.06P; for weighing gauges and
u(P;) = 0.08P; for tipping-bucket gauges, expression (E3.1.10) is used to obtain the standard
uncertainties for both types of gauges considered in stage 1:

u(P,,) = 0.76 mm, using weighing gauges’ uncertainty

u(P,,) = 1.0 mm, using tipping-bucket gauges’ uncertainty

The second method, the Thiessen polygons method, was applied using the same P; values but
it requires to evaluate the areas of the polygons that gives the weights considered in expres-
sion (E3.1.8). The areas related to the polygons shown in figure (E3.1.7) were obtained using a
planimeter technique, giving approximate values of

A

A
To evaluate measurement uncertainty using the Thiessen polygons method, uncertainty contribu-
tions for daily average areal rainfall were the same as considered in the previous example, being
u (P;) = 0.06P; for weighing gauges and u (P;) = 0.08P; for tipping-bucket gauges. The combined
uncertainty also takes account of the uncertainty contributions related to the area weight of each
polygon, u(A;/A), estimated to be 0.01. In this case, the evaluation of the measurement uncer-
tainty associated with the annual average areal rainfall intensity used a MC approach according
to GUM-S1. The numerical evaluation was developed for both types of gauges, using RStudio
programming, with 1 x 10® MC trials. Using expression the daily average areal rainfall,
Pay.1p is 21.3 mm and,

A, As A,
=0.37; -2 = 0.24; =2 = 0.20; —* = 0.19.
A A A

u (PaV_TP) ~ 0.8 mm, using weighing gauges uncertainty,

u (PaV.Tp) ~ 1.0mm, using tipping-bucket gauges uncertainty.
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The third approach applies the isohyetal method to the same area, requiring to obtain the values
for the isohyets presented in figure[E3.1.8]in order to make the computation of the annual average
areal rainfall intensity according with expression (E3.1.9). In this case, the values considered for
the isohyets, considering the average estimates of P; to P, were the following:

P, = 6mm; P, = 15mm; P, = 24mm; Py = 32mm; P, = 44 mm.

Standard measurement uncertainties considered for the isohyets were taken as those used previ-
ously. Asin the second method, the relative areas between adjacent isohyets need to be evaluated,
which allowed to obtain:

Ay

=0.31; —= =0.28; — =0.23; — = 0.18.
A A A A

The standard uncertainty related to the area weight of each subarea, u (4;/A), were taken to be
0.01.

The evaluation of the measurement uncertainty associated with the daily average areal rainfall
intensity used again an MCM approach according to GUM-S1. The numerical evaluation was
developed for both types of gauges, using RStudio [49] programming, with 1 x 10° runs for
each calculation. Using expression the estimate of, P,y 1son, is 21.9 mm and the standard
uncertainties are

U (P 1s0n) ~ 1.9 mm, using weighing gauges uncertainty,

u (PaVva) ~ 2.4mm, using tipping-bucket gauges uncertainty.

A summary of the results is given in tables|E3.1.3|and [E3.1.4|and the output PDFs in figures[E3.1.9
and [E3.1.10} respectively, considering the use of weighing gauges and tipping-bucket gauges as
measurement instruments.

Table E3.1.3: Comparison results obtained using weighing gauge data input

Daily average areal rainfall Method/mm

Arithmetic mean Thiessen polygons Isohyetal
Estimate 23.5 21,3 21.9
95 % uncertainty (GUM) 1.5 1.6 —
95 % uncertainty (GUM-S1) — [19.7,22.9 ] [ 20.0,23.8 ]
95 % uncertainty half-width (GUM-S1) — 1.6 1.9

Table E3.1.4: Comparison results obtained using tipping-bucket gauge data input

Daily average areal rainfall Method/mm

Arithmetic mean Thiessen polygons Isohyetal
Estimate 23.5 21.3 21.9
95 % uncertainty (GUM) 2 2 —
95 % uncertainty (GUM-S1) — [19.3,23.3] [ 19.5,24.3]
95 % expanded uncertainty (GUM-S1) — 2 2.4
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Methods comparison using weighing gauges
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Figure E3.1.9: Comparison of results and 95 % expanded uncertainty, using as input the uncer-
tainty rainfall intensity measurement of weighing gauges, for the arithmetic mean method (blue
line), Thiessen polygon method (red line) and isohyetal method (black line)

Methods comparison using tipping—bucket gauges
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Figure E3.1.10: As figure |E3.1.9|but for tipping-bucket gauges

E3.1.7 Interpretation of results

The diversity of measurement instruments has impact on the estimates and the associated uncer-
tainties and the decisions taken should consider the effects due to the uncertainty contributions.
In this study, two different techniques (weighing and tipping-bucket) for the same measurements
(precipitation and rainfall) were adopted. In both cases the results obtained using GUF and MCM
were consistent. In the case of the tipping-bucket gauge, a higher degree of flatness of GUM-S1
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histogram was found showing a deviation from normality. In both cases, average estimates were
corrected, in order to consider the contribution of the wetting loss bias, being the correction to
add a positive quantity not measured in the process.

Regarding the three methods considered, commonly applied to evaluate daily, monthly or annual
average areal rainfall, the interest of the studies carried out were related to performing a compar-
ison of the results based on the measurement uncertainties. The results obtained and presented
in tables|E3.1.3|and [E3.1.4|and in figures [E3.1.9|and [E3.1.10| show differences in the estimates
of the average areal rainfall, from 21.3 mm to 23.5 mm. Regarding the 95 % expanded measure-
ment uncertainty obtained (tables[E3.1.3|and [E3.1.4), agreement was found between arithmetic
mean method and Thiessen polygons method being the measurement uncertainty around 20 %
higher for the isohyetal method. The comparison between weighing gauges and tipping-bucket
gauges showed a difference of 30 %, enhancing the conclusions that the impact of the type of
gauge used and the method adopted are high.

The studies carried out were able to show some interesting features of the models and the way
they affect the measurand of interest. Further studies should be made to include the effect of
correlation that was not considered in this simple analysis, and the effect of conditions related
with the dynamics of the measurement process and the use of corrective algorithms related to
post-processing of data [[219-221]].

Examples of evaluating measurement uncertainty First edition



Example E3.2

Uncertainty evaluation for the
quantification of low masses of
benzo[a]pyrene

E Pennecchi, E Rolle, M. Sega, S.L.R. Ellison, A.M.H van der Veen

E3.2.1 Summary

The aim of the present example is to show the uncertainty evaluation for the quantification of
low masses of benzo[a]pyrene (BaP), which is an important Polycyclic Aromatic Hydrocarbon
(PAH) for ambient air monitoring. Comparison between the results obtained according to the
GUM uncertainty framework (GUF) [|2] and the Monte Carlo method (MCM) for the propagation
of distributions [|3,4]], applied to both real and simulated data sets, are shown and discussed.

E3.2.2 Introduction of the application

The quantification of low masses of PAHs is an important issue as they are ubiquitous toxic con-
taminants which can be present in all the environmental compartments even at trace levels. The
evaluation of the uncertainty associated with the quantification of such micro pollutants plays an
important role for the reliability of their measurements. Among PAHs, BaP is classified as carcino-
genic agent and is listed in the current European legislation [[222[] as marker of the carcinogenic
risk for the whole class of PAHs in ambient air.

The present example aims at comparing the results obtained by application of the law of propa-
gation of uncertainty (LPU) [2]] and the MCM for propagation of distributions [|3]] to real data sets
derived from the quantification of a low mass of BaP spiked on filters commonly used for airborne
particulate matter sampling. The comparison is performed also on simulated data corresponding
to a BaP mass at trace level.

The description of the analytical method to quantify BaP in ambient air can be found in [[223]],
whereas details on the uncertainty evaluation process, not explicitly reported in the present ex-
ample, can be found in [224].

219
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E3.2.3 Specification of the measurand

A glass fiber filter (Pall & Whatman) having diameter of 47 mm, a type of filter commonly used
for the sampling of airborne particulate matter, was spiked with the Certified Reference Material
(CRM) NIST SRM 2260a, containing 36 PAHs in an organic solution. The spiked filter was ex-
tracted by Soxhlet, following the extraction procedure described in [223]]. The same filter was
subsequently extracted a second time thus obtaining a diluted sample. BaP masses in the two
extracts were quantified by means of a gas chromatograph coupled with a mass spectrometer
(GC-MS) Focus DSQ II (Thermo Fisher Scientific).

The measurand of interest in the present example is the mass of BaP contained in a nominal
volume of 1 L of the second extract. Moreover, in order to consider very low mass values of BaB
a numerical simulation was carried out by decreasing the chromatographic areas corresponding
to the BaP in the sample of the second extraction by a common constant term, hence reaching
a (simulated) measurand value close to the minimum mass of BaP detectable with the method
described in [223], i.e., 2.5 x 10> ng.

E3.2.4 Measurement model

Quantification of the mass of BaP contained in 1 L of the second extract was performed according
to the Internal Standard method described in EN 15549 [|225[]. An aliquot of the NIST SRM 2270,
containing perdeuterated benzo[a]pyrene (BaP-d;,), was added to the solution in order to obtain
a concentration of BaP-d;, equal to 0.2455 ngmL™}, to be used as the internal standard. Then,
an aliquot of 1 pL of the solution was injected three times in the GC-MS. The ratio of peak areas
corresponding to the internal standard and those corresponding to the analyte was used to de-
termine the mass my of BaP present in the injected volume of the extracted sample, according to
the following model:

mg = (fA_EmISE) / (‘TSE) ) (E3.2.1)

where f is the GC-MS calibration factor, Ay, is the mean area (a.u.) of the chromatographic
peak corresponding to BaP in the extract, and m;g; and A are the mass (ng) and the mean
chromatographic area (a.u.) for the internal standard in the extract (ISE).

Calibration factor f was obtained as the arithmetic mean of three calibration factors correspond-
ing to three reference solutions at different BaP concentrations. Details on the calibration proce-
dure are reported in [224]. In the evaluation of the uncertainty associated with f (characterized
by 9 degrees of freedom), covariance terms between the three factors were taken into account:
they were due to the same mass of the internal standard used in the calibration model for each
of the factors and to the same certified reference material (CRM) used for preparing the three
necessary reference solutions. For the same reason, f and mgg, as input quantities of measure-
ment model (E3.2.1)), were correlated because of the use of the same internal standard both in
the calibration and in the analysis process.

The value and uncertainty associated with the mass of the internal standard m;gz were derived
from its calibration certificate (the uncertainty was considered as having a very high number of
degrees of freedom, so that it did not give contribution to the effective degrees of freedom for
the uncertainty of the measurand estimate).

Ag and Argz were evaluated as the arithmetic means of three repetitions of the area measure-
ment of the relevant chromatographic peaks. Their uncertainty was calculated as the standard
deviation of such mean [2, Sec. 4.2.3] (hence, having two degrees of freedom). A strong lin-
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ear relationship was observed between the areas of the BaP and those of the ISE in the same
run, hence a corresponding covariance term for the two mean areas was calculated according
to [|2, Sec. 5.2.3].

Estimates, uncertainties u(x) and covariances u(x, y) of the input quantities in model (E3.2.1)
are reported in table (E3.2.1)), together with other parameters relevant to the uncertainty eval-
uation performed by MCM. The corresponding estimate for the measurand is my = 0.014ng.

Table E3.2.1: Estimate, uncertainty, covariance and distributional parameters of the input quan-

tities in model (E3.2.1)).

Parameter Value

7 0.616
u(f) 0.017
migse 0.2455 ng

u(mysg) 0.0036 ng
u(f,mgg) —3.3-107° ng

Ag 85114 a.u.
u(Ag) 9564.35 a.u.
A 917545.67 a.u.

u(Arsg) 44492.21 a.u.
u(Ap,Agg) —203436959.5 (a.u.)?

S11 548861202 (a.u.)?
S15 =5,  —1220621757 (a.u.)?
Syo 11877338582 (a.u.)?

Note that, in order to simulate a smaller value of BaP mass, the experimental results obtained for
the sample of the second extraction were re-used as they were, but the areas corresponding to the
BaP were all decreased by a common constant term equal to 67 000 a.u.. Therefore, all the values
in table are still valid for the simulated cas except for the Ag value which becomes
equal to 18 114au. The corresponding estimate for the (simulated) measurand is my = 0.003

ng.

E3.2.5 Uncertainty propagation

For calculating the uncertainty associated with the estimates of the measurands (i.e.,
mg = 0.014ng and my = 0.003 ng, respectively), both the LPU [2]] and the MCM for the propa-
gation of probability distributions [[3}/4] were applied and compared. Details of the calculation
(expressed to at least six significant figures to avoid rounding errors) are available in the data
elaboration file “A212 BaP_example.r” [20].

!The uncertainty assumed for the simulated arithmetic mean of the peak areas is probably larger than that expected
for a material actually close to the detection limit.
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E3.2.5.1 GUM uncertainty framework

Applying the LPU to model (E3.2.1)), taking into account the uncertainty and covariance contri-
butions of the input quantities reported in table (E3.2.1)), the resulting uncertainty u(mg) was
0.0020 ng and 0.0017 ng for the experimental and the simulated case, respectively. Table
reports the uncertainty budget for the mass my = 0.014ng of BaP of the sample obtained with
the second extraction (the first two columns repeat part of the information already available
in table (E3.2.1)). Effective degrees of freedom v were calculated, according to the Welch-

Table E3.2.2: Uncertainty budget for the mass of BaP (in 1 uL.) of the sample obtained with the
second extraction: associated combined uncertainty was u(mg) = 0.002 ng.

Component  u(x;) aa_fj(l:z [ %_,2:5 . (Xi):lz
u(f) 1.7-1072 2.3-102 ng 14-107 ng?
u(mysg) 3.6-10° ng 5.7-107! 4.3-1078 ng?
u(Ag) 9.6-10% a.u. 1.6-107 ng (a.u.) ™t 2.5-1076 ng?
u(Agg) 4.4-10% a.u. —1.5-10"% ng (a.u.)™* 4.6-1077 ng?

10 ;) o T T, x)
u(f,mg) —33:10°ng  1.3-107°ng —8.5-107° ng?
u(Ag,Agg)  —2.0-10% (au)? —2.5-107 ng? (a.u)? 1.0-107° ng?
u2(mE) 41- 10—6 ng2

Satterthwaite formula [2, eqn. (G2.b)] applied to the input uncertainties and the corresponding
degrees of freedom discussed in Sec. They were equal to 3.07 and 2.05, giving cov-
erage factors k of 3.1 and 4.2, respectively, for the real and the simulated case, respectively.
Coverage factors of a Student t-distribution with an integer number v of degrees of freedom
are given in [2| table G.2], otherwise, i.e. for a non-integer v, they can be recovered by means
of common statistical software. For obtaining a 95 % coverage interval for the distribution, the
97.5™ percentile of the distribution is used for calculating the expanded uncertainty accord-
ing to [2, eqn. (G.1d)]. In the present case, the expanded uncertainties U = ku(mg) at a 95%
coverage probability were equal to 0.006 ng and 0.007 ng for the real and the simulated case,
respectively. Results of application of the LPU to both the experimental and the simulated case
are summarized in table (E3.2.3)). Note that the expanded uncertainty at the lower level is larger
than that at the higher level because of the larger coverage factor multiplying the corresponding
standard uncertainty. Indeed, even if neither the number of measurement repetitions nor the
uncertainties involved in the application of the Welch-Satterthwaite formula change from one
model to the other, the different values of the sensitivity coefficients lead to different effective
degrees of freedom in the two cases.

Table E3.2.3: Estimate of the measurand, with associated standard and expanded uncertainty,
for the experimental and the simulated case.

mg/ng u(mg)/ng U(mg)/ng

Experimental case 0.014 0.0020 0.006
Simulated case 0.003 0.0017 0.007

Examples of evaluating measurement uncertainty First edition



Example E3.2. Quantification of low masses of benzo[a]pyrene 223

E3.2.5.2 Monte Carlo method

The MCM for propagation of probability distributions of the input quantities was applied in order
to obtain an approximated distribution for the measurand, i.e. the mass of BaP in the extract and
in the simulated case. For this purpose, suitable probability distributions were assigned to the
input quantities of model (E3.2.1)), according to the criteria prescribed in [[3,[4]].

Since the available information on f and m;g; were their best estimates and their associated
covariance matrix, a bivariate Gaussian distribution was assigned to these quantities [|3, Sec.
6.4.8]. Hence, the bivariate normal distribution had a (vector) expectation equal to [f, mgg]
and a covariance matrix X equal to

zz[ u*(f) u(f,mISE)],

u(f,migg)  u*(mysg)
whose components are available in table (E3.2.1).

Since the two (N = 2) quantities Ay and A;gz were considered as following a bivariate normal
distribution and, for each quantity, (n = 3) repeated measurements were available, a scaled and
shifted bivariate t-distribution with one degree of freedom (v = n — N) was assigned to them,
according to [4} Sec. 5.3.2]. Hence, the bivariate t-distribution had a (vector) expectation equal
to [Ag,Arsg ] and the scale matrix S/n with S defined by:

3 — 3 — —
1[ 5 Zizl(A_Ei —Ap)? L Zi=1(ngi _AE)(AISL_AISE)}

v | D1 (Ag, —Ap)(Argg, —Argg) D (Arsp, —Arge)?

whose components S;; are available in table [E3.2.1} for i, j = 1, 2. Note that for v =1, the mean

value and the covariance matrix of the t-distribution are not defined, anyway a coverage (hyper)
interval for the distribution can always be determined [|4, Section 5.5.2, Note 1].

S =

The numerical simulation of the input probability distributions and their propagation through
measurement model were implemented in R environment [11]] by applying R func-
tions “rmvnorm” and “rmvt” available in the “mvtnorm” package [51]]. For each input quantity,
M = 107 values were drawn. Since only positive values of measurand are feasible, the joint input
probability density functions were numerically truncated at zero by disregarding negative values
drawn during the MCM simulation [3, Sec. 9.4.2.1.1, Note], thus obtaining a number of corre-
sponding simulated BaP mass values smaller than M. The number of MCM replicates retained,
however, was about 9 x 10° and 7 x 10° for the real and the simulated case, respectively, hence
still providing a reliable numerical approximation for the measurand distribution.

From the MCM distribution, the shortest 95 % coverage interval was obtained, for both real and
simulated data, and reported in table [E3.2.4

E3.2.6 Reporting the result

Figures|E3.2.1|and [E3.2.2[show the approximate numerical representation of the pdf for the BaP
mass corresponding to the second extraction and to the simulated case, respectively, indicating
the 95 % coverage intervals for the measurand my produced according to the MCM and to the
GUF. The relevant interval limits are also reported in table

In the present example, the MCM involved an input bivariate distribution with 1 degree of free-
dom, leading to an output pdf with an extreme right tail. The standard deviations of the MC
output distribution were unreliable (6.8 ng and 5.8 ng for the experimental and the simulated
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Table E3.2.4: Measurand estimate, 95 % coverage interval according to the GUM uncertainty
framework and the MCM for propagation of distributions (ng).

mg  GUM 95% C.I. MCM 95 % C.1I.
Second extraction 0.014 [0.008,0.020] [8.3-1077,0.032]
Simulated very low extraction 0.003 [-0.004, 0.010] [5.9-1071° 0.020]

case, respectively) and, because of the truncation effect, the corresponding sample means were
heavily biased (0.028 ng and 0.017 ng, respectively). Hence, this is a case in which neither the
MCM mean nor the standard deviation are reliable, but just the coverage interval at a desired
coverage level should be reported. Incidentally, both the MC medians (0.014ng and 0.004 ng,
respectively) resulted very close to the measurand estimates in table proving themselves
as robust and sensible estimates for the measurand.

E3.2.7 Interpretation of results

When applying MCM, the measurand estimate and the associated uncertainty are usually taken
as the mean and the standard deviation of the simulated output results, according to [|3} egs. (16)
and (17)]. Nonetheless, NOTE 2 in [|3} Sec. 6] states that in some special circumstances, such as
when one of the input quantities has been assigned a PDF based on the t-distribution with fewer
than three degrees of freedom, the expectation and standard deviation of the output quantity
might not exist and the above-cited equations (16) and (17) in GUM-S1 might not then provide
meaningful results. A coverage interval for the measurand can, however, be formed, since the
simulated output distribution is meaningful. This is exactly the situation of the present example,
for which, in fact, plausible estimates and corresponding standard uncertainties are those ob-
tained within the GUF, as reported in table whereas feasible coverage intervals are those
provided by MCM, as discussed shortly.

From both figures [E3.2.1| and [E3.2.2] it is evident that the two approaches give quite different
results in terms of coverage intervals. Although the assumed output distribution in the GUF is a
Student t-distribution with few degrees of freedom, hence leading to a large coverage factor for
the calculation of the corresponding expanded uncertainty, the MCM coverage interval is about
2.5 and 1.5 times larger than that obtained in the GUF, respectively. Moreover, it is asymmetric
with respect to the measurand estimate because of the left censoring of simulated results. Due to
the very few degrees of freedom of the input bivariate Student t-distribution of the mean areas
and due to the fact that both the bivariate Student t and the Gaussian input distributions were
feasibly truncated at zero, the MCM output distribution has in fact a very long right tail, resulting
in a net positive bias of the mean value and a considerable inflation of the standard deviation.
This is a clear example of those situations in which the conditions required by the Central Limit
Theorem are not met, since the pdf for the output quantity is not a Gaussian distribution nor a
scaled and shifted t-distribution.

Moreover, at the lower simulated mass value (figure [E3.2.2)), the GUF would lead to a coverage
interval stretching into a region of negative (unfeasible) values. The MCM, instead, can provide
a realistic asymmetric interval. It is worth mentioning that the EURACHEM/CITAC guidelines on
uncertainty evaluation for analytical measurements [|42]] recommend truncating the expanded
uncertainty interval at zero whenever a negative lower limit is found for a non-negative quantity.
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Figure E3.2.1: Numerical representation of the pdf associated with the mass of BaP in the nominal
volume of 1L of the sample obtained with the second extraction (mg = 0.014 ng). Circle and
triangle symbols indicate the limits of the 95 % coverage interval obtained according to the GUM
uncertainty framework and by MCM, respectively. Symbol x indicates the minimum detectable
mass of the analytical method.

Summarizing, this example is a clear case in which blind adherence either to the approach in the
GUM [2] or to the MCM in [|3}/4]] would be dangerous. Careful considerations on estimates, stan-
dard uncertainties and coverage intervals are always needed, according to the specific problem
under study.
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Figure E3.2.2: Numerical representation of the pdf associated with a simulated very small mass
value of BaP (my = 0.003 ng). Circle and triangle symbols indicate the limits of the 95 % cov-
erage interval obtained according to the GUM uncertainty framework and by MCM, respectively.
Symbol x indicates the minimum detectable mass of the analytical method.
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Example E3.3

Calibration of an analyser for NO,
using gas mixtures prepared with mass
flow controllers

E Pennecchi, E Rolle, M. Sega, PG. Spazzini, I. de Krom, A.M.H. van der Veen

E3.3.1 Summary

The present example shows the uncertainty evaluation of the calibration of a chemiluminescence
analyser for nitrogen oxides (NO,) using a multi-point calibration as described in ISO 6143 [226]]
with dynamically prepared calibration gas mixtures obtained by dynamic dilution of standard gas
mixtures performed by means of calibrated mass flow controllers (MFCs) [[227]].

This example addresses the need for a more advanced treatment of correlations arising in such
measurements, especially those caused by the use of the same equipment for calibration gas
mixture preparation and the use of one calibration gas mixture from which the dilutions are
made.

E3.3.2 Introduction of the application

The European Directive on ambient air quality [228]] prescribes the monitoring of NO, by means
of chemiluminescence as the reference method [[229]], which requires the use of proper calibration
gas mixtures for instrument calibration. To prepare such mixtures, dynamic dilution is a primary
method considered as a valid alternative to the static gravimetric method: it allows preparing
ready-to-use gas mixtures at low amount fractions by diluting a standard mixture (parent mix-
ture) with a proper diluent gas, thus avoiding stability problems related to diluted mixtures of
reactive gases in high-pressure cylinders.

The work consists in the following steps:

1. Use of two calibrated MFCs to dilute a static calibration gas mixture with a diluent gas
to obtain reference gas mixtures having the analyte amount fraction in the range of inter-
est (for environmental monitoring applications). The uncertainty associated with and the
covariance between the flow values generated by the MFCs are evaluated by taking into
account the calibration and the repeatability contributions.
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2. Employing the classic model equation of the dynamic dilution, the uncertainty associated
with and the covariance between the amount fractions of the analyte in the different mix-
tures are evaluated by taking into account contributions arising from i) the flow of the par-
ent mixture and that of the dilution gas, ii) the amount fraction of the analyte in the parent
mixture and iii) the (possible) impurities of the analyte in the diluent gas. Detailed calcula-
tion of the relevant results are shown in the Excel spreadsheet A213 data_elaboration.xls.

3. Use of the obtained NO, reference mixtures for calibration of a chemiluminescence anal-
yser in the desired range of amount fractions. Weighted Total Least-Squares (WTLS)
regression is applied, taking into account uncertainties associated with and covariances
among the values of both the dependent and independent variables.

In the following sections, each step will be addressed in detail.

E3.3.3 Specification of the measurand

E3.3.3.1 Use of two calibrated MFCs

In the present example, two MFCs from MKS with full scale range (FSR) of 500 cm® min™' and
2000 cm® min~! were employed, after calibration, for the parent mixture and the diluent gas,
respectively. The calibration of the MFCs was performed against the INRIM Microgas station, the
Italian primary flow standard for low flow rates. The MFCs were characterised in terms of their
calibration coefficient C = qyg/qyy, Where gy is the (reference) volume flow rate at standard
conditions (often expressed in “standard cubic centimetres per minute” (SCCM)) supplied by the
MFC under calibration as it is read by the Microgas, whereas gy is the set (nominal) volume flow
rate of the MFC. For the MFC with FSR 500 cm® min~"! the following model was found appropriate

Cr=ar1/qun+P1+11qvn+61qvy > (E3.3.1)

whereas for the MEC with FSR 2000 cm® min~, the appropriate model was

Co=ay/qun+ B2/v/avn+ 712+ 624/qun + €2qyN » (E3.3.2)

where C;, for i = 1,2, indicates the calibration coefficient of MFC1 and MFC2, respectively.
Guidance on this kind of model selection is given in ISO/TS 28038 [[110]].

Weighted Least-Squares regression was employed for fitting eqs. (E3.3.1) and (E3.3.2) to exper-
imental data, considering gy as not uncertain (being the flow rate set at the MFC), whereas

C was affected by several uncertainty contributions: that due to the measurement repeatability
(evaluated by the standard deviation of the repeated measurements of C) and that associated
with the reference Microgas (accounting for the uncertainty in the involved measurements of
temperature, pressure and volume). The curve parameter estimates are reported in table[E3.3.1}
whereas associated (squared) uncertainties and covariances are shown in covariance matrices
(E3.3.3) and (E3.3.4), respectively.

92x107*% —1.84x10° 95x10% —-1.3x1071%

v, = | —1.84x 107°  44x107 —24x107° 3.4x107'2
G 95x10% —24x10° 14x1071° —21x107™
—-13x10710 34x1072 —21x107* 3.3x107V

(E3.3.3)
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Table E3.3.1: Calibration curve parameter estimates for the two MFCs according to egs. (E3.3.1)
and (E3.3.2) (measurement units are such that each parameter times its unit is adimensional).

Parameter MFC1 MFC2
a —2.493 —39.967
B 1.021 5.306
y —1.590 x 107*  6.104 x 107!
5 1.975x 1077  1.195 x 1072
€ —1.249 x 1074
18.60 —4.0 3.0x1071  —93x103 9.9x107°
—4.0 89x1071 —6.7x1072 21x102 —22x107°
Ve,=| 3.0x107" —6.7x107% 51x10°% —1.6x10"* 1.7x107° | (E3.3.4)

—93x1073 21x102% —-1.6x10% 49x10° —53x1078
99x10° —22x10° 1.7x10°® —53x10% 58x10710

As an example, the calibration curve for the MFC1 with FSR of 500 cm®min~! is shown in fig-
ure [E3.3.1| (all volumes here and in the following are referred to temperature and pressure stan-
dard conditions, i.e., 0°C and 1013.25 mbar).
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Figure E3.3.1: Calibration curve of the MFC1 with FSR of 500 cm® min™*

The calibration coefficient, obtained after calibration of the MFCs, is used as correction factor for
the volume flow rate set at the MFCs to obtain the volume flow rate actually provided.
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E3.3.3.2 Dynamic dilution

In the present example, the preparation of reference gas mixtures of nitrogen dioxide (NO,) in
synthetic air (NO,/SA) by dynamic dilution is addressed. The measurand is the amount fraction
of NO, in the prepared calibration gas mixture. This mixture is obtained by mixing the flow of
a parent mixture, containing a known amount fraction of NO, supplied by MFC1, with a flow of
the dilution gas (SA), a high pure gas containing just impurities (possibly also NO,), supplied by
MFC2. The method is described in ISO 6145-7 [[227]].

E3.3.3.3 Calibration of a chemiluminescence analyser

A Thermo Fisher Scientific 42i chemiluminescence analyser is calibrated for NO, /SA, in the range
from 700 nmolmol ! to 1300 nmolmol ™. To this aim, a parent mixture with an amount fraction
of NO, of 10.252 pmol mol ! in SA is diluted with SA (grade 4.7) in order to dynamically prepare
three calibration gas mixtures with different amount fractions of NO,. At each amount fraction
level, three repeated readings from the analyser are collected: their mean and the corresponding
standard deviation are taken as the estimate provided by the analyzer and the associated uncer-
tainty, respectively. WTLS regression is performed [[226] to fit a straight line to the calibration
data points. The measurand is the set of the parameters of the instrument analysis function.
The analysis function relates the amount fraction to the instrument response and can be used to
calculate the amount fraction, given an instrument response.

E3.3.4 Measurement model

E3.3.4.1 Use of two calibrated MFCs

After the MFCs are calibrated, the flow qy; they provide at a nominal flow gy ;y is given by the
following model:

qvi =qvin Cis (E3.3.5)

where C; is the calibration coefficient calculated according to eq. (E3.3.1) or (E3.3.2).

E3.3.4.2 Dynamic dilution

In the presented case of a binary mixture, the dynamic dilution involves two MFCs (MFC1 and
MFC2) which regulate two different gas flows, i.e. MFC1 is used for the parent mixture and
MEFC2 for the diluent gas. The amount fraction x, of the analyte gas in the mixture prepared by
dynamic dilution is calculated according to the following model equation:

_ X19via ¥ X2qvaa
qua +qV2a

> (E3.3.6)

where x; is the amount fraction (nmol mol™1) of the analyte in the parent mixture, x, is the
amount fraction (nmolmol™') of the analyte potentially present in the diluent gas (impurity),
qQy 1, is the flow (cm® min™?) of the parent mixture supplied by MFC1, qy », is the flow (cm® min™!)
of the diluent gas supplied by MFCﬂ Assuming that the analyte is not present in the diluent gas

'Equation (E3.3.6) applies if the compressibility factors of the parent gases are equal. This condition is usually
met if (1) the matrix of the parent gases is the same and (2) the amount fraction of the other components is low, say
below 10 umolmol™. The latter limit depends, among other, on the target measurement uncertainty.
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and that this is certified with zero uncertainty (as in the present case study), equation (E3.3.6)
can be simplified into the following:

X19v1a

= (E3.3.7)
Qvia T qvaa

a

Three different mixtures having amount fractions x,, x;, and x., respectively, are generated.

E3.3.4.3 Calibration of a chemiluminescence analyser

As the analysis curve of the instrument, a straight line
y =A+ Bw, (E3.3.8)

is fitted to the data, which are the three different amount fractions x,, x, x. (the y values in
equation (E3.3.8)), and the sample mean of three repeated measurement at each amount fraction
level (w values). An analysis function (reference amount fractions on the ordinate axis and means
of the repeated readings on the abscissa axis), rather than a calibration curve, is determined,
since it allows to easily employ the calibration output when the analyser is subsequently used in
field: for each new reading, the instrument analysis curve provides a straightforward estimate
of the amount fraction of an unknown sample under analysis, with an associated uncertainty. In
order to fit the analysis curve, a WTLS regression was performed by means of the CCC software
[230]], taking into account the covariance matrices associated with both w and y values. The
main advantage of the WTLS algorithm is indeed the possibility to deal with regression problems
involving uncertain and correlated variables.

In the present case, the y values are characterised by a covariance matrix whose terms are later
defined by egs. (E3.3.14) and (E3.3.16), whereas the covariance matrix associated with the w
values is diagonal (instrumental readings at different NO, amount fractions are not correlated)
with elements equal to the (square of the) standard deviation of the means of the three repeated
readings obtained at each amount fraction.

E3.3.5 Uncertainty propagation

E3.3.5.1 Use of two calibrated MFCs

Using to the law of propagation of uncertainty (LPU) from [2[], the uncertainty associated with
a flow qy; (E3.3.5) produced by the i-th calibrated MFC is given by

u(qy;) = quinu(Gy). (E3.3.9)

Uncertainty u(C;) can be expressed as the sum in quadrature of a systematic contribution, u(C;).4,
due to the MCF calibration (and calculated by applying the LPU to eq. (E3.3.1) or (E3.3.2),
respectively, taking into account uncertainties of and covariances between the curve parameters),
and a repeatability contribution, u(C;),p, of the MFC when it is used (in the specific case, the
repeatability experienced in the dynamic dilution was similar to that typically encountered within
the calibration process at approximately the same flow values). Therefore,

u(Cy) = \/uz(ci)cal +u2(Crep - (E3.3.10)
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Concerning covariances, covariance term u(qy,, Qv 2,) between flow rates provided by two MFCs
at the same nominal value gy, is considered negligible, in this context, since the MFCs, even
if calibrated against the same reference standard, are different instruments, calibrated in differ-
ent moments, by means of different calibration functions. On the other hand, covariance terms
u(qy 14, qv1p) and u(qy o, gy op) between flows generated by the same MFC at two different nom-
inal values qyy, and qy yy, are not negligible since flow estimates by the same MFC are recovered
by the application of the very same calibration curve. By considering expression (E3.3.5)), one
has

u(qvia> qvin) = U(qvinaCia QvinnCin) = Qvina v ino U(Cias Cib) » (E3.3.11)
where, when i = 1, for example, and hence applying eq. (E3.3.1)),

u(Cra, C1p) = u(@1/qy1na + B1+719vina + 619V Ing @1/Qvins + 81+ Y10y vy + 61 Qvagp)-

(E3.3.12)

Employing the covariance property for linear combinations of variables, eq. (E3.3.12) becomes

u(Cras C1b) = 1/(qvina@v iny) W (@1)+1/qy 1na tag, Br)+- -+ @y 1nady 1np) ©?(51)- (E3.3.13)

Therefore, uncertainties associated with and covariances between parameters of calibration curve
(E3.3.1) influence the covariance between two different flows produced by the same MFC1.
Analogous expressions are derived for MFC2 as well.

E3.3.5.2 Dynamic dilution

Using the LPU, the (squared) uncertainty associated with the amount fraction x, of the analyte

(E3.3.7) is given by

2x,\? dx 2 dx 2
2 _ a 2 + a 2 + a 2 E3.3.1
u(x,) (axl) u”(xq) (aqVIa) u“(qy1a) (aqua) u“(qyaa) > ( 4)

where u(x;) is provided by the certificate of the reference parent mixture, while u(qy,,) and
u(qy,,) are calculated according to expression (E3.3.9). Note that u(qy,,qv2,) = 0. Analogous
expressions hold for x;, and x, as well.

Covariances between two different amount fractions x, and x;, are calculated as:

_ X19v1a X19v1b
u(x,,x,) = u s R
Qviat9vaa 9vib tqvap

dx, dxy
—_— , +
dx1 0x, ulxs, ) 9x1 0qy 1y

axa axb

0x1 9qy g

dx, Oxy

u(xy,qvip) +
aXa 3xb
9qva2a 9qvap

u(Xl, qV2b) +...+ u(qua, qub). (E3.315)

Recalling that u(qy,,qvap) = u(qyaa,qvip) = 0, and considering that there is no covariance
between x; and any of MFC flow values, eq. (E3.3.15) reduces to:

- Avia9vip 2
Ul Xp) (qvia+ qv2a)Qvib +qvap) )
X%szaQVzb
(qvia + qv2a)*(Qv b + qvap)?
X%Qv1a‘ZV1b

(Qvia+qv22)*@Qvip + Qvap)?

u(qv1a9qvip) +

u(qy 24 qvap) > (E3.3.16)
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where u(qy;,,qyv;,) are calculated according to eq. (E3.3.11). Analogous expressions hold for
u(x,, x.) and u(xy, x.), as well.

E3.3.5.3 Calibration of a chemiluminescence analyser

Estimate of coefficients A and B of analysis curve (E3.3.8)) and the associated covariance matrix
are the main output of the applied WTLS software. Details on such estimates and covariance
matrix are available in the User Manual of the CCC software [[230]].

E3.3.6 Reporting the result

Nominal and measured flow values of MFC1 and MFC2 are reported in table together
with associated uncertainties. These are calculated by eqs. (E3.3.9) and (E3.3.10), where con-
tribution u(C;),p is equal to 0.013 % and 0.037 % of the measured flow qy; value for MFC1 and
MFC2, respectively.

Table E3.3.2: Nominal and measured flow values of MFC1 and MFC2 with associated uncertain-
ties (cm® min™1).

dviNn _ 4dvan qvi u(qy,) Qv u(qy»)
a 84 1116 82.243 0.017 1108.49 0.54
b 115 1085 113.088 0.023 1077.17 0.53
¢ 152 1048 149.677 0.028 1039.78 0.57

Covariance terms between measured flow values of the same MFC are calculated according to

eqgs. (E3.3.11) and (E3.3.12) (and corresponding ones for amount fraction values b and c, and
for MFC2), and reported in table (E3.3.3)).

Table E3.3.3: Covariance terms between measured flow values of the same MFC (MFC1 and
MFC2) at different fraction levels a, b and ¢ ( all expressed in (cm3 min—1)?).

MFC  u(qv,.qvy) u(Qvaqve) ulqvp,qve)
1 231-100*% 2.54-100% 3.58-107%
2 1.26-107! 1.22-107! 1.20-107!

The parent mixture of NO, has an amount fraction x; = 10.252 pmolmol ™!, with associated
uncertainty u(x;) = 0.016 pmolmol ™! .

Applying eq. (E3.3.7), and corresponding ones for amount fractions b and c, the three reference
amount fractions are obtained as reported in table (E3.3.4).

Relevant squared uncertainties and covariances (in nmol? mol_z), reported in the covariance

matrix|[E3.3.17] are calculated according to egs. (E3.3.14) and (E3.3.16)), exploiting uncertainty
and covariance values associated with qy; reported in tables[E3.3.2]and [E3.3.3]

39.5 1.7 2.2
Ve, = 1.7 37.0 3.0 |. (E3.3.17)
22 3.0 41.2
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Table E3.3.4: Amount fractions of the three calibration mixtures obtained by dynamic dilution
and associated uncertainties (nmolmol™!).

amount fraction X u(x)
a 708.1 6.3
b 974.1 6.1
c 1290.1 6.4

Each calibration mixture is analyzed three times: the sample mean and the associated uncer-
tainty values are reported in table [E3.3.5 A straight line is fitted to the data by means of WTLS

Table E3.3.5: Sample mean of repeated readings and associated uncertainties (au).

Mean Reading u(Mean Reading)

146.6 0.75
213.7 0.67
285.0 1.53

regression. Parameter estimates of model (E3.3.8)) are A = 88.94 nmol mol~! and B = 4.19 nmol
mol~! a.u.™?, respectively, and the associated covariance matrix Vyp is|E3.3.18

2.85-102 —1.30
Vas ‘( ~1.30  6.36-107 ) ' (E3.3.18)

Validation of the obtained analysis curve is then performed by analysing a known gas mixture
with the calibrated instrument and comparing its output with this value: the validation is passed
if the two values are consistent within their expanded uncertainties. In the present case, an
independent gas mixture of NO, at the amount fraction of 975.5 nmol mol™ (with uncertainty
equal to 1.5 nmol mol™!) is used, obtained by dynamic dilution starting from a gas mixture of
NO, at amount fraction of 5.113 pmol mol ™! in SA diluted with SA 4.7. Applying model
to the mean of three repeated readings of the instrument (w = 213.33 a.u. and u(w) =0.11 a.u.)
corresponding to the independent gas mixture, the estimate y = 982.0 nmol mol™ is obtained
with associated uncertainty u(y) = 4.7 nmol mol~!. Such uncertainty is obtained by application
of the LPU to model propagating uncertainty u(w) and terms of the covariance matrix
through the model, that is applying the following equation:

w(y) = u?(A) + 1i2(B)w? + u’(w) B2 + 2u(A,B)w . (E3.3.19)

The validation result is reported in figure [E3.3.2

E3.3.7 Interpretation of results

Covariances in matrix between amount fractions of the three calibration mixtures are
mainly due to the term proportional to u(x;) (first term of eq. (E3.3.16)), the uncertainty of the
amount fraction of the common parent mixture used for obtaining all the calibration mixtures.
Such contribution is of practically the same order of magnitude of the resulting covariance term,

whereas contributions relevant to u(qy,,qv), u(qy 4, qv.) and u(qyy, gy ) in table[E3.3.3| (second
and third terms of eq. (E3.3.16)) are smaller by one or two orders of magnitude.
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VALIDATION OF THE ANALYSIS CURVE (NO,/AS)
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Figure E3.3.2: Validation of the analysis curve for the quantification of NO, in SA. Estimate of a
gas mixture of 975.5 nmol mol™* of NO, /SA as provided by the calibrated instrument (Estimated
value) in comparison with the actual value of the mixture as reported in its calibration certificate
(Reference value).

If covariances between the three amount fractions were ignored in the calibration of the chemilu-
minescence analyser, i.e., if a diagonal version of matrix [E3.3.17| were used in the WTLS regres-
sion, slightly different estimates of A and B for the analysis curve (E3.3.8) would be obtained,
with a different associated covariance matrix. The corresponding results of the validation process
would be y = 982.0nmolmol ™! and u(y) = 4.5nmolmol ™}, showing an undervaluation of the
uncertainty up to 3.4 %.
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Example E3.4

Measurement uncertainty for routine
testing of metals in soil

S.L.R. Ellison, M. Singh, M.G. Cox

E3.4.1 Summary

The example describes the evaluation of measurement uncertainty for the routine determination
of acid-extractable toxic metals in soil using a combination of acid extraction and atomic emis-
sion spectrometry. The example illustrates the general approach to measurement uncertainty
evaluation taken by ISO 21748, which uses information on precision and trueness of a routine
test procedure to provide an indication of the measurement uncertainty to be expected from
the procedure. The example further illustrates the experimental determination of sensitivity co-
efficients that cannot readily be derived from a mathematical model, examines the evaluation
of uncertainties arising from calibration using straight-line regression with zero intercept, and
discusses the issues arising in the event of an appreciable bias which is not corrected for when
within permitted limits.

E3.4.2 Introduction to the application

The example describes the evaluation of measurement uncertainty for the routine determination
of acid-extractable toxic metals in soil using a combination of acid extraction and inductively
coupled plasma optical emission spectrometry (ICP-OES). The procedure is based on that of ISO
11466:1995 [1231]], a method for the extraction of trace elements from soils and similar materi-
als containing less than about 20 % (m/m) organic carbon. ISO 11466:1995 is widely used to
determine the levels of toxic metals in soil. This is, in turn, important for determining permit-
ted land use, the need for soil remediation, and in some cases for enforcing effluent or disposal
regulations.

The acid extraction step uses aqua regia, a mixture of concentrated hydrochloric and nitric acids
that takes its Latin name from its ability to dissolve the metals gold and platinum. The process
does not dissolve all metal; it does, however, solubilise a large proportion of many metals present
in soil as contaminants. Use of a standard method is required to harmonise extraction conditions,
which include, for example, reagent concentrations and times.
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Following extraction, the extract is made up to a known volume and the dissolved metal content
determined by spectrometry. In this example, the spectrometric method is ICP-OES, used for
speed, acceptable detection capability and for its ability to determine many elements at the same
time. Accurate determination relies on calibration of the instrument using standard solutions; in
this example, the calibration procedure uses a simple zero-intercept linear model after correcting
instrument response for baseline offset.

The available data in this application are from method validation experiments, which provide in-
formation on overall performance of a procedure rather than on individual uncertainty sources.
The overall approach to measurement uncertainty evaluation accordingly follows the principles
of ISO 21748 [232]]. The example illustrates the use of analysis of variance applied to validation
data, together with summary information on bias derived from available reference materials, in
order to determine major contributions to measurement uncertainty. The example also includes
consideration of the uncertainties associated with the use of a zero-intercept model for calibra-
tion, and provides an example of experimental determination of sensitivity coefficients for effects
for which no useful predictive model exists.

NOTE: While this example of measurement uncertainty evaluation does not discuss
safety aspects, aqua regia and its components are highly corrosive and the procedure
uses a number of other corrosive or toxic reagents. Attention to safety is accordingly
the first priority in practical application of the measurement method.

The data for this example is available elsewhere [22]].

E3.4.3 Scope

This example considers the determination of aqua regia extractable metals from a test sample
prepared according to ISO 11464 [233]]. Uncertainties arising from sampling prior to sample
preparation and from the sample preparation steps are not considered.

E3.4.4 Specification of the measurand(s)

The measurand for this example is the mass fraction of aqua regia extractable metals in soil ac-
cording to ISO 11466:1995. This is an operationally defined measurand; use of different extrac-
tion or sample preparation conditions would not generally be expected to return the same mass
fractions for all metals. For operational reasons, the laboratory in this example uses a variant of
ISO 11466:1995, after verification of equivalence.

Current soil testing guidelines in the UK provide performance requirements for soil testing; for
metals, procedures should provide within-laboratory reproducibility not greater than 5% and
bias (measured against suitable reference materials) that is not significantly greater than 10 %,
after allowing for uncertainties in bias assessment. No correction to results is required for pro-
cedures meeting the bias criteria.
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E3.4.5 Measurement model

E3.4.5.1 Measurement principle and basic model

An outline of the measurement procedure is shown in figure which also includes the
principal parameters of interest for THE uncertainty evaluation. An accurately weighed mass
(nominally 3 g) of the prepared test material is placed in a suitable container, moistened with
water ((2.0 = 0.1) ml, not shown in figure and known volumes ((21.0 £ 0.5) ml and
(7.0 £ 0.5) ml respectively) of concentrated hydrochloric and nitric acid are added. (In this
section, the ranges indicated by “£” are as stated in the documented procedure and indicate a
permitted range). After standing at ambient temperature overnight, the mixture is heated for
2 h + 5 min, then allowed to cool. For the standard method, the heating is at gentle reflux,
that is, the boiling point of the liquid; for the present laboratory implementation, the mixture
is held at a nominal 65 °C. The extract is then filtered, any solid residue is washed with dilute
nitric acid to remove associated liquid, and the filtered extract, with washings, is standardised
by transferring to a 100 ml volumetric flask (class A) and making up to 100 ml.
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Figure E3.4.1: Overview of aqua regia extraction and analysis procedure

The dissolved metal content of the resulting extract is then determined by ICP-OES. The ICP-OES
instrument is calibrated by use of a series of solutions containing a mixture of dissolved metals at
known concentrations, prepared (in this case) from certified single-element stock solutions. The
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instrument calibration and the associated uncertainties are discussed further in section|E3.4.6.4
Given a measured concentration ¥y, expressed in mg 17}, for the standardised extract, the mass
fraction w, of metal in the original test sample is given by

v,
Wy = Lextlext (E3.4.1)
mS
where v, is the standardised volume of the extract (nominally 100 ml) and m, the mass of the
test portion. The result, wy, is conventionally expressed in mgkg™!).

E3.4.5.2 The ISO 21748 model

Comparison of figure[E3.4.1|with equation shows that the equation omits many of quan-
tities that might reasonably affect the measured value. The most important systematic effects are
those associated with the extraction conditions, in particular the initial acid concentrations and
volumes (Cyci, Chno,»> Vual and vino,) and the time t, and temperature Te,, for the heating
phase. In addition, equation does not make explicit the dependence of measured value
on the values associated with calibration standards, the corresponding observed signals y; and
the line fitting method.

For the purpose of uncertainty evaluation, the influence of the calibration step is most simply
considered in terms of uncertainty associated with the intermediate measured value y. This is

considered further in section

Effects of extraction conditions are much more difficult to include in a measurement model. First,
the precise form of the dependence is not usually known. Extraction can in principle be expected
to follow a diffusion model. However, diffusion models depend on particle size distribution and
shape, neither of which is known here. While semi-empirical diffusion models have given useful
results when measured values are monitored over time [[234], routine soil extraction methods
use a single fixed extraction time, and no generally applicable diffusion model is available for
aqua regia extraction. Most of the effects also depend on the particular test material and element,
making it impractical to develop a quantitative model that applies to every test material.

NOTE: Sample preparation effects — particularly where they affect particle size —
could also have important effects on measured values. These effects are outside the
scope of the present example.

For these reasons, routine test procedures usually provide for sufficiently close control of such
conditions to make sure that the effects on measured value are negligible compared to other,
less controllable, effects. This is the reason for the comparative simplicity of equation (E3.4.1).
In addition, routine test procedures are typically characterised by precision and trueness studies
of the procedure as a whole. ISO 21748, which provides guidance on the use of precision and
trueness data for uncertainty evaluation, accordingly offers a simplified model, equation (E3.4.2)),
that uses the data from such studies.

y=,u+6+B+Zcixlf+e, (E3.4.2)

where

y is the measurement result, assumed to be calculated from an appropriate function;
u is the (unknown) expectation of ideal results;
0 is a term representing