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S. Martens5, K. Klauenberg5, C. Elster5, S. Demeyer6, N. Fischer6, J.A. Sousa7,

O. Pellegrino7, L.L. Martins8, A.S. Ribeiro8, D. Loureiro8, M.C. Almeida8, M.A. Silva8,
R. Brito8, A.C. Soares8, K. Shirono9, F. Pennecchi10, P.M. Harris2, S.L.R. Ellison11,

F. Rolle10, A. Alard6, T. Caebergs12, B. de Boeck12, J. Pétry12, N. Sebaïhi12, P. Pedone13,
F. Manta13, M. Sega10, P.G. Spazzini10, I. de Krom1, M. Singh11, T. Gardiner2,

R. Robinson2, T. Smith2, T. Arnold2, M. Reader-Harris14, C. Forsyth14, T. Boussouara14,
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Preface

Measurement uncertainty evaluation is at the heart of science and industry as a cross-cutting dis-
cipline, impacting on all areas of measurement. Consistent evaluation and use of measurement
uncertainty is vital to the implementation of trade agreements, legislation, directives and regu-
lations. The Joint Committee on Guides in Metrology (JCGM) provides authoritative guidance
documents to address the needs of the measurement community. The evaluation and expression
of measurement uncertainty are essential for the interpretation of measurement data. Even if
not explicitly expressed, knowledge about the dispersion of measurement results is important to
distinguish between effects from the measurement procedure and effects from other causes.

This suite of examples illustrates the use of the methods described in the Guide to the expres-
sion of Uncertainty in Measurement (GUM), and several other methods that have not yet been
included in this suite of documents. The examples address issues such as the choice of the mecha-
nism for propagating measurement uncertainty from the input quantities to the output quantities,
the evaluation of standard uncertainty, modelling, reporting, and conformity assessment.

This suite of examples illustrates good practice in evaluating measurement uncertainty in a va-
riety of fields including calibration, testing, comparison and conformity, and relate to sectors
that include environment, energy, quality of life, industry and society. Where useful, reference is
made to software that supports the reproduction and implementation of the examples in practice.

As many practitioners benefit more quickly from worked examples than from guidance docu-
ments, the provided set of carefully selected comprehensive examples facilitates the take up of
uncertainty principles as well as improving the state of the art in measurement uncertainty eval-
uation in the respective disciplines.

All examples have been peer-reviewed and assessed for internal consistency and compliance with
guidance in the GUM suite of documents.
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Disclaimer

This suite of examples has been developed as a joint effort by experts in the field of measurement.
Greatest care has been exercised in the selection and development of the examples. The consor-
tium developing this compendium uses its best efforts to deliver a high-quality compendium
illustrating best practice in evaluating measurement uncertainty as described in the Guide to the
expression of uncertainty in measurement. Neither the consortium, its members, nor Euramet
makes any warranty with regard to the material provided, however. The examples are provided
“as is”. No liability is assumed for any use that is made of the Compendium.

Software, equipment and other resources identified in the examples are not necessarily the best
available for the purpose. The project consortium feels however that these resources are adequate
for the context in which they have been used.

Any mention of commercial products is for information only; it does not imply a recommendation
or endorsement by the authors, nor by Euramet or its members.

Feedback

The consortium seeks actively feedback on this Compendium from readers. Any feedback can be
sent to the editors Adriaan van der Veen (avdveen@vsl.nl) and/or Maurice Cox
(maurice.cox@npl.co.uk).
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Chapter 1

Introduction

A.M.H. van der Veen, M.G. Cox

The evaluation of measurement uncertainty is an essential part of the experimenter’s task to
obtain for the quantity of interest, the measurand, a value and a stated uncertainty. The JCGM
published a suite of documents covering various aspects of measurement uncertainty evaluation,
expression and use [1–6]. In many areas, measurement results are used to assess compliance
with regulatory limits. To understand the risks associated with decision taking, and to apply
this knowledge in conformity assessment, it is essential that the stated uncertainty is taken into
account [6].

Many laboratories implement ISO/IEC 17025 [7] to underpin their competence. Producers of
(certified) reference materials implement in many cases both ISO/IEC 17025 and ISO 17034 [8]
for the same purpose. In proficiency testing, the requirements for demonstrating competence are
laid down in ISO/IEC 17043 [9]. These standards have in common, among others, that mea-
surement uncertainty shall be evaluated and as appropriate be expressed. Issuing CRMs (certi-
fied reference materials) with property values without uncertainty is not permitted according to
ISO 17034, as it would for the user be impossible to make a proper assessment of the quality of
its result when using the CRM for quality control, nor would it be possible to propagate it when
using the CRM in calibration [10].

In this document, the examples illustrate various aspects of uncertainty evaluation and the use
of uncertainty statements in conformity assessment. These aspects include, but are not limited
to

– choice of the mechanism for propagating measurement uncertainty,

– reporting measurement results and measurement uncertainty,

– conformity assessment, and

– evaluating covariances between input quantities.

Most examples cover multiple aspects. The index aids the reader to locate such aspects in the
examples.

The first part of this compendium is devoted to generic aspects, which are presented in the form
of tutorials that aim at helping the reader to get started with the various methods and examples
presented in this compendium. They do not replace the guidance provided in the GUM suite of

1



Chapter 1. Introduction 2

documents, but rather supplement the general guidance given there. The use of Bayes’ rule is
not (yet) contained in the GUM, yet it is recognised as one of the ways to evaluate measurement
uncertainty, consistent with the spirit of the GUM, and the best mechanism to combine prior
knowledge about one or more model parameters with data.

The use of software is essential for anyone performing uncertainty calculations. Most profession-
als rely on “off the shelf” spreadsheet software or laboratory information management system
(LIMS) to perform the bulk of the relevant calculations. Such software systems have largely not
been designed for the calculations necessary to evaluate, propagate and express measurement
uncertainty. Some examples can nonetheless be implemented readily in this general purpose
software, whereas others describe the use of other software. Some of the tutorials describe the
use of R [11], which is an open source software package for statistical computing and data vi-
sualisation. Other examples describe the use of MATLAB or other commercial software. In all
cases, these choices have been made for illustration only. If an example describes how to perform
the calculation in one software package, it does not imply that it could not have been done in
another. The same holds for the selection of libraries and other resources.
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Chapter 2

Overview
M.G. Cox, A.M.H. van der Veen

Table 2.1 provides an overview of the examples contained in this document, their key words and,
if available, a pointer to the dataset.

Table 2.1: Overview of examples

Example Description Key words Dataset
E1.1 Two-point and multipoint calibration — appli-

cation to pH measurement
calibration; bracketing; polynomial regres-
sion; correlation

E1.2 Straight-line calibration in errors-in-variables
models

See E4.3, E5.3 and E6.2.

E1.3 Bayesian approach applied to the mass cali-
bration example in JCGM 101:2008

Bayesian inference; prior; mass; calibration [12]

E1.4 Evaluation of measurement uncertainty in SBI
– Single Burning Item reaction to fire test

fire testing; single burning item [13]

E1.5 Statistical reassessment of calibration and
measurement capabilities based on key com-
parison results

key comparison; gauge block; CMC; Bayesian
inference

[14]

E1.6 Model-based unilateral degrees of equiva-
lence in analysis of a regional metrology or-
ganization key comparison

key comparison; degree of equivalence

E1.7 Measurement uncertainty when using quan-
tities that change at a linear rate — use of
quartz He reference leaks to calibrate an un-
known leak

calibration function; covariance; reference
leak

E1.8 Factoring effects such as calibration correc-
tions and drift into uncertainty evaluations

poor practice; errors; conformance probabil-
ity

E2.1 Conformity assessment of an influenza medi-
cation as a multicomponent material

conformity assessment; multicomponent ma-
terial; risk of false decision; correlated test re-
sults

[15]

E2.2 Measurement models involving additive or
multiplicative corrections

calibration correction; errors; conformance
probability; pressure

[16]

E2.3 Conformity assessment of mass concentration
of total suspended particulate matter in air

conformity assessment; producer’s and con-
sumer’s risk; total suspended particulates in
air; mass concentration; log-normal prior dis-
tribution

[17]

E2.4 Uncertainty evaluation of nanoparticle size by
AFM, by means of an optimised Design of Ex-
periment for a hierarchical mixed model in a
Bayesian framework approach

AFM; mixed model; Bayesian inference; de-
sign of experiment

[18]

Continued on next page
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Table 2.1 – continued from previous page
Example Description Key words Dataset

E2.5 GUM-LPU uncertainty evaluation — import-
ing measurement traceability from a confor-
mity statement

metrological traceability; conformity state-
ment; OIML classification; Geometrical Prod-
uct Specification (GPS)

[19]

E3.1 Evaluation of measurement uncertainty in av-
erage areal rainfall – uncertainty propagation
for three methods

rain fall; GUM uncertainty framework; Monte
Carlo method

E3.2 Uncertainty evaluation for the quantification
of low masses of benzo[a]pyrene

Monte Carlo method; GUM uncertainty
framework; ploycyclic aromatic hydrocarbon;
mass

[20]

E3.3 Calibration of an analyser for NOx using gas
mixtures prepared with mass flow controllers

Gas mixtures; nitrogen oxides; dynamic di-
lution; mass flow controllers; chemilumi-
nescence analyser; calibration; correlation;
Weighted Total Least-Squares

[21]

E3.4 Measurement uncertainty for routine testing
of metals in soil

soil; trace elements; acid extraction; atomic
emssion spectroscopy

[22]

E3.5 Comparison of methods for flow measure-
ment in closed conduits based on measure-
ment uncertainty

flow measurement; GUM uncertainty frame-
work; “Monte Carlo method

E3.6 Greenhouse gas emission inventories greenhouse gases; inventory; correlation
E3.7 Greenhouse gas emission inventories — emis-

sion estimates calculated by measurement of
ambient mixing ratios combined with inverse
modelling

greenhouse gases; inventory; emisson; in-
verse modelling

E3.8 Preparation of calibration gas mixtures of NH3

in nitrogen using permeation
GUM uncertainty framework; finite resolu-
tion; purity; validation of OLS

[23]

E4.1 Evaluation of measurement uncertainty in to-
talization of volume measurements in drink-
ing water supply networks

flow measurement; water supply; totalisation [24]

E4.2 Uncertainty of the orifice-plate discharge
coefficient

flow measureement; orifice plate; discharge
coefficient

[25]

E4.3 Calibration of a sonic nozzle as an example
for quantifying all uncertainties involved in
straight-line regression

measurement model; GUM; Monte Carlo
method; straight-line regression; correlation;
weighted total least-squares

[26]

E4.4 Measurement uncertainty evaluation of the
load loss of power transformers

electrical power; transformer; load loss; alter-
nating current

[27]

E4.5 Evaluation of measurement uncertainty in
thermal comfort

thermal comfort; implicit model formulation;
Monte Carlo method

[28]

E4.6 Bayesian evaluation of a between-bottle ho-
mogeneity study in the production of refer-
ence materials

Bayesian inference; ANOVA; between-bottle
homogeneity; reference material; proficiency
test

E4.7 Flow meter calibration using the master meter
method

flow measurement; calibration; master meter
method

[29]

E4.8 Pressure drop due to gas leakage in a pressur-
ized vessel

pressure drop; leak test; correlation [30]

E5.1 2D or 3D image as a set of pixels or voxels to
compute a quantity

pixellation; image metrology; SPECT imag-
ing; adsorbed dose; nanoparticle; AFM

[31]

E5.2 Magnetic resonance-based electric properties
tomography

electric properties tomography; magnetic res-
onance imaging; covariance matrix; shrink-
age estimation; law of propagation of uncer-
tainty

[32]

E5.3 Quantifying uncertainty when comparing
measurement methods – Haemoglobin con-
centration as an example of correlation in
straight-line regression

measurement model; GUM; straight-line re-
gression; correlation; weighted total least
squares; method comparison; haemoglobin;
AHD; HiCN

[33]

E5.4 Suitability of a Monte Carlo approach for un-
certainty evaluation in rheology problems

rheology; viscosity; GUM uncertainty frame-
work; Monte Carlo method

Continued on next page
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Table 2.1 – continued from previous page
Example Description Key words Dataset

E5.5 Uncertainty calculation methodologies in mi-
croflow measurements: comparison of GUM,
GUM-S1 and Bayesian approach

microflow; GUM uncertainty framework;
Monte Carlo method; Bayesian inference

E5.6 Specification requirements of temperature in
medical applications

conformity; decisison rule; accuracy [34]

E6.1 Measurement uncertainty evaluation for
turbofan nozzle thrust derived from non-
intrusive flow measurements

inflight thrust; complex step method; finite
differences method; Monte Carlo method;
correlation

E6.2 Calibration of a torque measuring system –
GUM uncertainty evaluation for least-squares
versus Bayesian inference

measurement model; GUM; Bayesian infer-
ence; calibration; straight-line regression;
least squares estimation; torque; VDI/VDE
2600 Blatt 2

[35]

E6.3 Calibration and measurement uncertainty in
hardness verification

Vickers-; Knoop-; Rockwell-; Brinell-; Instru-
mented Indentation- hardness test; correlated
quantities; effective degrees of freedom; con-
formity assessment

E6.4 Evaluation of measurement uncertainty in the
calibration of a mobile optical measurement
system

calibration; coordinate measurement ma-
chine

[36]

E6.5 Evaluation of measurement uncertainty asso-
ciated with the quantification of ephedrine in
anti-doping testing

top-down approach; CRM; proficiency testing

E6.6 Measurement uncertainty in a multiplexed
data-acquisition system

data acquisition system; electrical quantity [37]

E6.7 Temperature measurement with a micro-
controller based board

temperature; microcontroller boeard; dither-
ing

[38]
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Chapter 3

Using the Monte Carlo method

A.M.H. van der Veen, M.G. Cox

3.1 Preamble

One of the complicating factors in the evaluation and propagation of measurement uncertainty
is the competence in mathematics and statistics required to perform the calculations. Never-
theless, standards such as ISO/IEC 17025 [7], ISO 15189 [39] and ISO 17034 [8] that specify
requirements for laboratories to enable them to demonstrate they operate competently, and are
able to generate valid results, require that measurement uncertainty is evaluated and reported.
The well-known law of propagation of uncertainty (LPU) from the Guide to the expression of
uncertainty in measurement (GUM) [2] requires the calculation of the partial derivatives of the
measurement model with respect to each of the input variables.

In this tutorial, we (re)introduce the Monte Carlo method of GUM Supplement 1 (GUM-S1) [3],
which takes the same measurement model and the probability density functions assigned to the
input variables to obtain (an approximation to) the output probability density function. We show,
based on some well-known examples illustrating the evaluation of measurement uncertainty, how
this method can be implemented for a single measurand and how key summary output, such as
the estimate (measured value), the associated standard uncertainty, the expanded uncertainty,
and a coverage interval for a specified coverage probability, can be obtained. The Monte Carlo
method of GUM-S1 [3] is a versatile method for propagating measurement uncertainty using a
measurement model. It performs generally well for any measurement model, as it does not –
unlike the law of propagation of uncertainty – depend on a linearisation of the model.

The use of probability density functions is well covered in the GUM [2] and further elaborated in
GUM-S1 [3]. In this tutorial, the emphasis is on setting up an uncertainty evaluation using the
Monte Carlo method for a measurement model with one output quantity (a “univariate” mea-
surement model). GUM Supplement 2 (GUM-S2) [4] provides an extension of the Monte Carlo
method to measurement models with two or more output quantities (“multivariate” measure-
ment models) as well as giving a generalisation of LPU to the multivariate case.

The vast majority of the uncertainty evaluations in calibration and testing laboratories are per-
formed using the LPU [2]. This mechanism takes the estimates (values) and associated standard
uncertainties of the input quantities as input to obtain an estimate for the output quantity and the
associated standard uncertainty. The measurement model is used to compute (1) the value of the
output quantity and (2) the sensitivity coefficients, i.e., the first partial derivatives of the output

7



Chapter 3. Using the Monte Carlo method 8

quantity with respect to each of the input quantities. The second part of the calculation involving
the partial derivatives is perceived as being cumbersome and requires skills that are often beyond
the capabilities of laboratory staff and researchers. The computation of the sensitivity coefficients
can also be performed numerically [40, 41]. One of the advantages of the Monte Carlo method
is that no sensitivity coefficients are required. All that is needed is a measurement model, which
can be in the form of a computer algorithm, and a specification of the probability distributions
for the input quantities. These probability distributions (normal, rectangular, etc.) are typically
already specified in uncertainty budgets when the LPU is used.

In this tutorial, we show how the Monte Carlo method of GUM-S1 can be implemented in R [11].
This environment is open source software and specifically developed for statistical and scientific
computing. Most of the calculations in laboratories, science and elsewhere are still performed
using mainstream spreadsheet software. An example of using the Monte Carlo method of GUM-
S1 with MS Excel is given in the Eurachem/CITAC Guide on measurement uncertainty [42]. It
is anticipated that this tutorial will also be useful for those readers who would like to get started
using other software tools or other languages.

3.2 Monte Carlo method

The heart of the Monte Carlo method of GUM-S1 can be summarised as follows [3, clause 7].
Given a measurement model of the form

Y = f (X1, . . . , XN )

and probability density functions assigned to each of the input quantities X1, . . . , XN , generate M
sets of input quantities X1,r , . . . , XN ,r (r = 1, . . . , M) and use the measurement model to compute
the corresponding value for Yr . M , the number of sets of input quantities should be chosen to
be sufficiently large so that a representative sample of the probability density function of the
output quantity Y is obtained. The approach here applies to independent input quantities and a
scalar output quantity Y . For its extension to dependent input quantities, see GUM-S1 [3], and
a multivariate output quantity, see GUM-S2 [4].

GUM-S1 [3, clause 6.4] describes the selection of appropriate probability density functions for the
input quantities, thereby supplementing the guidance given in the GUM [2, clause 4.3]. GUM-S1
also provides guidance on the generation of pseudo-random numbers. Pseudo-random numbers
rather than random numbers are generated by contemporary software since the latter are almost
impossible to obtain. However, comprehensive statistical tests indicate that the pseudo-random
numbers generated cannot be distinguished in behaviour from truly random numbers.

Considerable confidence has been gained by the authors over many years concerning the per-
formance of the Monte Carlo method of uncertainty evaluation from a practical viewpoint. For
measurement models that are linear in the input quantities, for which the law of propagation
of uncertainty produces exact results, agreement with results from the Monte Carlo method to
the numerical accuracy expected has always been obtained. Thus, weight is added to the above
point: there is evidence that the effects of working with pseudo-random numbers and truly ran-
dom numbers are identical.

If needed, the performance of a random number generator can be verified [43, 44]. For the
purpose of this tutorial, it is assumed that the built-in random number generator in R is fit for
purpose.
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A refinement of the Monte Carlo method concerns selecting the number of trials automatically
so as to to achieve a degree of assurance in the numerical accuracy of the results obtained. An
adaptive Monte Carlo procedure for this purpose involves carrying out an increasing number
of Monte Carlo trials until the various results of interest have stabilised in a statistical sense.
Details are provided in [3, clause 7.9] and since then an improved method has been developed
and published [45].

In many software environments, random number generators for most common probability den-
sity functions are already available; if not, they can be readily developed using random numbers
from a rectangular distribution [3, annex C]. (The rectangular distribution is also known as the
uniform distribution.) Should even a random number generator for the rectangular distribution
not be available in the software environment, then the one described in GUM-S1 can be imple-
mented as a basis for generating random numbers. The default random number generator in
R is the Mersenne Twister [46], which is also implemented in many other programming envi-
ronments, including MATLAB and MicroSoft Excel (since version 2010, see [47]). Based on this
random number generator, there are generators available for a number of probability distribu-
tions [11].

The output of applying the Monte Carlo method is an array (vector) Y1, . . . , YM characterising
the probability density function of the output quantity. This sample is however not the form in
which a measurement result is typically communicated (reported). From the output Y1, . . . , YM ,
the following can be computed:

– the measured value, usually taken as the arithmetic mean of Y1, . . . , YM

– the standard uncertainty, usually computed as the standard deviation of Y1, . . . , YM

– a coverage interval containing the value of the output quantity with a stated probability,
obtained as outlined below

– the expanded uncertainty

– the coverage factor

The last two items apply when the coverage interval can be reasonably approximated by a sym-
metric probability density function.

The most general way of representing a coverage interval is by specifying its upper and lower
limits. This representation is always appropriate whether the output distribution is symmetric
or not. In many instances however, the output probability density function is (approximately)
symmetric, and then the expanded uncertainty can be computed as the half-width of the coverage
interval. The coverage factor can be computed from the expanded uncertainty U(y) and the
standard uncertainty u(y), i.e., k = U(y)/u(y). The symmetry of the output probability density
function can be verified by examining a histogram of Y1, . . . , YM , or obtaining a kernel density
plot, a smooth approximation to the probability density function.

3.3 Software environment

R is an open source language and environment for statistical computing and graphics. It is a
GNU project, similar to the S language and environment, which was developed at Bell Labora-
tories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be
considered as a different implementation of S [11]. It is available for Windows, MacOS and a
variety of UNIX platforms (including FreeBSD and Linux) [48].
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Users of Windows, MacOS, and a number of Linux distributions may also wish to download and
install RStudio [49], which provides an integrated development environment, in which code can
be written, the values of variables can be monitored, and separate windows for the console and
graphics output are available. The R code provided in this primer has been developed in RStudio
(version 1.2.1335, build 1379 (f1ac3452)).

3.4 Generating random numbers

In R, it is straightforward to generate a sample of random numbers from most common probability
density functions. For example, the following code generates a sample of a normal distribution
with mean µ= 10.0 and standard deviation σ = 0.2 and a sample size M = 10 000:

M = 10000
mu = 10.0
sigma = 0.2

set.seed(2926)
X1 = rnorm(M,mu,sigma)

The function to be called to generate an array (vector) of random numbers with the normal distri-
bution and mean mu and standard deviation sigma is called rnorm. The line set.seed(2926)
is useful for debugging purposes, as it ensures that the random number generator starts at the
same point every time. Any other value for the seed would also ensure the exact reproduction of
the series of numbers obtained from the random number generator. If that is not required, the
line can be omitted. In this tutorial, the seed is set, so that the reader can exactly reproduce the
output. The output is collected in a variable named X1. It is an array with 10000 elements.

The following code snippet shows the mean and standard deviation of the 10000 generated
numbers, using R’s built in functions mean and sd respectively.

mean(X1)

## [1] 10.00131

sd(X1)

## [1] 0.2006594

Using R’s functions plot and density, the kernel density of variable X1 can be plotted (see
figure 3.1). The code to generate the figure is as follows:

plot(density(X1),xlab = "X1",ylab = "density",main = "")

where density calculates the kernel density from the array X1 and plot generates the figure.
The plotted density resembles that of a normal distribution. The larger the number of samples
drawn from the random number generator, the closer the resemblance with the normal distribu-
tion will be.

From the first code fragment in this section, it is readily seen that R has a function for generating
random numbers with a normal distribution. It also has functions for generating random numbers
with a rectangular distribution (runif), the t distribution (rt), exponential distribution (rexp)
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Figure 3.1: Density plot of the random variable X1 having a normal distribution with mean 10.0
and standard deviation 0.2

and gamma distribution (rgamma). There exists a package (extension) called “trapezoid” [50]
implementing among others the trapezoidal distribution, a package called “mvtnorm” [51] im-
plementing the multivariate normal distribution (useful when some of the input quantities are
dependent [3]), and a package called “triangle” [52] implementing the triangular distribution.
So, apart from the curvilinear trapezoidal distribution and the arc sine distribution, random num-
bers for all probability density functions mentioned in GUM-S1 [3, table 1] are available in R.

The arc sine distribution can be implemented as follows in R. According to GUM-S1 [3, clause 6.4.6.1],
a U-shaped random variable X on the interval [a, b] can be obtained through

X =
a+ b

2
+

b− a
2

sinΦ

whereΦ is a random variable with a rectangular distribution on [0,2π]. In R, a function rarcsin
that provides such a random variable, and a call to that function, can be coded as follows:

rarcsin <- function(n,a,b) {
X = (a+b)/2 + (b-a)/2 * sin(runif(n,0,2*pi))
return(X)

}

X2 = rarcsin(M,-1.0,1.0)

The argument n determines the number of random numbers returned; a and b denote the lower
and upper limits respectively of the interval over which the arcsine distribution has a non-zero
density. If n> 1, the function returns an array; if n= 1 it returns a single number. This behaviour
mimics the behaviour of the other functions implemented in R to generate random numbers.

The last line in the code snippet creates an array X2 of M elements (M = 10000 in this instance)
of a random variable having an arcsine distribution over the interval [−1, 1]. A histogram (ob-
tained through the R function hist) is shown in figure 3.2.
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Figure 3.2: Histogram of the random variable X2 containing M = 10 000 samples
having an arcsine distribution between -1 and 1

3.5 Simple additive model: calculation of the molar mass of phenol

In this example, the molar mass of phenol (molecular formula C6H5OH) is computed. The ex-
ample shows how an output quantity with an uncertainty is obtained from input quantities with
uncertainty. There is no experiment involved. The example is pivotal for many calculations
involving reference data, such as atomic weights, molar masses and enthalpies of formation.

The molar mass is computed from the atomic masses and the coefficients appearing the molecular
formula, which for the elements involved are 6 for carbon, 6 (5+1) for hydrogen and 1 for oxygen.
The current relative atomic masses are used as published by IUPAC (International Union of Pure
and Applied Chemistry) [53]. The relative atomic masses that apply to “normal materials” are
called standard atomic weights [53,54]. Their interpretation is described in an IUPAC technical
report [55].

The molar mass of phenol (chemical formula C6H5OH) is computed as

Mr(C6H5OH) = 6Ar(C) + 6Ar(H) + Ar(O)

The Monte Carlo method is implemented in R using M = 100 000 trials. The R code that performs
the evaluation reads as

M = 100000
C = runif(M, 12.0096, 12.0116)
H = runif(M, 1.00784, 1.00811)
O = runif(M, 15.99903, 15.99977)
MW = 6*C + 6*H + O
MW.val = mean(MW)
MW.unc = sd(MW)
MW.Unc = (quantile(MW,probs = 0.975) -

quantile(MW,probs = 0.025))/2.0
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Figure 3.3: Output probability density function of the molar mass of phenol and superimposed
a normal distribution with the same mean and standard deviation

The first line declares a variable M that holds the number of trials to be carried out by the Monte
Carlo method. Then, for each of the elements, M samples are drawn using the rectangular dis-
tribution (using R’s function runif) and the lower and upper limits provided by the standard
atomic weights of IUPAC [53]. These arrays have respectively the names C, H and O for the atomic
masses of carbon, hydrogen and oxygen. The molar mass is then computed in the line defining
MW. R is very efficient with vectors (arrays) and matrices (tables) [56]. The value of the molar
mass (MW.val) is computed by taking the average of MW, the standard uncertainty by taking
the standard deviation of MW and the expanded uncertainty by taking the half-width of the 95 %
coverage interval. The latter is obtained by calculating the 0.025 and 0.975 quantiles (which
provides a probabilistically-symmetric coverage interval).

The code to plot the output probability density function of the molar mass (MW) and to superim-
pose a normal distribution with the same mean and standard deviation is given below:

x = seq(from = MW.val-4*MW.unc,to=MW.val+4*MW.unc,by=8*MW.unc/100)
hx = dnorm(x,MW.val,MW.unc)
{

plot(density(MW),xlab = "Molar mass (g/mol)",
ylab = "Density (mol/g)",main="",
xlim=c(min(x),max(x)),ylim=c(0,max(hx)))

lines(x,hx,lwd=2,lty=2,col="red")
}

The first two lines compute the relevant part of the normal distribution around the mean ± 4
standard deviations. The subsequent lines plot the output probability density function and the
normal distribution respectively.
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The figure is shown as figure 3.3. It is obvious that the normal distribution is not an appro-
priate approximation of the probability density function of the output quantity, which is much
narrower than the normal distribution. The molar mass is 94.1108 gmol−1 with standard un-
certainty 0.0035 g mol−1. The expanded uncertainty is 0.0059 g mol−1. The coverage factor is
1.67.

3.6 Mass example from EA 4/02

In most instances, the Monte Carlo method is implemented using a measurement model (or
measurement equation). In this section, the mass calibration example of EA 4/02 [57] is taken
and the implementation of the Monte Carlo method is described. The evaluation using the Monte
Carlo method rests on the same assumptions for the input quantities as in that example. The
example is developed in such a way that for any measurement model having one output quantity
the same steps can be followed. The measurement model is coded in the form of a function,
which promotes writing tidy code. It also allows iterative calculations to be readily implemented
when the measurement model is defined implicitly [4]. This example describes the calibration
of a 10 kg weight by comparison with a standard 10 kg weight. The weighings are performed
using the substitution method. This method is implemented in such a way that three mutually
independent observations for the mass difference between the two weights are obtained.

The measurement model is given by [57, S2]:

mX = mS+ δmD + δm+ δmC + δB, (3.1)

where the symbols have the following meaning
mX conventional mass of the weight being calibrated,
mS conventional mass of the standard,
δmD drift of the value of the standard since its last calibration,
δm observed difference in mass between the unknown mass and the standard,
δmC correction for eccentricity and magnetic effects,
δB correction for air buoyancy.

For using the Monte Carlo method, probability density functions are assigned to each of the five
input quantities [3]. These probability density functions are described in the original example
[57].

The conventional mass of the standard mS is modelled using the normal distribution with mean
10 000.005 g and standard deviation 0.0225 g. The standard deviation (standard uncertainty) is
calculated from the expanded uncertainty and the coverage factor provided on the calibration
certificate. This interpretation is also described in GUM-S1 [3, 6.4.7]. The drift of the mass of the
standard weight δmD is modelled using a rectangular distribution, centred at 0 g and with a half-
width of 0.015 g. The corrections for eccentricity and magnetic effects, and that for air buoyancy
are both modelled using a rectangular distribution with midpoint 0.000 g and half-width 0.010 g.

The mass difference δm between the two weights computed from the indications of the balance is
calculated as the mean of n= 3 independent observations. EA 4/02 explains that the associated
standard uncertainty is computed from a pooled standard deviation 0.025 g, obtained from a
previous mass comparison, divided by

p
n.

In the implementation of the Monte Carlo method, the three observations are simulated using
normal distributions with means of the observed values (i.e., 0.010 g, 0.030 g and 0.020 g respec-
tively) and a standard deviation of 0.025 g for each. The mass difference is formed by calculating
the arithmetic average of the three simulated observations.
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The measurement model (equation (3.1)) can be coded in R as follows:

# measurement function
mass.x <- function(m.std,dm.d,diff,dm.c,dm.B) {

m.std + dm.d + diff + dm.c + dm.B
}

where m.std denotes the conventional mass of the standard weight, dm.d the drift correction
of the conventional mass of the standard weight, diff the mass difference obtained from the
substitution weighing, dm.c the correction due to eccentricity and magnetic effects, and dm.B
the correction due to air buoyancy. The function is called mass.x and returns the value of the
output quantity mX.

Most programming languages implement a “for” loop, which enables executing a block of code a
defined number of times. Anyone familiar with this “for” loop in computer programming would
now use this kind of loop to code the recipe given in GUM-S1 clause 7.2.2 [3]. An implementation
of the Monte Carlo method with a fixed value for the number of samples M would then read as
follows:

# implementation of the procedure of GUM-S1 with fixed M
prob = 0.95
M = 10000 * ceiling(1.0/(1.0-prob)) # GUM-S1 7.2.2
m.x = numeric(M)
m.data = numeric(3)
for (i in 1:M) {

m.std = rnorm(1,10000.005,0.0225)
dm.d = runif(1,-0.015,+0.015)
dm.c = runif(1,-0.010,+0.010)
dm.B = runif(1,-0.010,+0.010)
m.data[1] = rnorm(1,0.01,0.025)
m.data[2] = rnorm(1,0.03,0.025)
m.data[3] = rnorm(1,0.02,0.025)
m.diff = mean(m.data)
m.x[i] = mass.x(m.std,dm.d,m.diff,dm.c,dm.B)

}

On the first line, the probability level of the coverage interval (prob) is defined to be 0.95. In
accordance with the guidance in clause 7.2.2 of GUM-S1 [3], M is calculated using the built-
in function ceiling which returns the smallest integer not less than its argument. With prob
= 0.95 the net effect of calling ceiling is that the floating point number is converted to an
integer, as the result of 1/(1-prob) is 20, hence the minimum number of Monte Carlo trials
is M = 10000 · 20 = 200000. Then an array (vector) m.x is declared that will hold the values
calculated for the mass of the weight being calibrated. The vector m.data is a temporary storage
for simulating the mass differences between the standard weight and the weight being calibrated.
In the for loop, at each iteration a sample is drawn of the input quantities mS (m.std), δmD
(dm.d), δmC (dm.c), and δB (dm.B). The mass difference from comparing the two weights
(m.diff) is simulated by drawing from a normal distribution with different means, but the same
standard deviations, the three readings and taking the average. The measured value of the output
quantity mX (m.x) is finally obtained by calling the measurement model with as arguments the
input quantities.

Running the above code provides the following output for the mean, standard deviation (standard
uncertainty) and the coverage interval of mX:
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print(mean(m.x),digits = 9)

## [1] 10000.025

print(sd(m.x),digits = 2)

## [1] 0.029

quantile(m.x,probs = c(0.025,0.975))

## 2.5% 97.5%
## 9999.968 10000.082

where the argument probs holds the probabilities corresponding to the lower and upper ends
of the probabilistically symmetric 95 % coverage interval.

This way of coding an implementation of the Monte Carlo method would work in a large num-
ber of computer languages, including Python, MATLAB, Fortran, C, C++ and Pascal. While the
above code in R does what is intended, the same task can be performed with greater effective-
ness in R, exploiting the fact that R is very efficient in working with vectors and matrices [56].
Computational efficiency is especially important with more complex models and larger numbers
of Monte Carlo trials, as it can greatly reduce the required computing time. The following code
implements the same simulation, using vectors and matrices where possible:

# implementation of the procedure of GUM-S1 with fixed M
prob = 0.95
M = 10000 * ceiling(1.0/(1.0-prob)) # GUM-S1 7.2.2
m.std = rnorm(M,10000.005,0.0225)
dm.d = runif(M,-0.015,+0.015)
dm.c = runif(M,-0.010,+0.010)
dm.B = runif(M,-0.010,+0.010)
m.data = matrix(rep(c(0.01,0.03,0.02),M), nrow = M, byrow = TRUE)
m.data = m.data + matrix(rnorm(3*M,0,0.025),nrow = M,byrow = TRUE)
m.diff = apply(m.data,1,mean)
m.x = mass.x(m.std,dm.d,m.diff,dm.c,dm.B)

Now the variables m.std, dm.d, dm.c, and dm.B are vectors holding all M values for the input
quantities. The data from comparing the weights is summarised in a matrix called m.data of M
rows and 3 columns. The matrix is constructed by adding the means (0.01, 0.03, and 0.02) to
the simulated data which have been generated using the normal distribution with mean 0 and
standard deviation 0.025. The mass differences are computed by calculating the row means and
storing these in m.diff using the R function apply. Note also that the measurement model can
be called with vectors rather than scalars as arguments (last line of the code); in this case also
m.x is a vector of length M .

The second code runs in less than half the time of the first implementation. For this simple
example, the difference is a matter of a few seconds, but for more complex models the difference
in speed will be of more practical significance. Especially the steps that are repeated often should
be carefully thought about. Another issue is memory use. The second implementation consumes
appreciably more memory (for it holds all generated values for the input quantities) than the
first (which only holds the last value for each of the input quantities).

Examples of evaluating measurement uncertainty First edition



Chapter 3. Using the Monte Carlo method 17

9999.90 9999.95 10000.00 10000.05 10000.10 10000.15

0
2

4
6

8
10

12
14

m.x (g)

de
ns

ity

Figure 3.4: Probability density function of the output quantity m.x

The second code provides the following output for the mean, standard deviation (standard un-
certainty) and the coverage interval of mX:

print(mean(m.x),digits = 9)

## [1] 10000.0249

print(sd(m.x),digits = 2)

## [1] 0.029

quantile(m.x,probs = c(0.025,0.975))

## 2.5% 97.5%
## 9999.967 10000.082

The output probability density function is shown in figure 3.4. The form of the probability density
function resembles that of a normal distribution with mean 10 000.025 g and standard deviation
0.029 g. The following code computes the expanded uncertainty by taking the half-width of
the 95 % coverage interval and the coverage factor by dividing the expanded uncertainty by the
standard uncertainty:

m.x.Unc = (quantile(m.x,probs = 0.975) - quantile(m.x,probs = 0.025))/2.0
m.x.k = m.x.Unc/sd(m.x)

The expanded uncertainty is 0.057 g and the coverage factor is 1.96. This coverage factor is that
of a 95 % coverage interval of the normal distribution. The coverage factor differs from that used
in EA 4/02 which uses k = 2 for obtaining (at least) 95 % coverage probability. The difference
is readily explained, as the dominating uncertainty contributions are modelled using the normal
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distribution, and the sum of two normal distributions is also normally distributed (see also the
measurement model, equation (3.1)). That the output quantity has an (approximately) normal
distribution is reflected in the coverage factor obtained from the Monte Carlo method.

Now all results are obtained that commonly appear on a calibration certificate (as well as in many
test reports), as described in ISO/IEC 17025 [7]:

– the measured value (= value of the output quantity)

– the expanded uncertainty

– the coverage factor

In this case, one might also be willing to state that the output probability density function is
a normal distribution. Whereas in this case such a statement can be made, in most cases the
output probability density function cannot directly be approximated by a well-known analytic
probability density function. Comparison of the three results listed above with those from the LPU
would imply that for comparable data LPU would be fit for purpose in a subsequent uncertainty
evaluation. In a subsequent uncertainty evaluation, with mX as one of the input quantities, the
above information suffices to apply the law of propagation of uncertainty, say [2].

3.7 Law of propagation of uncertainty

The law of propagation of uncertainty (LPU) is the most widely used mechanism for propagating
uncertainty. Whereas with the Monte Carlo method the lack of computing and programming
skills can form a bottleneck, with the LPU it is often the calculation of the sensitivity coefficients,
i.e., the partial derivatives of the output quantity with respect to the input quantities, that pro-
vides a difficulty. Most guidance documents, such as the GUM [2], GUM-S2 [4] and EA 4/02 [57]
direct their readers to analytic differentiation of the measurement model to obtain the expres-
sions for calculating the sensitivity coefficients. Whilst this guidance is fully appropriate, it is
not always practicable, for many people have lost their skills in differentiation. The fact that
there are tables with derivatives of common functions (such as [58, 59]) is barely mentioned in
such documents. Numerical approximation of the sensitivity coefficients [40, 41] is a very good
alternative, provided that it is done properly. In this section, we show how to use numerical
differentiation and the law of propagation of uncertainty to perform the uncertainty evaluation
of the mass example of EA 4/02 [57].

The R package numDeriv provides the function grad (from gradient) that returns from a function
a generally good approximation, using Richardson extrapolation [60], of the partial derivatives of
the input variables. The function returns a vector holding the values of these partial derivatives.
The function passed to grad should have only one argument, namely a vector holding all input
variables. Hence, the measurement model needs to be reformulated as follows:

# measurement function
mass2.x <- function(x) {

m.std = x[1]; dm.d = x[2];
diff = x[3]; dm.c = x[4]; dm.B = x[5]
m.std + dm.d + diff + dm.c + dm.B

}
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where x denotes the vector with input variables. For clarity and convenience, in the function body
of mass2.x the same symbols have been used as in mass.x shown previously. The convenience
extends to easier debugging the code as necessary. The penultimate line calculates the result of
the function as the sum of the five input variables, just as in the case of the Monte Carlo method.

The uncertainty evaluation itself can be coded as follows:

require(numDeriv)
m.std = 10000.005; dm.d = 0.0; diff = mean(c(0.01,0.03,0.02))
dm.c = 0.0; dm.B = 0.0;
sens = grad(func=mass2.x,x=c(m.std,dm.d,diff,dm.c,dm.B))
m.std.u = 0.0225
dm.d.u = 0.015/sqrt(3); dm.c.u = 0.010/sqrt(3)
diff.u = 0.025/sqrt(3); dm.B.u = 0.010/sqrt(3)
m.x = mass2.x(c(m.std,dm.d,diff,dm.c,dm.B))
m.x.unc = sqrt(sum(sens^2*c(m.std.u,dm.d.u,diff.u,dm.c.u,dm.B.u)^2))

The first line loads the package numDeriv (which needs to be installed in RStudio. The next
two lines define the values of the input quantities. The vector sens on the fourth line holds
the sensitivity coefficients returned by calling grad. The subsequent three lines calculate the
standard uncertainties associated with the five input quantities. The penultimate line calculates
the estimate of the output quantity m.x and the last line its associated standard uncertainty
m.x.unc. Again, this last line shows the flexibility of R working with vectors.

The mass of the calibrated weight is 10 000.025 g with standard uncertainty 0.029 g. Using a
coverage factor k = 2, the expanded uncertainty becomes 0.059 g. These results reproduce those
in example S.2 of EA 4/02 to the number of decimal digits given.

The values of the sensitivity coefficients are

## [1] 1 1 1 1 1

and are identical to those given in EA 4/02 [57]. The code is also valid for measurement models
with non-trivial sensitivity coefficients [41].

The approach described also works with correlated input variables. In that case, the calculation
of the standard uncertainty associated with mX is performed as follows:

D = diag(c(m.std.u,dm.d.u,diff.u,dm.c.u,dm.B.u))
CM = D %*% D
tmp = t(sens) %*% CM %*% sens
m.x.unc = sqrt(tmp[1,1])

The first two lines form the covariance matrix, diagonal in this case, associated with the five input
quantities. (These are only needed to create the covariance matrix; if there were correlations
between the five input variables, the code for creating it would have to be adapted accordingly.)
The actual implementation of the LPU for correlated input variables is given in the last two lines of
the previous code. By vector/matrix multiplication (see also the law of propagation of uncertainty
in GUM-S2 [4]) a covariance matrix of dimension 1 × 1 associated with the output quantity is
returned (tmp). The last line takes the square root of the only element in this matrix (holding the
variance of mX) to obtain the standard uncertainty associated with mX. This standard uncertainty
is 0.029 g.
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Chapter 4

Bayesian inference in R and RStan

A.M.H. van der Veen

4.1 Preamble

In this tutorial, we revisit the well-known example of an uncertainty evaluation of the calibration
of a 10 kg weight, published in the guidance document EA 4/02 from European co-operation for
Accreditation (EA) to illustrate how a Bayesian evaluation of measurement uncertainty can be set
up using R [11] and rstan [61], including the use of Markov Chain Monte Carlo (MCMC). The
example shows how type A and type B methods of evaluating standard uncertainty are coded,
how the calculations are performed and how from the posterior of the measurand the value,
standard uncertainty, coverage interval and coverage factor can be determined.

4.2 Introduction

The mass example in EA 4/02 [57]was introduced in chapter 3 and this Bayesian inference builds
forth on the example as already described. The Bayesian evaluation using MCMC highlights
that the type B evaluation of standard uncertainty in such a Bayesian setting is very similar to
the same evaluation using the Monte Carlo method of GUM Supplement 1 (GUM-S1) [3]. The
greatest difference is usually in those uncertainty components that are evaluated using type A
methods. There is no technical reason for using MCMC in this instance, for the same result
(measured value and expanded uncertainty) can be obtained by much simpler means (i.e., the
law of propagation of uncertainty [2] or the Monte Carlo method of GUM Supplement 1 (GUM-
S1) [3]. For this reason, it is an excellent case for assessing whether an implementation of
the MCMC provides valid results. In this revisit of the mass example, the type A evaluation
of standard uncertainty [2, 57] of the mass differences is fairly straightforward, as the original
example assumes a known standard deviation. This known standard deviation can be viewed as
a kind of “prior knowledge” , which justifies a Bayesian treatment (the treatment in EA 4/02 is
in this respect Bayesian, for it utilises the information about the repeatability standard deviation
of the weighings.

The calculations in this tutorial have been performed using R, an environment for statistical com-
putation [11], and the package rstan [62] that enables writing Bayesian models in a straight-
forward manner. This environment and the use of RStan for Bayesian inference have been
introduced previously [63,64].
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From the posterior probability density function obtained through a Bayesian inference, as has
been and will be shown, all essential information can be retrieved, including the measured value,
its associated standard uncertainty, and a 95 % coverage interval, just as in the case of the Monte
Carlo method of GUM-S1 [3]. It is worth noting that the posterior is not necessarily symmetric, so
that obtaining an expanded uncertainty can turn out to be impossible. The expanded uncertainty
is the half-width of a symmetric coverage interval [2,57] and obviously only makes sense if that
interval is (approximately) symmetric.

4.3 Bayesian evaluation of the mass example of EA 4/02

The re-evaluation of the mass example from EA 4/02 is performed by mimicking the assumptions
made in EA 4/02 [57] as closely as possible. The example describes for all type B evaluations
the probability density functions used (rectangular and normal distributions). For the repeated
observations of the mass difference, the normal distribution is used with a known standard devia-
tion, which is consistent with the original evaluation as presented in EA 4/02. The measurement
model is given in equation (3.1). For Bayesian inference, probability density functions need to
be assigned to each of the five input quantities. This aspect of the evaluation is similar to the use
of the Monte Carlo method of GUM-S1 [3] (see also chapter 3.

The conventional mass of the standard is modelled using a normal distribution with mean 5 mg
(the deviation from the nominal value of 10 kg) and standard deviation 22.5 mg. The subtrac-
tion of the nominal value is necessary to obtain stable output in the Markov Chain Monte Carlo
(MCMC) calculation; it does not in any way change the outcome of the inference, apart from
that we have redefined the measurand to be the departure from the nominal mass, rather than
the mass of the 10 kg weight itself. The measurement model could be written as

∆mX = ∆mS+ δdD + δm+ δmC + δB (4.1)

where ∆mX denotes the departure from its nominal mass for the weight being calibrated, and
∆mS the departure from its nominal mass for the standard weight. The fact that the outcome
of the MCMC calculation is sensitive to the choice of variables (‘parametrisation’) in the model
has been discussed previously already [63,64]. This sensitivity is one of the hurdles to be taken
when performing iterative calculations (as MCMC is [65]).

In Stan code, the model of the mass calibration reads as

data {
int<lower=1> N;
vector[N] diffs;

}
parameters{

real m_s;
real<lower=-15,upper=15> dm_d;
real diff;
real<lower=-10,upper=10> dm_c;
real<lower=-10,upper=10> dm_B;

}
model {

m_s ~ normal(5,22.5);
diff ~ normal(0,500.0); // weak prior
diffs ~ normal(diff,25.0);

}
generated quantities{
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real m_x;
m_x = m_s + dm_d + diff + dm_c + dm_B;

}

In the data block, a vector of length N is declared called diffs which holds the recorded mass
differences from comparing the masses of the standard and the weight being calibrated. The
input quantities evaluated using type B methods for evaluating standard uncertainty [2] are
declared as model parameters in the parameters block. By default, Stan assigns these variables
a rectangular distribution over their domain of validity [62]. If no constraints on the variable are
specified, the domain is (−∞,+∞) and thus the assigned prior is improper (i.e. not integrating
to one over its domain [65]) . This default can be overridden by specifying another prior in the
model block.

The first variable not having assigned a rectangular distribution, m_s, denotes ∆ms the departure
of its nominal mass of the standard weight (see equation (4.1)). In the model block, it is assigned
a normal distribution with mean 5 mg and standard deviation 22.5 mg. In Bayesian models, this
way of coding a probability distribution would be the same as assigning a prior to the parameter
m_s . It is not combined with data, so the probability distribution of this parameter does not
change as part of the Bayesian inference. Hence, it is sometimes argued that the way in which
the GUM [2] deals with type B evaluations of standard uncertainty is ‘weakly Bayesian’ [66] by
nature. The ‘weakly’ aspect lies in the fact that only an informative prior is assigned , and that it is
not combined with (new) measurement data, as no data are generated for this parameter during
the measurement. The same applies to the other model parameters in equation (4.1) evaluated
using type B methods.

The corrections for drift (dm_d), eccentricity and magnetic effects (dm_c), and buoyancy (dm_B)
are all declared with upper and lower limits (±15 mg for drift, and ±10 mg for the other two).
As Stan assigns these a rectangular distribution taking into account the limits, there is no need
to assign these three variables explicitly a rectangular distribution in the model block. Actually,
there are computational advantages to write the model as shown; these advantages are well
covered in the description of the Stan language [61,62].

The mass difference between the weight being calibrated and the standard weight is called diff
in the model. It is assigned a weakly informative prior in the form of a normal distribution (that
is implied by the example as well) with zero mean and a large standard deviation. This prior
does not do more than saying that we expect, before observing the data, that the mass difference
between the two weights will be close to zero, given a large standard deviation (500 mg in this
case, much larger than any of the uncertainties considered). If the OIML class of a weight is
known, the maximum departure from the nominal mass can be presumed to be known, unless
the weight is out-of-specification. The specification of the OIML class can be used to elicit a
value for the standard deviation of the prior. In the last line of the model block, the data (held in
diffs) is used to update the probability distribution of diff, given a fixed standard deviation of
25 mg. The latter is also given in the example in EA 4/02 [57]. This is the only part of the model
where Bayes’ rule is applied, and also the only part that differs in nature from the evaluation in
the original example, where a frequentist method is used (just as for other type A methods in the
GUM [2,63]).

The measurement model finally appears in the generated quantities block. The mass (dif-
ference from the nominal mass) of the weight being calibrated is declared as m_x and its value
is calculated as described in equation (4.1). Note that only m_x needs to be specified using the
measurement model. When evaluating the model, Stan will compute a value for m_x during each
cycle of the MCMC , thus providing a sample of its posterior.
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When running the MCMC, a number of iterations are necessary to enable the sampler to configure
itself. This is called the “warmup phase”. Furthermore, several series of samples (“chains”) are
generated, as one of the criteria for convergence is that the ratio of the between- and within-
chain variances is close to one [65]. More details have been given elsewhere [63, 64]. Running
the model with 21 000 iterations and a warmup of 1000 iterations, using 4 chains yields the
following output:

## Inference for Stan model: 091dba697d92e3c49746850cfc395085.
## 4 chains, each with iter=21000; warmup=1000; thin=1;
## post-warmup draws per chain=20000, total post-warmup draws=80000.
##
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## m_s 4.93 0.07 22.43 -39.20 49.10 94501 1
## dm_d 0.03 0.03 8.66 -14.25 14.26 99537 1
## diff 20.01 0.05 14.42 -8.29 48.20 93814 1
## dm_c -0.01 0.02 5.77 -9.49 9.48 104833 1
## dm_B -0.02 0.02 5.77 -9.51 9.49 120707 1
## m_x 24.95 0.09 29.19 -32.23 82.20 97247 1
## lp__ 2.24 0.01 1.77 -2.16 4.59 31166 1
##
## Samples were drawn using NUTS(diag_e) at Fri Mar 29 19:17:03 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

In the output, the first column lists the parameters. lp__ denotes the log of the joint posterior.
The second column, labelled ‘mean’ provides the estimates of the parameters. The next column
gives the standard error of the mean due to the MCMC calculation. The standard error generally
decreases as the number of iterations increases. It should be small enough to produce sufficiently
accurate results. A simple (yet not always sufficient way) is to repeat the calculation and to see
how well the results agree. In the column ‘sd’, the standard deviation (= standard uncertainty)
of the parameters is given. The following two columns contain the lower and upper limits of
the probabilistically-symmetric 95 % coverage interval. n_eff provides a crude estimate of the
effective number of samples [65]. The final column, labelled Rhat, gives the ratio of the between-
chain and within-chain variance. For convergence, it should be close to one [63,65].

A more thorough way of looking at the results of the MCMC calculation is to inspect the traceplots
of the parameters. These show the parameter values for each chain and each iteration in the
calculation. There is in this example only one variable that warrants looking at its traceplot
(diff), which is shown in figure 4.1.

The traceplot shows good convergence: the parameter values fluctuate around a mean value and
there are no meaningful differences between the chains.

The value of the correction due to eccentricity and magnetic effects (dm_c) is −0.0 mg with stan-
dard uncertainty 5.8 mg. Both values are very close to the values obtained using the rectangular
distribution: 0.0 mg and 10 mg/

p
3 ≈ 5.8 mg, respectively. The same can be said about the cor-

rection due to air buoyancy (dm_B), which has the value 0 mg with standard uncertainty 5.8 mg;
the values that are obtained using the rectangular distribution directly are the same as for the
correction due to eccentricity and magnetic effects. For the third correction, that due to drift
(dm_d) the expected standard deviation is 15 mg/

p
3 ≈ 8.7mg, and the mean is zero [57]; the

results obtained from the MCMC are 8.7 mg and 0 mg respectively.
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Figure 4.1: Trace plot of the model parameter diff

The mass difference of the standard (∆ms) is evaluated as 4.9 mg with standard uncertainty
22 mg; the ones given in the original example are 5 mg and 22.5 mg respectively. The calculated
mass difference is evaluated as 20 mg with standard uncertainty 14 mg; the ones given in the
original example are 20 mg and 14.4 mg respectively. In both cases, the agreement is excellent.

The mass difference between the weights is returned as m_x; its value is 24.9 mg and its standard
uncertainty is 29 mg. We can see that the value and standard deviation are very close to the ones
given in the original example (25 mg and 29.3 mg respectively [57]).

The final hurdle in this example is the reproduction of the expanded uncertainty, which is stated
to be 59 mg [57]. The MCMC calculation provides for all parameters the 95 % coverage intervals
(see the output discussed previously). Before attempting to compute the expanded uncertainty
as the half-width of an approximately symmetric coverage interval, the shape of the posterior of
∆mx should be assessed for symmetry. This posterior is shown in figure 4.2.

From figure 4.2, it can be seen that the posterior of ∆mx is fairly symmetric . One way to compute
the expanded uncertainty would be to compute the difference between the mean (= measured
value) and the lower end of the 95 % coverage interval and the difference between the upper end
of the said interval and the mean, and to use whichever is the greater. The R code to perform
the calculation takes the form

Lower = quantile(fitout$m_x,probs = 0.025)
Upper = quantile(fitout$m_x,probs = 0.975)
m_x = mean(fitout$m_x)
U.val = max(Upper-m_x,m_x-Lower)
U.k = U.val/sd(fitout$m_x)

where the variable fitout holds the extracted samples of the MCMC calculation. The expanded
uncertainty thus obtained is 57 mg and the coverage factor is 1.96. The latter is obtained by
dividing the expanded uncertainty by the standard uncertainty. This coverage factor is consistent
with that for the normal distribution, which should not come as a surprise, as the two dominating
uncertainty contribution have the normal distribution (the mass of the standard and the mass
difference between the two weights) [57]. Alternatively, the expanded uncertainty could also be
computed as the half-width of the 95 % coverage interval.
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Figure 4.2: Posterior of mass difference of the weight being calibrated from its nominal mass

The reprocessing of this example in a computational environment for Bayesian inference high-
lights that

1. type B evaluations of standard uncertainty can be viewed as assigning only a prior distribu-
tion to the parameter concerned; as there is no ‘fresh’ data, the distribution is not updated
using Bayes’ rule;

2. the normal distribution naturally arises under the assumption that the standard deviation
is known (if the latter were assumed to be completely unknown, the t distribution arises
[63,65,67]);

3. the propagation of distributions is performed in a similar fashion as in the Monte Carlo
method of GUM-S1 (but the Monte Carlo methods are different! [3,65]).

A concern for those favouring classical statistical methods could be the weakly informative prior
assigned to the variable diff. There are different ways to assess the influence of assigning this
prior. One of the ways would be to replace it by a reference prior, which in this case would be a
rectangular distribution over the interval (−∞,+∞) [65]. The corresponding model is obtained
by removing the weakly informative prior from the model block and takes the form

data {
int<lower=1> N;
vector[N] diffs;

}
parameters{

real m_s;
real<lower=-15,upper=15> dm_d;
real diff;
real<lower=-10,upper=10> dm_c;
real<lower=-10,upper=10> dm_B;
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}
model {

m_s ~ normal(5,22.5);
diffs ~ normal(diff,25.0);

}
generated quantities{

real m_x;
m_x = m_s + dm_d + diff + dm_c + dm_B;

}

Fitting the amended model with the same number of chains and chain lengths yields

## Inference for Stan model: d370744d73ed5069a780210ed9d07c6e.
## 4 chains, each with iter=21000; warmup=1000; thin=1;
## post-warmup draws per chain=20000, total post-warmup draws=80000.
##
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## m_s 5.04 0.08 22.54 -39.23 49.06 84178 1
## dm_d -0.01 0.03 8.65 -14.26 14.25 88047 1
## diff 20.09 0.05 14.39 -8.23 48.36 85716 1
## dm_c -0.03 0.02 5.78 -9.51 9.51 102528 1
## dm_B -0.01 0.02 5.75 -9.49 9.49 99109 1
## m_x 25.09 0.10 29.30 -32.43 82.70 86586 1
## lp__ 2.24 0.01 1.77 -2.08 4.60 31782 1
##
## Samples were drawn using NUTS(diag_e) at Fri Mar 29 19:17:19 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

Comparing the results of the MCMC with those obtained previously shows that they are very close,
which underlines the ‘weakly-informative’ behaviour of the assigned prior to diff in the original
model. Another way to assess the influence of the assigned prior would be to choose other values
for the standard deviation (now 500 mg). A larger standard deviation would cause a reduction
in the influence of the prior (it becomes less informative); a smaller standard deviation would
cause it to become more influential [63, 64]. It is left to the reader to confirm that the chosen
prior indeed behaves as a weakly-informative prior.

Finally, it is worth noting that for ∆mx , the departure of its nominal mass of the weight being
calibrated, no prior is assigned. Its probability distribution is obtained in a calculation from the
other parameters using the measurement model (4.1). This part of the model behaves in the
same way as it would do when using the Monte Carlo method of GUM-S1 [2].
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Chapter 5

Understanding and treating correlated
quantities in measurement uncertainty
evaluation

M.G. Cox, A.M.H. van der Veen

5.1 Preamble

The evaluation of covariances, as required by the GUM (Guide to the expression of uncertainty
in measurement) [2, clause 8, step 4] is often omitted in practice when evaluating measurement
uncertainty for a variety of reasons. In many instances, this habit has the consequence that it
produces an incorrect value for the resulting uncertainty, possibly leading to wrong decisions
based on the measurement result. In fact, not evaluating a covariance is equivalent to setting its
value to zero, which should be justified.

Where for many experimenters the evaluation of measurement uncertainty using the law of prop-
agation of uncertainty (LPU) of the GUM [2] or the Monte Carlo method (MCM) of GUM Sup-
plement 1 (GUM-S1) [3] is already challenging, understanding how correlations between input
variables arises and handling it is even more so. In this primer, we provide an introduction to the
subject, illustrated by several examples. The purpose of these examples is to show the versatility
of the GUM suite of documents [2–5] in dealing with this aspect of evaluating measurement un-
certainty. In some of these examples, we also evaluate the consequences of ignoring correlations.

The GUM [2] provides two important formulae for evaluating and working with covariances due
to common input effects. The first equation to be mentioned is GUM formula (13), which is the
law of propagation of uncertainty for correlated input quantities. This formula is lesser known
than its counterpart for independent variables [2, equation (10)], but it is the preferred choice
when using a linear or linearized measurement model with interdependent input quantities. The
second formula to be mentioned is given in [2, formula (F.1)], which provides the expression
for the calculation of the covariance between quantities X i and X j , depending on a set of input
quantities Qℓ with ℓ= 1 . . . L:

u(X i , X j) =
L
∑

ℓ=1

∂ X i

∂Qℓ

∂ X j

∂Qℓ
u2(Qℓ), (5.1)
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where u(x) denotes the standard uncertainty associated with x , the partial derivatives are eval-
uated at the estimates of the X i and only those terms contribute for which ∂ X i/∂Qℓ ̸= 0 and
∂ X j/∂Qℓ ̸= 0, which implies that only those quantities Qℓ contribute on which both X i and X j
depend [2].

When using the Monte Carlo method of GUM-S1 or GUM Supplement 2 (GUM-S2) [3, 4], care
is automatically taken of dependencies between variables in the measurement model. If the
input quantities are dependent, then samples should be drawn from a joint probability density
function [4, clause 7.3] [3, clause 6.4]. The method of GUM-S2 provides a sample of the joint
output probability density function for the output quantities forming the measurand, and from
this sample the covariances or correlation coefficients can be readily obtained [4, clause 7.6].

5.2 Covariance and correlation

Covariance and correlation are two measures for the dependence between (estimates of) quan-
tities. A covariance is expressed in the units of the quantities involved, whereas the correlation
coefficient is dimensionless. The correlation coefficient, which always lies between −1 and 1, is
defined as [2, clause 5.2.2]

r(X i , X j) =
u(X i , X j)

u(X i)u(X j)
, (5.2)

where X i and X j are the quantities involved and u(X i , X j) the covariance between them. From
expression (5.2), if the covariance is zero, the correlation coefficient is also zero. Strong correla-
tion between X i and X j is indicated by |r| ≈ 1. If r > 0, then X i and X j are positively correlated,
that is, an increase in X i leads to an increase in X j . Similarly, if the variables are negatively cor-
related, an increase in X i leads to a decrease in X j . In situations where it is difficult to compute
a covariance, it is often simpler to estimate a correlation coefficient. With expression (5.2), the
corresponding covariance u(X i , X j) can then be obtained.

5.3 Correlation arising from Type A evaluation

When simultaneous observations are repeatedly made of several input quantities, it is likely that
there are correlations to be associated with the estimates of these quantities.

EXAMPLE Simultaneous observations of voltage, current and phase

A treatment of simultaneous observations is given in GUM-S2 [4, clause 6.2]where, from a circuit element,
the following quantities are concurrently measured six times:

V : amplitude of a sinusoidally-alternating potential difference across the terminals,
I : amplitude of alternating current passing through it,
φ: phase angle of the alternating potential difference relative to the alternating current.

Any systematic error present in V , I and φ is considered negligible. The n = 6 indications are given in
table 5.1.

Estimates of V , I and φ are the averages V̄ , Ī and φ̄ of the observations. The associated standard uncer-
tainties u(V̄ ), u( Ī) and u(φ̄) are calculated in the usual way, for example,

u2(V̄ ) =
1

n(n− 1)

n
∑

j=1

(Vj − V̄ )2 =
1

30

6
∑

j=1

(Vj − V̄ )2
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Table 5.1: Indications for voltage, current and phase angle of a circuit element [4]

Set i Vi/V Ii/mA φi/rad

1 5.007 19.663 1.0456
2 4.994 19.639 1.0438
3 5.005 19.640 1.0468
4 4.990 19.685 1.0428
5 4.999 19.678 1.0433
6 4.999 19.661 1.0445

and covariances evaluated using GUM formula (17) [2, clause 5.2.3], for example,

u(V̄ , Ī) =
1

n(n− 1)

n
∑

j=1

(Vj − V̄ )(I j − Ī) =
1

30

6
∑

j=1

(Vj − V̄ )(I j − Ī).

From these standard uncertainties and covariances, the correlation coefficients can be computed using
formula (5.2). The estimates and standard uncertainties are summarized in table 5.2. The information
concerning the correlations is summarized in table 5.3. In this matrix, the off-diagonal elements contain
the value of the correlation coefficient for the corresponding pair of variables. (The correlation coefficient
between a variable and itself is unity by default. Furthermore, since r(X1, X2) = r(X2, X1), the elements
below the main diagonal in table 5.3 are not shown, as they are the mirror image of the upper triangle of
the matrix.)

Table 5.2: Estimates of V , I and φ and associated standard uncertainties [4]

V/V I/mA φ/rad

Estimate 4.9990 19.6610 1.04446
Std. unc. 0.0026 0.0077 0.00061

Table 5.3: Correlation coefficients between voltage, current and phase angle of a circuit element

V I φ

V 1 −0.355 0.858
I 1 −0.645
φ 1

This approach also finds application in the post-processing of data obtained using the Monte
Carlo method from GUM-S1 and GUM-S2 [3, 4] to obtain, for example, standard uncertainties,
covariances, correlation coefficients or a covariance matrix.
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5.4 Correlation relating to common input effects

Correlation relating to common input effects arises frequently in metrology. Such an effect is
due, for instance, to the same measuring system, physical measurement standard or reference
datum. Consider a simple model for two measurands:

X1 =Q0 +Q1,

X2 =Q0 +Q2,

where Q0, Q1 and Q2 denote the input quantities and X1 and X2 the output quantities. Fur-
ther assume that Q0,Q1,Q2 are mutually independent. Using equations (F.1) and (F.2) from the
GUM [2],

u2(X1) = u2(Q0) + u2(Q1),

u2(X2) = u2(Q0) + u2(Q2), (5.3)

u(X1, X2) = u2(Q0).

EXAMPLE Calibration of a liquid-in-glass thermometer

Two platinum resistance thermometers (PRTs) are used to calibrate a liquid-in-glass thermometer. The
measurement model for the temperature, using the two PRTs takes the form

T =
1
2
(T1 + T2),

where T1 and T2 denote the quantities representing temperature obtained using the two PRTs, T denotes
the aggregated temperature and u(T ) is given by using the law of propagation of uncertainty (LPU) of the
GUM [2]:

u2(T ) =
1
4
[u2(T1) + u2(T2) + 2u(T1, T2)]. (5.4)

Uncertainty budgets for the two PRTs are given in table 5.4. The reference thermometer and the unifor-
mity of the temperature in the bath are considered to be identical for the two PRTs, hence giving rise to
correlation.

Table 5.4: Uncertainty budgets for two PRTs

Source Standard uncertainty contribution/K
PRT 1 PRT 2

Reference thermometer to calibrate PRTs 0.002 50 0.00250
Uniformity of thermo-regulated bath 0.000 98 0.00098
Drift 0.000 06 0.00006
Repeatability 0.000 13 0.00004
Adjustment from calibration curve 0.000 39 0.00060
Stability 0.001 62 0.00162

Combined standard uncertainty 0.003 16 0.00319

Table 5.4 gives the main sources of uncertainty: the first two are systematic effects (the same for each PRT).
All other effects are different for the two PRTs. Application of formula (5.4) provides u(T ) = 0.002 94K,
whereas without the covariance term 2u(T1, T2), u(T ) = 0.00225 K. The former standard uncertainty
is 30 % greater than the latter. In this case, ignoring correlation gives an optimistically small value for
required standard uncertainty. Whether this difference is seen as significant depends on the context and
the subsequent use of the quantity T .
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An example such as that above can straightforwardly be handled using expressions of the form
(5.3). With several dependent input quantities, the application of the GUM is somewhat more
difficult, especially if the natural form of the expressions are to be used. For example, in studying
the performance of a jet engine, the measurement model has five output quantities or measur-
ands, Y1, . . . , Y5 and involves a chain of calculation steps (see example E6.1). In the first step, Y1
is specified in terms of (some of) the input quantities. In the second step, Y2 is specified in terms
of Y1 and the input quantities, and so on. Such a situation is hard to handle for practitioners
without the necessary skills in partial differentiation. Ways to treat this example that avoid the
need for these skills are considered in example E6.1.

5.5 Identifying joint effects

In section 5.4, an example was shown where two PRTs were used to calibrate a liquid-in-glass
thermometer. The use of multiple measurement standards occurs much more widely, and the im-
portance of evaluating possible correlations is not always fully recognised. In this section, issues
arising with the use of multiple standards are further explored, showing how the magnitude of
the correlation can be evaluated.

In many areas of calibration, multiple measurement standards are used. For instance, two
weights are used jointly to calibrate a balance or two resistors are used in an electrical circuit.
Often, these weights or resistors are calibrated by the same laboratory. Calibration laboratories
typically use a specific measurement standard for a particular calibration.

EXAMPLE Weights calibrated against the same measurement standard

Two 10 kg weights are submitted to the same calibration laboratory and calibrated against the same mea-
surement standard. Consequently, the calibration results will be correlated. If in a subsequent calibration
these two weights are used and their total mass needs to be computed, a basic measurement model takes
the form

mstds = m1 +m2, (5.5)

where mstds denotes the mass of the combined weight, and m1 and m2 the masses of the respective weights.
Using the variant of LPU for correlated variables (see equation (13) in the GUM [2]), the variance associ-
ated with mstds can be expressed as

u2(mstds) = u2(m1) + u2(m2) + 2u(m1, m2), (5.6)

where u(m1, m2) denotes the covariance between m1 and m2. The evaluation of this covariance requires
knowledge about the uncertainty budgets for m1 and m2. In the simplest case, the calibration of the two
weights takes place by comparison with the same standard with mass mS. In that case, the covariance
between m1 and m2 can be computed as

u(m1, m2) = u2(mS),

where mS denotes the mass of the standard used in the calibration of both weights. When
u(m1) = u(m2) = u(mS), u(mstds) =

p
2u(mS) would be obtained under the assumption that m1 and m2

are independent. If they are dependent, u(mstds) = 2u(mS) is obtained using equation (5.6). These results
are markedly different. The impact on the uncertainty in a subsequent measurement depends of course
on how dominant u(mstds) is in the uncertainty budget of the measurement involving the two weights.

Consider first the situation where detailed metrological information is available. Suppose now, follow-
ing [5], that the basic measurement model (5.5) takes the extended form [57]:

m j = mS + δmD + δm j + δmC, j + δB j , (5.7)
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where the symbols have the following meaning:
m j conventional mass of the weight being calibrated,
mS conventional mass of the standard,
δmD drift of the value of the standard since its last calibration,
δm j observed difference in mass between the unknown mass and the standard,
δmC, j correction for eccentricity and magnetic effects,
δB j correction for air buoyancy,

where the index j refers to either weight 1 or weight 2. The terms with index j are modelled as inde-
pendent for the calibration of the two weights. For the observed mass difference δm j , this assumption
is consistent with the assumption made in the example that the readings of the balance are independent
within a calibration, so it is reasonable to make the same assumption for the readings for the two calibra-
tions. Buoyancy effects depend on, for example, the density of the weights and the air density. For the
two weights being calibrated, the densities can be assumed to be independent (unless these have been
determined in the same experiment), and a similar reasoning applies to magnetic effects. The effect of
eccentricity relates to the placement of the weights on the balance, and if this placement is such that the
weight is placed in the centre of the pan, it can also be modelled as independent if the eccentric loading of
the balance is small. The conventional mass of the standard and the drift of the standard are, considering
the way that they have been modelled, the same in both calibrations, hence contributing to the covariance.
Using equation (F.1) in the GUM [2], the covariance can be expressed as

u(m1, m2) = u2(mS) + u2(δmD). (5.8)

The simple model in equation (5.6) does not permit a refinement of the treatment of correlations. The
choice is rather binary, which may be fit for purpose, but not necessarily so. For example, air buoyancy
is a quantity that can be modelled as independent if in time (and by implication, weather conditions are
sufficiently different), but is better modelled as fully dependent if the two weights had been calibrated on
the same day (sharing the same air density). Correlation in this case increases the covariance [calculated
in a similar fashion as shown in equation (5.6)].

It is not usual that the customer of a laboratory has detailed knowledge about the uncertainty bud-
get of the calibration ordered. If requested, referring to the above example, the laboratory could
provide a value for the covariance u(m1, m2) or, equivalently, the correlation coefficient r(m1, m2)
so that the customer can use that information when using the two weights together. If such in-
formation is not available, the customer could make an attempt to guess the correlation coeffi-
cient [68], and use that estimate in subsequent calculations. Estimating the value of a correlation
coefficient is often easier than the corresponding covariance since, as stated in section 5.2, the
correlation coefficient lies in the interval −1 ≤ r ≤ 1. An important aspect in the estimation is
the sign of the correlation coefficient, which can often also be determined by reasoning. In the
case of the weights, it is likely that if m1 is estimated high, m2 will also be estimated high, so the
correlation coefficient is positive (given that we know the same standard has been used for both
calibrations, we can rule out that r = 0 is plausible).

5.6 Induced correlations

Correlations can also arise due to the fact that quantities are calculated from a more fundamental
set of quantities and then subsequently used in combination with the quantities from which they
are calculated.

EXAMPLE Key comparisons

An instance of induced correlation arises in key comparisons, or more generally, in interlaboratory com-
parisons with a consensus value.
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In a key comparison, the capabilities of participating laboratories are assessed by degrees of equiva-
lence (DoEs). A DoE is defined as the difference between the measured value from a national metrology
institute (NMI) and the key comparison reference value (KCRV), together with its associated expanded
uncertainty at a 95 % probability level. In proficiency testing, a similar metric is used in comparisons
for calibration laboratories, the En-score, which is the ratio of the difference and associated expanded
uncertainty of a measured value with respect to the assigned value [69].

The KCRV is usually calculated from the measured values x1, . . . , xN from the N NMIs participating in the
key comparison, which are nominally measuring the same measurand, and u(x1), . . . , u(xN ) the reported
associated standard uncertainties. The commonest estimator of the KCRV is the weighted mean (WM),
computed for independent measured values as [70]:

xKCRV = u2(xKCRV)
N
∑

i=1

x i

u2(x i)
, u2(xKCRV) =

�

N
∑

i=1

1
u2(x i)

�−1

.

The DoE (d j , U j) for Laboratory j is

d j = x j − xKCRV, U j = ku(d j), u2(d j) = u2(x j)− u2(xKCRV),

where k denotes the coverage factor, equal to 1.96 under the assumption that the measured values are
normally distributed. Note the minus sign in the expression for u2(d j), which results from the correlation
between x j and xKCRV arising from the dependence of xKCRV on x j [70].

As a simple illustration of the effect of including (or ignoring) the correlation between the KCRV and the
measured values, consider the arithmetic mean as KCRV for N = 3 laboratories:

xKCRV =
1
3
(x1 + x2 + x3),

and suppose that the three laboratories all report a standard uncertainty of one unit. From the law of
propagation of uncertainty, it follows that

u2(xKCRV) =
1
9
[u2(x1) + u2(x2) + u2(x3)]

=
1
9
[12 + 12 + 12] =

1
3

.

Hence, u(xKCRV) = 1/
p

3, the familiar ‘root N effect’ on the standard uncertainty when computing the
average of N values under the assumption of independence. The squared standard uncertainty of the DoE
for laboratory 1 becomes

u2(d1) = u2(x1)− u2(xKCRV)

= 1−
1
3
=

2
3

.

If correlation were (completely wrongly) ignored, that is, LPU for independent quantities were applied,
the following value for the squared standard uncertainty would instead become

u2(d1) = u2(x1) + u2(xref)

= 1+
1
3
=

4
3

.

This value for the squared standard uncertainty is twice as large as the correct value. This problem is
well-known in the literature, and appropriate ways of dealing with it have been developed [70], including
the elimination of the correlation [71–73].

5.7 Missing or ignored correlation

Sometimes, correlations are missing or ignored, leading to poor decisions or logical absurdities.
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EXAMPLE pH measurement

The pH, the negative decadic logarithm (base 10) of the activity of hydrogen ion in a solution is the most
measured kind-of-quantity in chemistry. The measurement of pH often involves measuring an electrical
potential E for standard solutions and temperatures and using reference tables to convert these to pH
values. In short, the process starts with measuring the potential EX of the cell in a test solution at ‘standard
temperature’. Then, tabular entries in the reference material certificate for standard solutions S1 and S2
that ‘bracket’ test solution in terms of E are identified. These entries are then linearly interpolated to
provide pHX, the pH of the test solution.

Laboratories following the IUPAC (2002) recommendations [74] will not take correlation into consid-
eration when calculating the uncertainty associated with the measured pHX, and so might be reporting
optimistically small measurement uncertainties. Little pH literature on accounting for correlation in inter-
polated values is available, yet it is important to take the dependencies into account (for a fuller discussion,
see example E1.1).

Nevertheless, the information necessary may already be available. Certificates of buffer solutions often
give two uncertainties, one for an SI-traceable value and one, much smaller, that omits the uncertainty
associated with the Bates-Guggenheim (BG) convention [75]. The effect of the BG convention is similar (if
not largely the same) for all pH measurements, so the squared uncertainty arising from the BG convention
could be taken as an approximate covariance, implying a correlation coefficient≈ 1. For a typical case, pH
is estimated as 7.0109 with a standard uncertainty of 0.0041 assuming independence and when evaluated
with full correlation 0.0051, which matches the uncertainty in the certified values.

The logical absurdity of such a situation is now explained. Figure 5.1 shows interpolated pH values for
temperatures between those listed on the reference material certificate. The uncertainty associated with
the interpolated values is substantially smaller than those stated on the certificate. Repeating the process
(so, taking the interpolated values as reference and calculating new values for the temperatures given
on the certificate) will, with the same attitude, lead to even smaller uncertainties. Indefinite repetition
of this procedure makes it evident that uncertainties evaluated in this way are not credible. Actually,
when taking into account the correlations, a meaningful reduction of the uncertainty would not be seen.
Such a reduction would only be credible if the reference points were truly independent, so carrying more
information.

5.8 Removable and unremovable correlation

In many instances, it is possible to eliminate correlation by expressing an output quantity in terms
of a different set of (independent) input quantities. This idea also underlies equation (5.1) in the
GUM [2]. Correlation between (estimates of) quantities typically arises when these quantities
are evaluated using the same pool of data.

EXAMPLE 1 Straight-line calibration

A well-known example of removable correlation is straight-line regression, where usually the calculated
slope and intercept are correlated. If the values of the slope and intercept are used in a subsequent
calculation, it is essential that the covariance between them is taken into consideration [76,77]. Ignoring
the covariance can lead to a gross overstatement of the uncertainty (see also example E5.3). There are
also instances where the uncertainty would be understated, see example E4.3. The covariance between
slope and intercept will become zero if the data set consisting of N pairs (x i , yi) is shifted to become
(x i − x , yi), where x =

∑

i x i/N . An example illustrating this elimination is given in annex H.3 of the
GUM [2, annex H.3.5].

EXAMPLE 2 Key comparisons (once more)
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Figure 5.1: NIST certified values (filled circles, blue) and interpolated values (boxes, red) and
the associated expanded uncertainties when ignoring the correlation between the certified values

In the case of the key comparison data in the example in section 5.6, working with correlations can be
avoided by consistently working only with the original quantities x1, x2 and x3. Instead of using the
quantity xref, which is important in its own right [78], the DoE can be established by expressions that
solely depend on the mutually independent input quantities as follows. Use

d1 = x1 − xref = x1 −
1
3
(x1 + x2 + x3) =

1
3
(2x1 − x2 − x3).

Then, apply the LPU in its simplest form to give the same result:

u2(d1) =
4
9

u2(x1) +
1
9

u2(x2) +
1
9

u2(x3) =
1
9
(4+ 1+ 1) =

6
9
=

2
3

.

5.9 Multivariate measurement models

5.9.1 General

For a measurement model in which there are multiple quantities having correlations or multiple
measurement equations or both, GUM-S2 [4] presents a matrix treatment of the law of propa-
gation of uncertainty through such a model.1 This treatment is not only useful for multivariate
measurement models, but also for multi-stage measurement models (section 5.10) where it is
cumbersome or even impossible to express the measurand in a set of uncorrelated input quan-
tities. Matrix expressions for uncertainty propagation are valuable since computer systems such
as MATLAB [79], Python [80] and R [11] support working with matrices. Even mainstream

1Some of the material here is based on that guide.
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spreadsheet software contains the essential functions for implementing the law of propagation
of uncertainty for multivariate measurement models, that is, the functions for matrix multiplica-
tion and matrix transpose. Often, quite involved calculations can be coded in a few lines using
matrix calculus.

Although multivariate measurement models receive little treatment in the GUM [2], the same
underlying GUM principles may be used to propagate estimates of the input quantities and the
associated uncertainties through the measurement model to obtain estimates of the output quan-
tities and their associated uncertainties. Mathematical expressions for the evaluation of uncer-
tainty are stated using matrix-vector notation, rather than the subscripted summations given in
the GUM, because generally such expressions are more compact and more naturally implemented
within modern software packages and computer languages.

The law of propagation of uncertainty, in a more generalized form than presented in the GUM,
for multivariate measurement models is a valuable tool for propagating uncertainties. It also
caters for covariances associated with the input quantities and obtaining those associated with
the output quantities.

For the application of the law of propagation of uncertainty, the same information concerning
the input quantities as for the univariate measurement model treated in the GUM is used:

5.9.2 Explicit multivariate measurement models

1. An explicit multivariate measurement model specifying the relationship between an output
quantity Y = (Y1, . . . , Ym)⊤ and an input quantity X = (X1, . . . , XN )⊤, takes the form

Y = f (X), f = ( f1, . . . , fm)
⊤,

where f denotes the multivariate measurement function.

2. An estimate x = (x1, . . . , xN )⊤ of X ;

3. The covariance matrix

V x =





u(x1, x1) · · · u(x1, xN )
...

. . .
...

u(xN , x1) · · · u(xm, xN )



,

of dimension N × N , associated with x containing the covariances u(x i , x j), i = 1, . . . , N ,
j = 1, . . . , N , associated with x i and x j . u(x j , x j) = u2(x j) denotes the variance (squared
standard uncertainty) associated with x j .

Given an estimate x of X , an estimate of Y is f (x ). A generic formula for propagating V x
through f (X) is [4]

V y = CV x C⊤, (5.9)

where V y is the output covariance matrix of dimension m×m associated with y and

C =













∂ f1
∂ X1

· · ·
∂ f1
∂ XN

...
. . .

...
∂ fm

∂ X1
· · ·

∂ fm

∂ XN













is the sensitivity matrix of dimension m× N evaluated at X = x [81, page 29].
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EXAMPLE 1 Resistance and reactance of a circuit element once more

Continuing the example in section 5.3, a bivariate measurement model for R and X in terms of V , I and
φ is

R= f1(V, I ,φ) =
V
I

cosφ, X = f2(V, I ,φ) =
V
I

sinφ. (5.10)

Using the above general notation, N = 3, m= 2, X ≡ (V, I ,φ)⊤ and Y ≡ (R, X )⊤.

An estimate y ≡ (bR, bX )⊤ of resistance R and reactance X is obtained by evaluating expressions (5.10) at
an estimate x ≡ (bV ,bI , Òφ)⊤ of the input quantity X .

The covariance matrix Vy of dimension 2×2 associated with y is given by formula (5.9), where Cx is the
sensitivity matrix of dimension 2× 3 given by evaluating











∂ f1

∂ V
∂ f1

∂ I
∂ f1

∂ φ

∂ f2

∂ V
∂ f2

∂ I
∂ f2

∂ φ











=









cosφ
I

−
V cosφ

I2
−

V sinφ
I

sinφ
I

−
V sinφ

I2

V cosφ
I









at X = x , and Vx is the covariance matrix of dimension 3× 3 associated with x .

EXAMPLE 2 Calibration of mass standards

This example constitutes an instance of a multi-stage model (section 5.10).

A set of q mass standards of unknown mass values m =
�

m1, . . . , mq

�⊤
is calibrated by comparison

with a reference kilogram, using a mass comparator, a sensitivity weight for determining the compara-
tor sensitivity, and a number of ancillary instruments such as a thermometer, a barometer and a hy-
grometer for determining the correction due to air buoyancy. The reference kilogram and the sensi-
tivity weight have masses mR and mS, respectively. The calibration is carried out by performing, ac-
cording to a suitable measurement procedure, a sufficient number k of comparisons between groups
of standards, yielding apparent, namely, in-air differences δ = (δ1, . . . ,δk)

⊤. Corresponding buoyancy
corrections b = (b1, . . . , bk)

⊤ are calculated. In-vacuo mass differences X are obtained from the sub-model

X = f (W), where W =
�

mR, mS, δ⊤, b⊤
�⊤

.

An estimate y ≡ (Òm1, . . . ,Òmq)⊤ of the masses m is typically given by the least-squares solution of the over-
determined system of equations Am = X , where A is a matrix of dimensions k× q with elements equal to
+1, −1 or zero, respecting the uncertainties involved. With this choice, the estimate y is given by

y = V y A⊤V−1
x x , (5.11)

where x is the estimate of the input quantity X , and the covariance matrix V y of dimension q×q associated

with y is given by V y =
�

A⊤V−1
x A

�−1
. V x is the covariance matrix of dimension k × k associated with x .

A more detailed description of the sub-model, as well as a procedure for obtaining V x in terms of Vw , the
covariance matrix associated with the estimate w of W , is available [82].

The multivariate measurement model for this example can be expressed as

Y = V y A⊤V−1
x X ,

where the measurement function is U y A⊤U−1
x X . In terms of the general notation, N = k, m = q and

Y ≡m.

It is preferable computationally to obtain the estimate given by formula (5.11) by an algorithm based on
orthogonal factorization [83], rather than use this explicit formula.
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5.9.3 Implicit multivariate measurement models

An implicit multivariate measurement model specifies a relationship between an output quantity
Y = (Y1, . . . , Ym)⊤ and an input quantity X = (X1, . . . , XN )⊤, and takes the form

h(Y , X) = 0, h = (h1, . . . , hm)
⊤.

Given an estimate x of X , an estimate y of Y is given by the solution of the system of equations

h(y , x ) = 0, (5.12)

generally to be solved numerically for y , using, for example, Newton’s method [84] or a variant
of that method, starting from an approximation y (0) to the solution.

The covariance matrix Vy of dimension m×m associated with y is evaluated from the system of
equations [4]

Cy VyC⊤y =Cx Vx C⊤x , (5.13)

where Cy is the sensitivity matrix of dimension m×m containing the partial derivatives ∂ hℓ/∂ Yj ,
ℓ = 1, . . . , m, j = 1, . . . , m, and Cx is the sensitivity matrix of dimension m× N containing the
partial derivatives ∂ hℓ/∂ X i , ℓ= 1, . . . , m, i = 1, . . . , N , all derivatives being evaluated at X = x
and Y = y . The covariance matrix Vy in expression (5.13) is not defined if Cy is singular. 1

Formally, the covariance matrices Vx and Vy are related by

Vy = CVx C⊤, C = C−1
y Cx , (5.14)

where

C = C−1
y Cx , (5.15)

a matrix of sensitivity coefficients of dimension m× N .

EXAMPLE 1 Set of pressures generated by a pressure balance

The pressure p generated by a pressure balance is defined implicitly by the equation

p =
mw (1−ρa/ρw) gℓ

A0 (1+λp) (1+αδθ )
, (5.16)

where mw is the total applied mass, ρa and ρw are, respectively, the densities of air and the applied
masses, gℓ is the local acceleration due to gravity, A0 is the effective cross-sectional area of the balance at
zero pressure, λ is the distortion coefficient of the piston-cylinder assembly, α is the coefficient of thermal
expansion, and δθ is the deviation from a 20 °C reference Celsius temperature [85].

Let p1, . . . , pq denote the generated pressures for, respectively, applied masses mw,1, . . . , mw,q and temper-
ature deviations δθ1, . . . ,δθq.

In terms of the general notation, the vector (A0,λ,α,δθ1, mw,1, . . . ,δθq, mw,q,ρa,ρw, gℓ)⊤ is denoted by X
and (p1, . . . , pq)⊤ by Y with N = 6+ 2q and m= q.

X and Y are related by the measurement model

h j(Y , X) = A0p j

�

1+λp j

� �

1+αδθ j

�

−mw, j (1−ρa/ρw) gℓ = 0, j = 1, . . . , q. (5.17)

An estimate bp j of p j is obtained by solving an equation of the form (5.17) given estimates of A0, λ, α,
δθ j , mw, j , ρa, ρw and gℓ. The resulting estimates bp1, . . .bpq have associated covariances because they all
depend on the measured quantities A0, λ, α, ρa, ρw and gℓ.
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The covariance matrix Vy of dimension q× q associated with y ≡ (bp1, . . . ,bpq)⊤ is evaluated from expres-
sion (5.13), where Cy is the sensitivity matrix of dimension q×q containing the partial derivatives ∂ hℓ/∂ Yj ,
ℓ = 1, . . . , q, j = 1, . . . , q, and Cx is the matrix of dimension q × (6 + 2q) containing the partial deriva-
tives ∂ hℓ/∂ X i , ℓ= 1, . . . , q, i = 1, . . . , 6+2q, both evaluated at X = x and Y = y , and Ux is the covariance
matrix of dimension (6+ 2q)× (6+ 2q) associated with x .

A measurement function [giving Yj (≡ p j) explicitly as a function of X] can be determined in this case as
the solution of a quadratic equation. Such a form is not necessarily numerically stable. Moreover, mea-
surement models involving additional, higher-order powers of p are sometimes used [86]. Determination
of an explicit expression is not generally possible in such a case.

EXAMPLE 2 Use of the Soave-Redlich-Kwong equation of state

Equations of state are key to calculating the pV T (pressure, volume, temperature)-behaviour of fluids
(gases, liquids, vapours). Often, with very limited information such as the critical properties (temperature,
pressure) of the components, a reasonable prediction of the phase behaviour, a pressure, specific volume
or density can be obtained. To illustrate the calculation of the specific volume Vm of a fluid at a given
temperature and pressure, we demonstrate the use of the Soave-Relich-Kwong (SRK) equation of state,
not because it is arguably the best of all cubic equations of state, but because the calculation serves as
a template for using more complicated (and accurate) equations of state. The equation of state can be
formulated as [87]

V 3
m +α1V 2

m +α2Vm +α3 = 0, (5.18)

where

α1 = −
RT
p

, α2 = −b2 −
RT
p

b+
a
p

, α3 = −
ab
p

(5.19)

where a and b are coefficients of the SRK that depend on the critical properties of the fluid and the
saturated vapour pressure at a reduced temperature of 0.7 [87], and the temperature. In equation (5.19),
R denotes the ideal gas constant, T the thermodynamic temperature and p the pressure. Depending on
the values of p and T , equation (5.18) has one or three real roots. The latter occurs if the saturation
pressure is used for p, corresponding to the temperature T . Such a vapour-liquid equilibrium calculation,
where p is also part of the measurand has been discussed elsewhere [88].

In this context, it is important to note that the coefficients α in equation (5.18) depend on a set of variables
that can be presumed to be independent [see equation (5.19)] [88].

Propagation of uncertainty can be performed readily using expression (5.15) for implicit multivariate
measurement models, enabling inclusion of correlations between the αi , that is,

u2(Vm) =
�

3V 2
m + 2α1Vm +α2

�−2
CαUαC

T
α.

5.10 Multi-stage measurement models

A measurement model with several stages is known as a multi-stage model: the output from
one stage becomes the input to the next stage (which may have further inputs). For instance,
calibration is a two-step process.

EXAMPLE 1 Straight-line calibration

Given data comprising a set of pairs of stimulus and response values, following the VIM [89], the process
for straight-line calibration constitutes two stages:

1. Determine calibration parameter values (intercept a and slope b for a straight line y = a+ bx ex-
pressing response y in terms of stimulus x) from the data, and
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2. Use a and b to produce the stimulus x0 = (y0− a)/b (the measurand) corresponding to a measured
response y0.

Given the data and associated uncertainties (and covariances if present), a and b and their covariance
matrix V[a,b] are produced in stage 1. Then, in stage 2, a and b and their covariance matrix V[a,b] and y0
are used to provide x0 and u(x0) using

x0 =
1
b
(y0 − a), u2(x0) =

1
b2
[1 x0]V[a,b][1 x0]

⊤ +
1
b2

u2(y0). (5.20)

Full details of the computation are contained in [90] and are based on the expressions in section 5.9.1.
The process naturally consists of two stages. Note that the covariance matrix determined in stage 1 must
be made available to stage 2 to evaluate the standard uncertainty u(x0).

When the recipient of the calibration results is the calibration laboratory itself, the two stages can be
combined. The covariance matrix does not even have to be reported. The key difference from the two-
stage process is that the computational scheme for evaluating V[a,b] is ‘plugged’ into formula (5.20).

The above contrasting scenarios constitute illustrations of removable and unremovable correla-
tion in section 5.8 (with a further example — peak area determined from spectral data — below).

EXAMPLE Peak area determined from spectral data

A requirement in spectroscopy is the detection of peaks in a signal and the determination of peak pa-
rameters such as area and location. Peak area determination nominally constitutes a two-stage model, in
which (1) raw data are filtered to reduce the effects of noise and (2) peak area is calculated using the
filtered data. Covariances would be passed from the first stage to the second.

(a) Two-stage model

In the first stage data are filtered using a windowing function, each item of raw data being superseded
by a filtered data item. The result is a set of filtered values, with associated standard uncertainties and
covariances. Covariances arise since each filtered value is a combination of raw values and any specific
raw value contributes to several filtered quantities (common input as in section 5.4).

In the second stage a linear function of the filtered data is obtained such as peak area

The peak area is estimated using the filtered data. To evaluate the standard uncertainty associated with
estimated peak area, use is made of the standard uncertainties and covariances associated with the filtered
data established in the first stage.

(b) Single-stage model

The peak area is expressed directly as a function of the unfiltered data by combining explicitly the above
two stages. The explicit provision of covariances generated in the above first stage is not needed.

Mathematical expressions for the calculation are given in [5, clause 8.4.2].

5.11 Concluding remarks

The evaluation of covariances is usually an essential part of an evaluation of measurement un-
certainty. There are several ways to incorporate these dependencies in the calculations, ranging
from simply working with the forms of the law of propagation of uncertainty and the Monte Carlo
method that consider dependencies between input quantities to the elimination of dependencies
by re-expressing the measurement model so that the measurand depends on a set of independent
or at least uncorrelated input quantities.

In practice, especially for uncertainty evaluation problems involving many variables, it is often
preferable to work with matrix-vector forms of expressions for dealing with standard uncertain-
ties and covariances. Doing so requires some knowledge above the basic skills needed to apply
the law of propagation of uncertainty as given in the GUM.
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Messages made in the treatment here include the following:

– When properly established, a measurement model articulates the relationships between
variables.

– Accounting for covariances is an essential part of an uncertainty evaluation: their proper
use can increase or decrease the obtained uncertainty over an uncertainty evaluation that
disregards them.

– The propagation of a covariance matrix is not required if the stages in a multi-stage model
can be combined into a single-stage model (see section 5.8).

– It is not always necessary to (re-)express the measurand(s) as a set of uncorrelated input
quantities. If the covariances are evaluated, the law of propagation of uncertainty for
dependent quantities [2, equation (13)] can be applied directly, or when using the Monte
Carlo method, samples can be drawn from a multivariate probability density function.

– Working with multivariate methods [4] is often the easier choice, but requires some famil-
iarity with matrix calculus.

– The Monte Carlo method [3, 4] and Bayesian inference using Markov Chain Monte Carlo
(see, for example, section 5.3) also provide means to extract information about covariances
between output quantities.
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Chapter 6

Reporting measurement results

M.G. Cox, A.M.H. van der Veen

6.1 Introduction

The manner in which measurement results are reported is fundamental since in many cases they
are the primary outcome of a measurement, including the evaluation of the measurement data
and the uncertainty evaluation. There are various styles of reporting, most of which are ‘conven-
tional’, apply to a single measurand, and are given in standards from International Organization
for Standardization (ISO) and International Electrotechnical Commission (IEC) [7,8,39] and rec-
ognized guidance documents such as JCGM [2,3], European Accreditation [57], Eurachem [42],
International Laboratory Accreditation Cooperation (ILAC) [91] and UKAS [92]. In addition to
considering this type of reporting of measurement results, vector measurands [4] are increasingly
important since there is an upsurge in measuring systems with many output quantities such as
pixel images obtained in fields like surface metrology and medical physics. In these areas, the
vector output quantity is often used in further stages of data processing in which case correlations
that exist between these quantities must be taken into consideration to provide valid results.

Further, we consider measurement results represented by probability distributions [3, 4, 89] be-
cause of the growing interest in regarding a probability distribution as a complete statement
of uncertainty [93], their importance in conformance assessment [6, 94] and the availability of
relevant computational facilities [95].

6.2 Measurement result

To report a measurement result, it is important to appreciate what a measurement result com-
prises. According to the International Vocabulary of Metrology — Basic and General Concepts
and Associated Terms (JCGM 200:2012; VIM 3rd edition) [89], it is defined as

2.9 (3.1) measurement result
result of measurement
set of quantity values being attributed to a measurand together with any other avail-
able relevant information
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NOTE 1 A measurement result generally contains “relevant information” about the set of
quantity values, such that some may be more representative of the measurand than others.
This may be expressed in the form of a probability density function (PDF).

NOTE 2 A measurement result is generally expressed as a single measured quantity value and
a measurement uncertainty. If the measurement uncertainty is considered to be negligible
for some purpose, the measurement result may be expressed as a single measured quantity
value. In many fields, this is the common way of expressing a measurement result.

6.3 Measurement result reporting

At its simplest, for a scalar measurand, a measurement result may be presented by an estimate
of the measurand and an associated standard uncertainty. In the case of a vector measurand,
a measurement result may similarly be represented by a vector of estimates and the associated
covariance matrix.

Although a probability distribution is a complete description of the metrologist’s judgment re-
garding the measurand, it alone will not generally meet reasonable requirements for reporting
because, unless the recipient is well versed in statistics, it does not readily convey usable informa-
tion about the measurand. Therefore, various summaries of the distribution should be provided
to convey clear and meaningful information for the recipient [96]. Summary statistics might also
include a coverage interval or, in the multivariate case, a description of a coverage region that
contains the measurand for a given coverage probability, and possibly some other material. A
coverage region, a multivariate counterpart of a coverage interval in the univariate case, is not
unique, one instance being the coverage region of smallest volume.

As regards the reporting of a PDF itself, there are several options available. In a univariate case, if
the PDF can be reported to be sufficiently well represented by a normal distribution, the mean and
standard deviation, taken as the estimate and associated standard uncertainty of the measurand,
may be all that is needed. (The GUM [2] assumes, by appealing to the central limit theorem,
the PDF for the measurand is approximately normal.) If the PDF for the measurand is (or close
to) a t distribution, resulting from the presence of some sample-based input quantities (Type
A evaluations), the reporting is as for a normal distribution with the addition of an (effective)
degrees of freedom [2]. If another PDF is assumed for the measurand, then this PDF and its
parameters can be provided as the measurement result [57,97,98].

The use of Monte Carlo (MC) or Monte Carlo Markov Chain (MCMC) methods provides the dis-
tribution for the measurand in the form of a large sample from that distribution. The distribution
may be reported in this form, as an electronic data file, or as a suitable standard statistical distri-
bution that is a good approximation fitted to the sample. Summary statistics such as the mean,
the standard deviation and a coverage interval may be computed directly from the sample [4]
and could be provided additionally to the sample of the distribution.

If that PDF is to be used as input to a further evaluation, the electronic data file can be used
directly for that purpose [4,96].

The provision of suitable graphics, such as a plot of the PDF, is frequently desirable in the uni-
variate case or even for bivariate measurement models [96]. One- or two-dimensional sections
of a multivariate PDF can also be useful for visualisation.

The measurement result applies to the measurement model in hand, which can range from real,
univariate and explicit to complex, multivariate and implicit. Guide JCGM 102 [4, clause 6]
categorises the measurement model according to their mathematical form. The current primer
does not cover the complex case; the reader is referred to [4,99].
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So that measurement results are metrologically reproducible [100], it is recommended that the
reporting of results includes all data necessary for the measurement result to be reproduced by
others.

It is recognised that the metadata accompanying a measurement result depends on the method
used to produce it. Although it is beyond the scope of this document to comment in detail on the
relative merits of methods, we state the following. Each method uses information particular to
that method in specifying the evaluation problem to be solved. An instance is in the calibration
of a thermometer using straight-line regression in terms of the original variables or transformed
variables [2, clause H.3]. The use of a centred variable, simply obtained by shifting the ori-
gin of the independent variable, transforms the problem into a form that not only gives more
straightforward reporting, since the correlation between the line parameters (section 6.3.4) is
eliminated, but also simplifies the calculation.

It would be wise to alert or remind the recipient of the measurement result that any replacement
of a non-linear model by a linear model has been judged to be acceptable.

There are also options within the three methods considered for any specific evaluation problem,
namely, the GUM uncertainty framework (GUF) [2,4], Monte Carlo (MC) [3,4,101] and Bayesian
inference [102,103].

For the GUF, there is the choice of the law of propagation of uncertainty (LPU) based on first or
higher-order terms in the Taylor expansion of the measurement function. For MC, there is choice
in the number of MC trials, the random number generators (RNGs) used and the seeds chosen for
those generators. For MCMC methods used in Bayesian inference, there is choice in the number
of MCMC iterations, the number of iterations in the burn-in period, the RNGs and the seeds.

This primer gives advice on the items to be reported.

6.3.1 Univariate models

Preamble

A measurement model taking the form

Y = f (X1, . . . , XN ),

relating a single output quantity Y to the input quantities X1, . . . , XN , is termed univariate and
explicit.

A measurement model taking the form

h(Y, X1, . . . , XN ) = 0,

where Y is a scalar output quantity, and h denotes a function of Y and the input quantities
X1, . . . , XN , is termed univariate and implicit.

The GUM uncertainty framework

For the GUM uncertainty framework [2], report

1. A specification of the measurand;
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2. The measurement model, either analytically or in terms of (or making explicit reference
to) an algorithm or item of software (a data repository such as Zenodo, which can also
include accompanying metadata, is valuable for this purpose);

3. For implicit models only, the manner in which the output quantity is evaluated given esti-
mates of the input quantities, by stating or referring to a formula, algorithm or software;

4. For each input quantity, the estimate and associated standard uncertainty and (for a Type
A evaluation) the degrees of freedom;

5. When appropriate, for each pair of input quantities, the associated covariance or correlation
coefficient;

6. As an alternative to the previous two items, the covariance matrix associated with the set
of estimates of the input quantities;

7. For the output quantity, the estimate and associated standard uncertainty and, if appropri-
ate, the effective degrees of freedom and the expanded uncertainty or (the endpoints of)
a coverage interval or both for a stated coverage probability;

8. The assumed probability density function of the measurand used to obtain the coverage
factor and expanded uncertainty;

9. Whether the first- or higher-order variant of LPU has been used.

EXAMPLE Example of items 1 and 7 for the mass mS of a measurement standard

The measurand is the mass mS in vacuum of a nominally 100 g weight at a stipulated time.

A measurement result for mS is reported as ‘mS = 100.021 47g with associated standard uncertainty
0.35 mg’.

The Monte Carlo method

For the Monte Carlo method [3], report

1. Items 1, 2 and 3 in section 6.3.1;

2. The PDF for each input quantity;

3. As an alternative to 2 when input quantities are correlated, the joint PDF for those quanti-
ties;

4. For the output quantity, the estimate of that quantity and the associated standard uncer-
tainty and, if required, a coverage interval, stating whether it is probabilistically symmetric
or shortest or otherwise, and the coverage probability;

5. As a possible addition to the previous item, the PDF for the output quantity, which can be
used in subsequent evaluations that make use of input PDFs;

6. The number of MC trials taken, the RNG used and the RNG seeds selected (the latter two
are important if the results are to be reproduced exactly).
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EXAMPLE Example of items 1 (part), 2, 4 and 6 for the cross-sectional area A of a pipe

The measurand is the cross-sectional area A of a specific pipe at a stipulated time and location on the pipe.

The PDFs selected for the input quantities were normal distributions with means and standard deviations
equal to the estimates and associated standard uncertainties for those quantities.

A measurement result for A is an estimate of 7.92× 103 mm2 with an associated standard uncertainty of
0.16× 103 mm2.

The probabilistically symmetric coverage interval is [7.60×103, 8.24×103]mm2 for 95 % coverage prob-
ability.

The number of Monte Carlo trials was 1× 107, the random number generator was the Mersenne Twister
and the random number seed was 9790.

Bayesian inference

When the measurement result originates from Bayesian inference, the measurand is part of the
posterior PDF, or can be computed from it. If the Bayesian model used contains multiple pa-
rameters, one of them can be the measurand. Alternatively, if the measurand is a function of
these model parameters, it can be computed from these parameters. If this posterior PDF has
a well-known form, such as the normal distribution or t distribution, it can be reported as such
with the parameter values obtained from the Bayesian evaluation. In many cases, the posterior
PDF does not have a simple well-known form, and then a similar reporting format can be chosen
as for the Monte Carlo method (see section 6.3.1):

1. Items 1, 2 and 3 in section 6.3.1;

2. prior PDF for each input quantity;

3. As an alternative to 2 when input quantities are correlated, the joint prior PDF for those
quantities;

4. The likelihood function(s) used for the data;

5. For the output quantity, the estimate of that quantity and the associated standard uncer-
tainty and, if required, a coverage interval, stating whether it is probabilistically symmetric
or shortest or otherwise, and the coverage probability;

6. As a possible addition to the previous item, the posterior PDF for the output quantity, which
can be used in subsequent evaluations that make use of input PDFs;

7. The number of MCMC trials taken (chain length, length of the warm-up phase, number
of chains), the RNG used and the RNG seeds selected (the latter two are important if the
results are to be reproduced exactly).

8. The algorithm used to perform the MCMC.

6.3.2 Multivariate models

The GUM uncertainty framework in the multivariate case

For the GUM uncertainty framework in the multivariate case [4], report as for the GUM uncer-
tainty framework in the univariate case in section 6.3.1 except that the measurand and measure-
ment model are to be interpreted in terms of their vector or multivariate counterparts. Moreover,
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no specific advice is given here on the coverage region, the multivariate counterpart of a cover-
age interval for the output quantity for a stipulated coverage probability: the reader is invited
to consult [4] and the relevant examples therein. Item 8 has no documented counterpart in the
multivariate case.

EXAMPLE Simple bivariate measurement model [4, clause 9.2.3]

The bivariate measurand is Y = (Y1, Y2)⊤ is defined by the measurement model Y1 = X1+X3, Y2 = X2+X3,
where the input quantities X1, X2 and X3 are independent and have zero estimates and unit standard
deviations. Giving additional decimal places for purposes of comparison with those for the example in
section 6.3.2, the estimate y = (y1, y2)⊤ of the bivariate output quantity Y is y1 = 0.000 and y2 = 0.000,
the associated standard uncertainties are u(y1) = 1.414 and u(y2) = 1.414 and the associated covariance
is u(y1, y2) = 1.000, that is,

y =
�

0.000
0.000

�

, u(y) =
�

1.414
1.414

�

, V y =
�

2.000 1.000
1.000 2.000

�

. (6.1)

In terms of a bivariate vector η, a 95 % elliptical coverage region for Y can be reported as

(η− y)⊤V−1
y (η− y) = k2

p, (6.2)

y specifying its location, V y its shape, and kp = 2.45 its size, determined according to the provisions
of [4].

The Monte Carlo method in the multivariate case

For the Monte Carlo method in the multivariate case [4], report as for the Monte Carlo method (in
the univariate case) in section 6.3.1 except that the measurand and measurement model are to
be interpreted in terms of their vector or multivariate counterparts. Moreover, for the coverage
region, state whether the region is hyper-ellipsoidal, hyper-rectangular, of smallest volume or
otherwise.

EXAMPLE Simple bivariate measurement model [4, clause 9.2.3] once more

The bivariate measurand, model and estimates of the input quantities and their associated standard uncer-
tainties are as for the example in section 6.3.2 where X1 and X2 are characterized by normal distributions
and X3 by a rectangular distribution so they all have estimates of zero and standard deviations of unity.
The output information regarding estimate and uncertainties is the same as that in expressions (6.1).

A 95 % ellipsoidal coverage region for Y is

(η− y)⊤V−1
y (η− y) = k2

p, kp = 2.15, (6.3)

somewhat different from that in the example in section 6.3.1, which assumes underlying normality.

Bayesian inference in the multivariate case

Similarly to the extension of the reporting in the multivariate case of the Monte Carlo method (see
section 6.3.2), the reporting from Bayesian inference in the univariate case (see section 6.3.1)
can be extended. Rather than the posterior PDF for the measurand, now the joint posterior of the
measurand is provided, and as summary data a vector with the estimates, a covariance matrix,
and where relevant a coverage region, for which the same deliberations apply as outlined in the
previous section for the Monte Carlo method.
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6.3.3 Rounding and number of digits

Absolute uncertainty

The number of digits reported in the measurement results is often dictated by requirements of the
application. If not stipulated, in the univariate case it is recommended that two significant digits
be reported in a standard uncertainty or an expanded uncertainty, and the corresponding estimate
or the endpoints of a coverage interval be terminated at the position of the least significant
decimal digit of the reported uncertainty. If a comparison is being made of methods for providing
measurement results, additional digits may be reported when considered appropriate.

NOTE If the uncertainty is rounded and stated to two significant decimal digits, the magnitude of the
largest possible relative deviation from the unrounded value is 5 %.

The above advice does not apply to the multivariate case where correlation is almost invariably present in
the measurement results. See section 6.3.4.

EXAMPLE 1 For a mass measurement, the estimate is 10.00453 g and the associated standard uncertainty
is 0.000 74 g (each to five decimal places).

EXAMPLE 2 For a distance measurement, the estimate is 126.3 × 103 km and the associated standard
uncertainty is 2.4× 103 km (each to one decimal place).

If the measurement result is to be used in a subsequent calculation, as many digits as required for that
calculation should be reported. For information passed electronically, the computer-held numbers should
be used with no rounding.

The normal rules of rounding according to ISO 80000-1:2009 [104] should be applied, with rounding
to the nearest even last digit in cases of ambiguity, unless there are valid technical reasons for doing
otherwise.

EXAMPLE The two stages of calibration

Consider the two stages of calibration [89, clause 2.39]. The first stage establishes a relation between
(stimulus) values provided by measurement standards and corresponding instrument response values.
The second stage uses this relation to obtain stimulus values from further instrument response values
(inverse evaluation). The relation also allows a stimulus value to be obtained given a further response
value (direct evaluation). When the two stages are under the control of a single party, there is little
problem in moving from the first stage to the second if all calculations are carried out using a single item
of software or results from the first stage are passed electronically to full machine precision to the second
stage. If there are departures from this way of working or the stages are under the control of two parties,
especially if a calibration certificate contains results to limited numerical precision, there may be issues,
for which the reader is directed to section 6.3.4 (particularly the second example).

Relative uncertainty

In many areas of measurement, it is customary to communicate measurement uncertainty in rel-
ative terms, such as a percentage or parts-per-million of the reported estimate of the measurand.
This practice is widely applied in analytical chemistry and the life sciences, but also in physical
calibration (pressure, for example), the use of relative rather than absolute uncertainty is com-
mon practice. The rationale for preferring relative uncertainty is that it is a better representation
of the measurement uncertainty over a wide(r) interval of values of the measurand. In many
calibration and measurement capabilities, as in many instrument specifications, a combination
of absolute and relative uncertainty is used to communicate the measurement uncertainty or
specification.
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Especially when a relative expanded uncertainty has been agreed with the recipient of the mea-
surement result, using an absolute uncertainty with the commonly applied rounding can lead to
issues. It has been proposed to carry an extra digit in the absolute uncertainty [105] over what is
commonly recommended (see section 6.3.3) to express properly the measurement uncertainty.

6.3.4 Rounding correlation and covariance

Rather than reporting a covariance matrix associated with an estimate of the measurand, we rec-
ommend instead, both for human interpretation and analysis, the use of the correlation matrix
Ry associated with the vector estimate y together with the vector u(y) of standard uncertain-
ties u(yi). The covariance matrix V y associated with y is related to R y by

V y = DyR y Dy ,

where Dy is the diagonal matrix of dimension m×m with diagonal elements u(y1), . . . , u(ym).
Element (i, j) of V y is the correlation coefficient associated with the estimates yi and y j:

u(yi , y j) = r(yi , y j)u(yi)u(y j).

EXAMPLE Natural gas analysis

ISO/TS 28038 [106, clause 9.4.2] is concerned with constructing and using polynomial calibration curves
with the polynomial represented in Chebyshev-series form [107]. One of the examples considers natural
gas data relating amount fractions and corresponding instrument responses. Polynomial models of several
degrees were considered to represent this data. One of these polynomials was of degree 2 (quadratic) for
which the covariance matrix associated with the computed Chebyshev coefficients was obtained:

V y = 10−6 ×





0.61 0.72 0.53
1.08 0.49

sym. 0.74



,

which can be compared with the representation as a standard-uncertainty vector and the correlation ma-
trix:

u(y) =





0.0008
0.0010
0.0009



, Ry =





1 0.89 0.79
1 0.54

sym. 1



.

The second representation is arguably easier to interpret. For instance, the correlation coefficient (0.89)
between the first and second Chebyshev coefficients is appreciable (compared with unity). It is difficult to
make this interpretation of the first representation (0.72 compared with the other elements of 1×106V y).

In the presence of non-zero covariances or correlation coefficients, reporting needs very careful
consideration, especially if some of the input quantities are output quantities from a previous
evaluation or are to be used subsequently. Since a covariance corresponding to a correlation co-
efficient having magnitude close to unity might cause numerical difficulties in subsequent eval-
uations, such as related to least squares’ applications, the number of digits to be held should
depend on that magnitude. Considering quantities X1 and X2, unless required otherwise for par-
ticular technical reasons, it is recommended that the correlation coefficient r associated with X1
and X2 is reported such that 1− |r| has at least two significant decimal digits. The standard un-
certainties u(x1) and u(x2) and the covariance u(x1, x2) should be reported to the same number
of decimal places. In any cases of doubt, all computer-held digits should be reported.
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NOTE The above paragraph includes a rule of thumb that is not foolproof. The number of digits to be
reported for a correlation coefficient or covariance depends on the application that uses such information.
A full analysis of the number of digits to be reported needs details of the application and may involve ad-
vanced numerical computations such as involving the eigenvalues of the correlation matrix. The following
information is based on that given in [4, clause 3.2.1]:

If the correlation matrix is close to being singular, additional decimal digits need to be re-
tained in order to avoid numerical difficulties when using the correlation matrix as input
to an uncertainty evaluation. The number of decimal digits to be retained depends on the
nature of the subsequent calculation, but as a guide can be taken as the number of decimal
digits needed to represent the smallest eigenvalue of the correlation matrix with two signifi-
cant decimal digits. For a correlation matrix of dimension 2× 2, the eigenvalues are 1± |r|,
the smaller being 1− |r|, where r is the off-diagonal element of the matrix. If a correlation
matrix is known to be singular prior to rounding, rounding towards zero reduces the risk that
the rounded matrix is not positive semi-definite.

EXAMPLE Highly correlated quantities

For a particular evaluation problem, the quantities X1 and X2, corresponding to output quantities in a
previous evaluation, are very highly correlated. To seven significant decimal digits, the standard uncer-
tainties associated with their best estimates are u(x1) = 0.152 7482, u(x2) = 0.603536 4 and the asso-
ciated covariance is u(x1, x2) = −0.303 4072, all in appropriate units. This covariance corresponds to a
correlation coefficient r of −0.999 2774. The value of 1− |r| is 0.000 7226, which, when rounded to two
significant decimal digits, is 0.00072. Accordingly, these results should be reported as, u(x1) = 0.152 75,
u(x2) = 0.603 54, u(x1, x2) = −0.303 41 and r = −0.99928.

A covariance should be reported to the same number of significant digits as used when reporting
a correlation coefficient.

Regarding compatibility with standards, ISO/IEC 17025 [7, clause 7.8.4.1] states

‘. . . calibration certificates shall include . . . the measurement uncertainty of the mea-
surement result presented in the same unit as that of the measurand or in a term
relative to the measurand (e.g. percent) . . . ’

Thus, to conform with ISO/IEC 17025 the measurement uncertainty must be reported. The
important aspect of the quoted clause is the word ‘include’: the possibility of providing further
information (such as a probability density function (PDF)) is not excluded.

6.4 Use of LATEX and Microsoft Word for reporting uncertainty

6.4.1 General

A value of a physical quantity and its associated uncertainty should each be expressed as the
product of a number and a unit. The SI brochure [108] states that there should be a space
between the number part and the unit part. This guidance still leaves several options for type-
setting. Here we recommend the use of a thin space (en-space – the width of a lower case ‘n’)
for this purpose; thus ‘10 m’ rather than ‘10 m’. We recommend ways of reporting estimates of
quantities and associated uncertainties using the systems LATEX and Microsoft Word.
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6.4.2 LATEX

LATEX package siunitx is invaluable for typesetting quantities, for which the manual is regularly
updated:
http://anorien.csc.warwick.ac.uk/mirrors/CTAN/macros/latex/contrib/siunitx/
siunitx.pdf.

For reporting measured values and their units, siunitx inserts a thin space between a number
and the unit:

\SI{997}{\kg\per\m^3} 997 kg/m3

\SI{997}{\kg\per\cubic\m} 997 kgm−3

\SI{95}{\percent} 95 %

Package siunitx has many other valuable facilities for working with physical quantities, such
as an excellent capability for working with tabular material such as uncertainty budgets.

6.4.3 Microsoft Word

There does not appear to be a Microsoft Word template that provides facilities that are compa-
rable to those of siunitx. However, to create 95 % (with a thin space), for example, type in
Microsoft Word:

95>space>2009>ALT+X>%

Then delete the left (the wider) of the two space characters.

Alternatively, the pre-defined special characters for an en and em space can be assigned a shortcut
key in the ‘Symbols’ dialog box to make these better accessible when typing. Finally, holding down
the Alt key as 8194 (for an en space) or 8195 (for an em space) is typed produces the special
white spaces.
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Example E1.1

Two-point and multipoint calibration

M.G. Cox, J. Greenwood, A. Bošnjaković, V. Karahodžić

E1.1.1 Summary

A generic treatment of two-point and multi-point interpolation of calibration data is given with
uncertainties associated with the data propagated using the law of propagation of uncertainty
and its generalization to vector measurands. The approach is applied to the measurement of
hydrogen ion activity (pH). Such measurement is one of the most common in chemistry, although
correlations associated with the input quantities in the measurement model are rarely taken into
account. The treatment given follows common practice, which tends to give an optimistically
small evaluation of the uncertainty associated with an estimated pH value. A way of taking
correlation into account in one typical instance is given but its implementation is problematical
because of the difficulty in quantifying the correlation.

E1.1.2 Introduction of the application

E1.1.2.1 General

A generic treatment of two-point and multi-point interpolation of calibration data is first given.
We stay consistent with the VIM’s concept of calibration [89, definition 2.39] as constituting
two stages. Here the first stage involves fitting to measured data a function that describes the
relationship of a response (dependent) variable y to a stimulus (independent) variable x . The
second stage involves using this relationship to determine the value of one variable given a value
of the other. Uncertainties in both the stimulus and response variables are handled in both stages
and propagated using the law of propagation of uncertainty (LPU) in JCGM 100:2008 (GUM) [2]
and its generalization to vector measurands in GUM Supplement 2 (GUM-S2) [4].

Two scenarios are considered. One, a single party accesses the calibration data set and provides
the required interpolated value. In doing so, the party may or may not determine the calibra-
tion parameters explicitly. Two, one party has access to the calibration data set, delivering the
calibration parameters to a second party, which in turn provides the interpolated value.

Although the measurement models involved are simple, they are used to illustrate a number of
aspects that can be carried over to examples in other areas.
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The approach is applied to the measurement of hydrogen ion activity (pH) in which up to three
two-point interpolations are required and uncertainties are tracked through the calculation.

E1.1.2.2 Specific: pH of a test solution using two-point calibration

pH, the negative logarithm to base 10 of the activity of hydrogen ion in a solution is probably
the most measured quantity in chemistry [109]. The electric potential of a suitable cell, for
example, a glass electrode and reference electrode, is proportional to pH and forms the basis of
pH measurement.

In 2002 IUPAC, the International Union for Pure and Applied Chemistry, issued a recommen-
dation for revision of the pH scale based on the concept of a primary reference measurement
procedure for pH [74]. The use of an electrochemical (Harned) cell fulfils the criteria for a
primary reference measurement procedure so that a pH value thus obtained is traceable to the
International System of Units, here the SI measurement unit 1 (one). A solution, the pH of which
is measured by such a cell at the highest metrological level, may be classified as a primary mea-
surement standard and can be used to assign pH values to other solutions. These solutions are
sold as certified reference materials to calibrate pH meters for routine use.

There are several approaches to pH measurement involving the use of 1-point, 2-point and multi-
point calibration, least-squares regression, and with or without temperature correction. Here we
use the 2-point calibration approach, with and without temperature correction.

The methods in the generic parts of this document apply (a) when the temperature of the test
solution matches that of the standard (reference) solutions and (b) when this is not the case.

E1.1.3 Specification of the measurand(s)

In this specific example, the measurand is the pH of a solution being calibrated. More generally,
the measurand is the interpolated independent or dependent variable obtained from a relation-
ship between those variables derived from data representing values of the variables. Intermediate
measurands, when required, are the parameters describing the relationship.

E1.1.4 Measurement model

E1.1.4.1 General

There are two stages involved in calibration [89]: (i) determine a calibration curve from calibra-
tion data and (ii) use that calibration curve. Because of the relative simplicity of two-point and
multi-point interpolation as considered here, it may be preferable when circumstances permit to
combine the stages into a single-stage model. Such a model avoids having to deal with interme-
diate correlation associated with the calibration curve parameters that are estimated in the first
stage and used in the second. Operating in two stages corresponds to the use of a multi-stage
model [5, clause 8.4] and is necessary when the construction and use of the calibration model
are carried out by different parties.
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Generic approach to two-point calibration

Two calibration points (x1, y1) and (x2, y2) are given that bracket x0, an x-value for which y0,
the corresponding y-value, is required under the assumption that the y-value lies on the straight
line joining the calibration points (see figure E1.1.1).

Figure E1.1.1: Two-point calibration

By similar triangles, with δx = x2 − x1 and δy = y2 − y1,

y − y1

x − x1
=

y2 − y1

x2 − x1
=

δy
δx

, (E1.1.1)

A common representation of a straight-line calibration function, which is used here, is

y = a+ bx , (E1.1.2)

where a is the intercept on the y-axis and b is the gradient [77].

NOTE The form (E1.1.2) is used in the straight-line calibration standard ISO/TS 28037 [77] and will be
familiar to many end-users.

The process

The process defining the measurement model has one or two stages (section E1.1.2.1).

Single-stage model. A single party has access to (x1, y1) and (x2, y2), and also x0, and provides
y0, the y-value on the line corresponding to x0 (figure E1.1.1). In doing so, the party may or
may not determine a and b explicitly. The measurement model is specified by the description of
the provision of y0.

Two-stage model. One party has access to (x1, y1) and (x2, y2), and provides a and b (intermedi-
ate measurands) to the second party using the straightforwardly verified

b =
y2 − y1

x2 − x1
. (E1.1.3)

a = y1 − bx1. (E1.1.4)
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The second party (possibly identical to the first party) has access to a and b, and also x0, and
provides y0 using the expression

y0 = a+ bx0. (E1.1.5)

The measurement model is again described by the process to provide y0.

NOTE When x1 and x2 are far from the origin, that is, |x2 − x1| ≪ |x1|, an alternative form may be
numerically more stable. One such form is given by working with a transformed x-variable

ex = x − x1.

Using (E1.1.2) and (E1.1.4) the calibration function can be expressed as

y = y1 + bex , (E1.1.6)

which is evaluated at the value x0 of the independent variable. The resulting expression

y0 = y1 + b(x0 − x1) = y1 +
y2 − y1

x2 − x1
(x0 − x1), (E1.1.7)

and formula (E1.1.3) constitute the measurement model with y0 as the measurand. It is accepted that
such a transformation is not always appropriate.

The form of interpolation considered here is forward interpolation. Inverse interpolation, when
the stimulus value x0 corresponding to a response value y0 is required, can also be carried out
(for treatments see [77,110]) but is not required here. The roles of x and y can be interchanged
when permitted by the context.

Generic approach to multi-point calibration

Multi-point calibration is the treatment in sections above extended to an arbitrary number of
points. In these sections, a straight-line segment joining two of the calibration points serves as
the calibration function. When there are m calibration points (m ≥ 2), with strictly increasing
stimulus values, the points are joined pairwise by successive straight-line segments, the overall
construction being a piecewise-linear function or first-degree spline [111], acting as the calibra-
tion function. For each interval between pairs of successive points, the treatment of sections
above can be applied directly to the appropriate segment of the piecewise-linear function.

NOTE When m= 2 the calibration function is a single straight-line segment so it is naturally monotonic,
a necessary condition. For m> 2, the ordered points may not form a monotonic sequence, a situation not
considered here [110].

Alternatively, straight-line fitting by least squares can be used taking reported uncertainties asso-
ciated with the calibration data into consideration [77]. Polynomial interpolation or polynomial
fitting can also be used [110].

Metrological extension

The measurement model implied by two-point calibration is the algorithm to provide y0 given x0.
The data will generally have associated uncertainties arising from a Type A evaluation of uncer-
tainty [2, clause 4.2] especially following an analysis of repeated observations. Often there will
also be uncertainties obtained from a Type B evaluation and associated covariances arising from
common measurement effects [2, clause 4.3]. Such covariances should also be handled to avoid
producing invalid statements of uncertainty associated with predicted y-values.

The calibration data considered here are assumed to have independent errors.
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E1.1.4.2 pH measured at a specific temperature

An approach to providing the pH of a test solution [112] is a correction approach in which pHX,
the pH of a test solution X, is given by using a cell twice to measure potential EX in X and potential
ES in a standard solution S:

pHX = pHS+
EX − ES

k
. (E1.1.8)

In expression (E1.1.8), pHS is the pH of S, and

k =
RT ln 10

F
,

where R is the gas constant, T the temperature in K and F the Faraday constant.

Two other approaches are bracketing methods, which are generally more accurate and used here.
Use is made of the reference material certificates for the standard solutions, which give pH values
and associated standard uncertainties at stipulated temperatures.

Measurement is made at temperature TX, one of these stipulated temperatures, and a bracketing
procedure adopted [113]. The potential EX of the test solution X is measured. Likewise, the
potentials ES1

and ES2
are measured of two cells with standard solutions S1 and S2 such that

the ES1
- and ES2

-values bracket EX and are as near as possible to it. The pH of S1 and S2 at

temperature TX, namely, pHTX
S1

, pHTX
S2

, are given on certificates such as issued by NIST [114,115].

By assuming linearity between pH and E, that is, linear interpolation is valid between the points
(ES1

, pHTX
S1
) and (ES2

, pHTX
S2
), the pH value pHX corresponding to potential EX is obtained.

The output quantity, the measurand, generically y0, is pHX , the pH of the test solution.

The input quantities in the measurement model are ES1
, ES2

, pHTX
S1

, pHTX
S2

and EX, corresponding
respectively to x1, x2, y1, y2 and x0 in the generic approach.

In an extended model [5, clause 9], account is taken of further influences. In this case main
effects are pH instrument calibration, instrument resolution and interpolated pH. The uncertain-
ties associated with the first two effects are provided by the instrument manual and inspection
of the output display. Incorporating correction terms to account for these effects,

EX,corr = EX + δEresX + δEcal,

ES1,corr = ES1 + δEresS1 + δEcal, (E1.1.9)

ES2,corr = ES2 + δEresS2 + δEcal.

Interpolated pH and correction quantities in expressions (E1.1.9) relating to cell potential are
assumed independent.

Section E1.1.7.1 contains a discussion of the validation of results.

E1.1.4.3 pH measurement accounting for temperature

The temperature TX of the test solution is measured and the certificate of one of the standard so-
lutions is used to identify the closest bracketing temperatures T1 and T2. Potential measurement
gives ES1

, ES2
, EX as before.
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The pH values pHT1
S1

and pHT1
S2

for standard solutions S1 and S2 at temperature T1 are obtained

from the certificate. Linear interpolation is used between the points (ES1
, pHT1

S1
) and (ES2

, pHT1
S2
)

to give the pH value pHT1
X at temperature T1 corresponding to potential EX.

This step is repeated for temperature T2. The certificate is used to give the pH values pHT2
S1

and

pHT2
S2

for standard solutions S1 and S2 at temperature T2. Linear interpolation is used between

the points (ES1
, pHT2

S1
) and (ES2

, pHT2
S2
) to give the pH value pHT2

X at temperature T2 corresponding
to potential EX.

Finally, linear interpolation is applied to the points (ES1
, pHT1

X ) and (ES2
, pHT2

X ) to give the pH

value pHTX
X at temperature TX corresponding to potential EX.

The generic treatment in section E1.1.4.1 is thus applied three times to implement these three
stages of two-point interpolation.

The measurement model is given by the above algorithmic description where the input quantities
in the model are EX, ES1

, ES2
, TX, pHT1

S1
, pHT2

S1
, pHT1

S2
, pHT2

S2
.

E1.1.5 Uncertainty propagation

E1.1.5.1 Assumption

Uncertainty propagation in this section is based on the assumption that the input quantities —
the measured potentials and the pH values for the standard solutions — are independent. This
assumption is consistent with IUPAC recommendations for pH measurement [74]. There proce-
dures are given for accounting for input standard uncertainties based on the variant of the law
of propagation of uncertainty in [2, section 5.1]. That variant does not account for correlations
among the input quantities.

In practice, input quantities are likely to be correlated and account should be taken of that fact.
See the important discussion in section E1.1.7.2.

E1.1.5.2 General two-stage model

The notation established here for the two-stage model is also used in the single-stage model.

First stage. The inputs are the calibration data x1, y1, x2 and y2 and their associated standard
uncertainties. The outputs are the calibration parameters a and b and their associated covariance
matrix V[a,b]. The model is bivariate (two output quantities):

b =
y2 − y1

x2 − x1
=

δy
δx

, a = y1 − bx1. (E1.1.10)

For the uncertainty propagation, [4, formula (3)] is applied to obtain the output covariance
matrix

V[a,b] =

�

u2(a) u(a, b)
u(a, b) u2(b)

�

= C (1)V inC (1)
⊤

. (E1.1.11)
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In formula (E1.1.11), u(a, b) denotes the covariance between a and b, V in denotes the input
covariance matrix, the 4 × 4 diagonal matrix with diagonal entries u2(x1), u2(y1), u2(x2) and
u2(y2), and

C (1) =
1
δx

�

−bx2 x2 bx1 −x1
b −1 −b 1

�

(E1.1.12)

is the sensitivity matrix containing the first partial derivatives of x1, y1, x2 and y2 with respect
to a and b.

Second stage. The inputs are the outputs from the first stage together with x0 and u(x0).

The model is

y0 = a+ bx0.

Applying uncertainty propagation [4, formula (3)] once more, the output standard uncertainty
u(y0) is given by

u2(y0) = C (2)V[a,b]C
(2)⊤ + b2u2(x0), (E1.1.13)

where C (2) is the 1× 2 sensitivity matrix

C (2) =
�

1 x0
�

. (E1.1.14)

E1.1.5.3 General single-stage model

By combining the two stages above, the substitution of formula (E1.1.11) into expression (E1.1.13)
yields

u2(y0) = C (2)C (1)V inC (1)
⊤

C (2)
⊤
+ b2u2(x0).

Setting

q =
x0 − x1

δx
, (E1.1.15)

the use of expressions (E1.1.12) and (E1.1.14) gives

C (2)C (1) =
1
δx

�

−b(x2 − x0) x2 − x0 −b(x0 − x1) x0 − x1
�

=
�

−b(1− q) 1− q −bq q
�

.

Hence, using

V in =







u2(x1)
u2(y1)

u2(x2)
u2(y2)






,

C (2)C (1)V in =
�

−b(1− q)u2(x1) (1− q)u2(y1) −bqu2(x2) qu2(y2)
�

,

and so

C (2)C (1)V inC (1)
⊤
=

1
δx

�

−b(1− q)u2(x1)(−bx2) + (1− q)u2(y1)x2 − bqu2(x2)bx1 − qu2(y2)x1
−b2(1− q)u2(x1)− (1− q)u2(y1) + b2qu2(x2) + qu2(y2)

�

.
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Therefore,

C (2)C (1)V inC (1)
⊤

C (2)
⊤
=

1
δx
[b2(1−q)u2(x1)x2+(1−q)u2(y1)x2−b2qu2(x2)x1−qu2(y2)x1

− b2 x0(1− q)u2(x1)− x0(1− q)u2(y1) + b2qx0u2(x2) + qx0u2(y2)]

=
1
δx

�

b2(1− q)u2(x1)(x2 − x0) + (1− q)u2(y1)(x2 − x0) + b2qu2(x2)(x0 − x1) + qu2(y2)(x0 − x1)
�

.

Thus expression (E1.1.13) can be written as

u2(y0) = C (2)C (1)V inC (1)
⊤

C (2)
⊤
+ b2u2(x0)

= b2(1− q)2u2(x1) + (1− q)2u2(y1) + b2q2u2(x2) + q2u2(y2) + b2u2(x0),

that is,

u2(y0) = b2(1− q)2u2(x1)+ (1− q)2u2(y1)+ b2q2u2(x2)+ q2u2(y2)+ b2u2(x0). (E1.1.16)

The result (E1.1.16) can also be confirmed from first principles.

E1.1.5.4 pH estimation at a specific temperature and associated uncertainty eval-
uation

Values of potential in the test and standard solutions S1 and S2 were

EX = −1.875mV, ES1 = 6.15 mV, ES2 = −26.35 mV,

each of which was the average of 4 repeated observations. pH values at 25 °C for S1 and S2
from [114] are

pH25 °C
S1 = 6.8640, pH25 °C

S2 = 7.4157.

From formulæ (E1.1.3) and (E1.1.7) the resulting estimate of pHX = 7.0002.

Associated standard uncertainties were

u(EX) = 0.0250 mV, u(ES1) = 0.0289 mV, u(ES2) = 0.0289mV,
u(pH25 °C

S1 ) = 0.0051, u(pH25 °C
S2 ) = 0.0051.

The above standard uncertainties associated with standard pH solutions are given in [114].

The propagation of uncertainty carried out in accordance with expressions (E1.1.15) to (E1.1.16)
yields u(pHX) = 0.0041.

These results relate to the basic measurement model for pH. The extended model would work
with the corrected quantities in (E1.1.9) rather than the uncorrected quantities. The estimates
of all correction terms in the extended model are taken as zero. δEcal appears in three of expres-
sions (E1.1.9), so seemingly inducing correlation. However, this quantity is eliminated when the
corrected quantities are used rather than the original. This effect can be seen mathematically by
substituting EX,corr, ES1,corr and ES2,corr as the ‘new’ x0, x1 and x2, respectively, from expressions
(E1.1.9) into expressions (E1.1.3) and (E1.1.7).

The instrument display gave results in volts with 3 significant decimal places. Assume a rounding
error in the last digit, that is, in the interval ±0.0005 V. Characterizing resolution by a rectangu-
lar distribution over this interval, the consequent resolution standard uncertainty Eres applying
to all potential readings is 0.0005 V/

p
3 = 0.00029 V. This standard uncertainty is some one

hundredth of the above potential standard uncertainties and so is negligible.

The extended model would deliver the same estimate and standard uncertainty as the basic model
to the number of digits reported.
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E1.1.5.5 pH estimation accounting for temperature and associated uncertainty
evaluation

The measured temperature of the test solution was TX = 23.7 °C. The pH values of the measure-
ment standards are given at a temperature interval of 5 °C. The bracketing pair T1 = 25 °C and
T2 = 20 °C is therefore appropriate.

Potential measurement gives

EX = −1.875 mV, ES1 = 6.15mV, ES2 = −26.35mV,

each of which was the average of 4 repeated observations. pH values at 25 °C and 20 °C for S1
and S2 from [114] are

pH25 °C
S1 = 6.8640, pH25 °C

S2 = 7.4157, pH20 °C
S1 = 6.8796, pH20 °C

S2 = 7.4323.

Linear interpolation between the points

(ES1
, pHT1

S1
)≡ (6.15mV, 6.8640) and (ES2

, pHT1
S1
)≡ (−26.35 mV,7.4157)

gives the pH value pHT1
X = 6.8681 at temperature T1 of 23.7 °C corresponding to potential EX =

−1.875mV.

Likewise, linear interpolation between

(ES1
, pHT2

S1
)≡ (6.15mV, 6.8640) and (ES2

, pHT2
S2
)≡ (−26.35 mV,7.4323)

gives the pH value pHT2
X = 7.4200 at temperature T2 of 23.7 °C corresponding to potential EX =

−26.35mV.

Finally, linear interpolation between the points (ES1
, pHT1

X ) and (ES2
, pHT2

X ) is used to give the pH

value pHT2
X at temperature pHTX

X corresponding to potential EX.

Associated standard uncertainties were

u(EX) = 0.0250mV, u(ES1) = 0.0289mV, u(ES2) = 0.0289mV,

u(pHT1
S1) = 0.0051, u(pHT1

S2) = 0.0051, u(pHT2
S1) = 0.0051, u(pHT2

S2) = 0.0051.

The above standard uncertainties associated with standard pH solutions are given in [114].

The application of the method of section E1.1.4.3 gives pHX = 7.0109 and u(pHX) = 0.0041.

E1.1.6 Reporting the result

The estimate y0 of the measurand and the associated standard uncertainty u(y0) are directly
reported in the conventional manner according to the GUM [2].
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E1.1.7 Interpretation of results

E1.1.7.1 Validation of results

A check on the accuracy of linear interpolation was made for the example in sub-section E1.1.4.3.
NIST certificate [114] gives pH values for the standard solutions considered at temperature val-
ues from 5 °C to 50 °C in steps of 5 °C. Cubic interpolation based in [110] was carried out using
temperature values 15 °C, 20 °C, 25 °C and 30 °C (two values on either side of 23.7 °C), and the
corresponding pH values for S1 given in the certificate. The interpolated value at 23.7 °C was
6.8677 compared with 6.8681 from linear interpolation. The magnitude of the difference be-
tween these values is almost a factor of ten smaller than the standard uncertainty associated
with the obtained pH value. A comparable result was obtained for S2 and for the other linear
interpolations carried out. Thus, linear interpolation is adequate in this example.

In a study by Damasco et al. [116] it was reported that a Monte Carlo method applied to pri-
mary pH measurement gave similar results to the ‘GUM approach’ [2]. The work of Wiora and
Wiora [117] came to the same conclusion. As a simple trial, the Monte Carlo method of GUM
Supplement 1 [3] was applied to the example in section E1.1.5.4. The input quantities were
modelled by normal distributions with means equal to the input estimates and standard devia-
tions equal to the associated standard uncertainties. For 106 Monte Carlo trials, exactly the same
result was delivered as in that section to the number of decimal places stated.

The standard uncertainties associated with the interpolated value pHX are scarcely influenced by
the uncertainties associated with the pH values of the standard solutions. As an instance, if the
latter standard uncertainties are replaced by zero in the example in sub-section E1.1.5.4, u(pHX)
becomes 0.0040 (originally 0.0041), implying that the further repeated observations of the three
potentials would do much to reduce u(pHX), assuming the repeated observations are genuinely
independent.

E1.1.7.2 Correlation issues

It must be emphasized that the treatment given regards all input quantities as independent.
Independence is a common assumption in general in pH uncertainty evaluation. This assumption
is often made implicitly (see [118–121], for instance), but has adverse consequences in that
evaluated pH uncertainties can be optimistically small. To obtain more valid results covariance
effects need to be quantified and incorporated.

Laboratories that follow IUPAC recommendations [74]will not take correlation into consideration
and so might be reporting optimistically small measurement uncertainties. There seems to be
little relevant literature available on pH measurement on obtaining correlations associated with
input quantities. If such correlations were available, they could be accounted for by applying the
provisions in the GUM [2, section 5.2].

It is noted in passing that correlation issues are discussed in [122], but they relate to correlations
induced by the choice of parametrization rather than being associated with input quantities.

In terms of pH certificates used here, it would appear that covariance between pH at different tem-
peratures, and probably between pH values for different materials, can be deduced. The certifi-
cates give two uncertainties, one (as in sections E1.1.5.4 and E1.1.5.5) for an SI-traceable value
and one, much smaller, that omits the uncertainty associated with the Bates-Guggenheim conven-
tion [75]. The Bates-Guggenheim conventional uncertainty, as given on the certificates, could
hence reasonably be taken as at least an approximate covariance when using the SI-traceable
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values. Doing so gives the correlation very close to unity, and indeed that (or any respectably
high value) could be suggested as a generally conservative treatment (going somewhat against
GUM conventional wisdom, which advises realism).

To indicate the effect of ignoring correlation, we carry out an exercise in which full correlation is
present between the pH values for the standards in section E1.1.5.4. Assume that all quantities
are independent apart from these two pH values, which are accorded a correlation of unity.
For this case of perfect correlation [123–125], the standard uncertainties associated with these
quantities must be identical, which indeed they are, being equal to 0.0051. In terms of the
generic notation of section E1.1.5.2, the input covariance matrix V in is no longer diagonal but
has covariance u2(y1) = u2(y2) in off-diagonal positions (2,4) and (4,2):

V in =







u2(x1)
u2(y1) u2(y1)

u2(x2)
u2(y1) u2(y1)






. (E1.1.17)

Noting that u2(y1) = u2(y2) = u(y1, y2) in the fully correlated case, where u(y1, y2) is the co-
variance associated with y1 and y2, by applying a similar treatment to that in section E1.1.5.3
but using the covariance matrix (E1.1.17) gives

u2(y0) = b2(1−q)2u2(x1)+(1−q)2u2(y1)+2q(1−q)u(y1, y2)+b2q2u2(x2)+q2u2(y2)+b2u2(x0).

(E1.1.18)

The only difference is that the terms

(1− q)2u2(y1) + q2u2(y2) = [(1− q)2 + q2]u2(y1) (E1.1.19)

in the uncorrelated treatment [expression (E1.1.16)] are replaced by

(1−q)2u2(y1)+2q(1−q)u(y1, y2)+q2u2(y2) = [(1−q)2+2q(1−q)+q2]u2(y1) (E1.1.20)

in the fully correlated case [expression (E1.1.18)]. Since expression (E1.1.20) simplifies (exactly)
to u2(y1), expression (E1.1.18) becomes

u2(y0) = b2(1− q)2u2(x1) + u2(y1) + b2q2u2(x2) + b2u2(x0) (E1.1.21)

in the fully correlated case.

In the application of expression (E1.1.21) to the data in section E1.1.5.4, the standard uncer-
tainty associated with pHX = 7.0109 becomes u(pHX) = 0.0051 (compared with 0.0041 when
correlation is disregarded). Unsurprisingly, this value of u(pHX) is the same as the (identical)
values of the ‘input’ standard uncertainties u(pH25 °C

S1 ) and u(pH25 °C
S2 ). Thus there is no reduction

in uncertainty in the fully correlated case.

It is observed that the standard uncertainties u(pH25 °C
S1 ) and u(pH25 °C

S2 )make comparatively large
contributions compared with those for the measured potential values. The five standard un-
certainty contributions [the square roots of the successive terms on the right side of expression
(E1.1.16)] in the case where correlation is ignored are

−0.0004, 0.0001, 0.0038, 0.0013, −0.0004

to four decimal places. The values are to be compared with the corresponding four values from
expression (E1.1.21), namely,

−0.0004, 0.0001, 0.0051, −0.0004,
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in the correlated case, confirming that perfectly correlated standard uncertainty components are
combined additively (see [2, clause 5.2.2, note 1]):

0.0038+ 0.0013= 0.0051.

The situation is compounded in section E1.1.5.5 where four (rather than two) pH values and two
temperature values are involved.

Assuming independence of the values of the pH standards in either case is not a valid assumption.
A treatment such as given in [123, section 4.1] is suggested, that is, to work with a common
correlation coefficient ρ associated with the input pH values. The basic change would be that
the off-diagonal terms of V in in formula (E1.1.17) would become ρu2(y1). (The case ρ = 0
yields the uncorrelated case and ρ = 1 the case of perfect correlation.) A value for ρ might be
obtained on technical grounds by examining uncertainty budgets (to see the relative contribution
from the Bates-Guggenheim convention, for instance) or some other means such as employing
expert judgment.

A further, chemical, issue is that the NIST standards are not solutions; they are solids that have
to be weighed, mixed and dissolved fully in high purity water. Buffer solutions are not particu-
larly sensitive to minor dilution problems, but the preparation just mentioned will add further
variation. Atmospheric CO2, for example, can shift measured pH values, especially in a neutral
pH test sample (pH = 7), unless that is also buffered or air excluded. Although a measurement
laboratory would exercise care in measuring secondary solutions, the analysis given here omits
potentially important handling effects.
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Example E1.2

Straight-line calibration in
errors-in-variables models
S. Martens, K. Klauenberg, C. Elster

E1.2.1 Summary

In calibration practice, regression problems often include uncertainties in both the dependent
and independent variables, which are also called errors-in-variables models. The parameters of
such regression models can be estimated with the help of weighted total least squares methods.
The uncertainty for these regression parameters can be determined by the GUM approaches of
propagating uncertainties [2,4] or propagating distributions [3,4]. Alternatively Bayesian infer-
ence can be applied.

Comparing these three approaches for straight-line calibration in errors-in-variables models re-
sulted in the examples

— “Calibration of a sonic nozzle as an example for quantifying all uncertainties involved in
straight-line regression” (see E4.3),

— “Quantifying uncertainty when comparing measurement methods – Haemoglobin concen-
tration as an example of correlation in straight-line regression” (see E5.3), and

— “Calibration of a torque measuring system – GUM uncertainty evaluation for least-squares
versus Bayesian inference” (see E6.2).
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Example E1.3

Bayesian approach applied to the mass
calibration example in JCGM 101:2008
S. Demeyer, N. Fischer, M.G. Cox, A.M.H. van der Veen, J.A. Sousa, O. Pellegrino, A. Bošn-
jaković, V. Karahodžić, C. Elster

E1.3.1 Summary

This example describes the calibration of a conventional mass of a weight W against a reference
weight R with a nominal mass of 100 g. The example builds on that given in JCGM 101:2008.
This time a Bayesian evaluation of the measurement is performed. A Bayesian approach differs
from the Monte Carlo method (MCM) of JCGM 101:2008 and the LPU in JCGM 100:2008 in that
it combines prior knowledge about the measurand with the data obtained during calibration.
From the joint posterior probability density function which is obtained from this combination, a
value and a coverage interval for the measurand are obtained.

E1.3.2 Introduction of the application

A Bayesian approach to the mass calibration example consists in updating a prior state of knowl-
edge on the measurand by the means of new information obtained during calibration.

In JCGM 101:2008 [3], the available information is a best estimate and its associated uncertainty.
A comparison of results between LPU, MCM and the Bayesian approach is given in this example.
We show that the three methods give similar results when the Bayesian approach is conducted
under a non-informative prior distribution. We also show the effect of choosing various prior
parameter values for Gaussian prior distributions.

The data and sources of this example are available electronically [12].

E1.3.3 Specification of the measurand

As described in JCGM 101:2008 [3], the application concerns the calibration of a weight W of
mass density ρW against a reference weight R of mass density ρR having nominally the same
mass mnom, using a balance operating in air of mass density ρa. Let δmR be the mass of a small
weight of density ρR added to R to balance it with W.
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It is usual to work in terms of conventional masses. The conventional mass mW,c of W is the
mass of a (hypothetical) weight of density ρ0 = 8× 103 kg m−3 that balances W in air at density
ρa0
= 1.2kg m−3.

The measurand δm= mW,c−mnom is the deviation of mW,c from the nominal mass mnom = 100g.

E1.3.4 Measurement model

According to JCGM 101:2008 [3], in terms of conventional masses mW,c, mR,c and δmR,c, an
approximation adequate for most purposes is

mW,c = (mR,c +δmR,c)
�

1+ (ρa −ρa0
)
�

1
ρW
−

1
ρR

��

. (E1.3.1)

The measurement model used in the mass calibration example of [3] is

δm= (mR,c +δmR,c)
�

1+ (ρa −ρa0
)
�

1
ρW
−

1
ρR

��

−mnom. (E1.3.2)

E1.3.5 Input quantities of the measurement model

Table E1.3.1 summarizes the input quantities mR,c, δmR,c, ρa, ρW and ρR, and the PDFs assigned
from [3]. In the table, a Gaussian distribution N(µ,σ2) is described in terms of expectation µ
and standard deviation σ, and a rectangular distribution R(a, b) with endpoints a and b (a < b)
in terms of expectation (a+ b)/2 and semi-width (b− a)/2.

Table E1.3.1: The input quantities and PDFs assigned to them for the mass calibration model
(E1.3.2), from JCGM 101:2008 [3].

Quantity Distribution
Parameters

Expectation Standard Expectation Semi-width
µ deviation σ (a+ b)/2 (b− a)/2

mR,c N(µ,σ2) 100 000.000 mg 0.050 mg
δmR,c N(µ,σ2) 1.234 mg 0.020 mg
ρa R(a,b) 1.20 kg m−3 0.10 kgm−3

ρW R(a,b) 8× 103 kgm−3 1× 103 kg m−3

ρR R(a,b) 8.00× 103 kgm−3 0.05× 103 kg m−3

Note that the input quantity δmR,c is usually associated with fresh calibration results but that in
the JCGM 101:2008 [3] treatment of mass calibration, a Type B uncertainty evaluation of δmR,c
is performed resulting in a Gaussian distribution δmR,c ∼ N(d, u2(d)) where d is a best estimate
with associated uncertainty u(d).
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E1.3.6 Uncertainty propagation

E1.3.6.1 Bayesian analysis: generalities

To set up a Bayesian framework [65, 126], a statistical model is needed for which we choose to
revise notation, as in [127], so that random variables are now represented by Greek letters. In
this document, we consider statistical models of the form

D|η,θ ∼ N
�

[η− G(θ )]/C(θ ), u2(d)
�

(E1.3.3)

in which the observed data d is modelled as a realization of a random variable D having a Gaus-
sian distribution with mean [η− G(θ )]/C(θ ) and variance u2(d), C(θ ) ̸= 0 and G(θ ) are smooth
functions. The measurand is denoted by η and θ is a vector of further parameters.

The statistical model (E1.3.3) is equivalent to the measurement model (E1.3.2)

η= G(θ ) + C(θ )ζ (E1.3.4)

with

ζ= δmR,c, (E1.3.5)

θ =
�

ρa,ρW,ρR, mR,c

�

, (E1.3.6)

C(θ ) = 1+ (ρa −ρa0
)
�

1
ρW
−

1
ρR

�

, (E1.3.7)

G(θ ) = C(θ )mR,c −mnom. (E1.3.8)

The measurement result (accounting for uncertainty in θ ) is represented by the marginal poste-
rior probability distributionπ(η|d), resulting from the (potentially) high-dimensional integration

π(η|d) =
∫

θ

π(η,θ |d)dθ , (E1.3.9)

where π(η,θ |d) is the joint posterior distribution of (η,θ ).

In this document, point estimates are derived from equation (E1.3.9) for comparison with LPU
and MCM. We introduce the following quantities bη = E(η|d) =

∫

ηπ(η|d)dη to denote the
posterior mean of the measurement result and u2(bη) = V (η|d) =

∫

(η− bη)2π(η|d)dη to denote
the posterior variance of the measurement result. Coverage intervals are computed as shortest
intervals as described in [3], similar to highest posterior density (HPD) intervals in Bayesian
statistics.

E1.3.6.2 Prior distributions

In the Bayesian paradigm, a prior state of knowledge is described by a prior distribution π(η).
For instance, a way to express the prior belief that the measurand is close to a specified value
η0 is to use a prior Gaussian distribution π(η) ∼ N(η0,σ2

0) where the standard deviation σ0
controls the degree of belief in η0. For instance, if |η0| is much larger than σ0, a small value of
the relative uncertainty σ0/η0 gives an informative prior distribution whereas a large value of
this ratio leads to a poorly informative prior. Another way of modelling poor prior information is
to use the so-called non informative prior π(η)∝ 1. Alternative prior distributions can be used
(uniform, truncated, etc.) to model particular features of the measurand (bounds, non negativity,
etc.).
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E1.3.6.3 Posterior distributions

Bayes’ formula gives the expression of the posterior distribution π(η,θ |d) as a function of the
likelihood l(d|η,θ ) and the prior distribution π(η,θ ):

π(η,θ |d) =
l(d|η,θ )π(η,θ )

m(d)
, (E1.3.10)

where m(d) =
∫

l(d|η,θ )π(η,θ )dη is the marginal distribution of d, π(η,θ ) = π(η)π(θ ) and
π(θ ) is the probability distribution of the input quantities contained in θ .

Equivalently, (E1.3.10) can be translated into the proportionality relation as follows

π(η,θ |d)∝ l(d|η,θ )π(η,θ ). (E1.3.11)

Letting s = u(d), the likelihood is

l(d|η,θ )∝
1

([C(θ )]2 s2)
1
2

exp

�

−
(η−m(θ ))2

2 [C(θ )]2 s2

�

, (E1.3.12)

where m(θ ) = C(θ )d + G(θ ).

Under the non-informative prior distribution π(η)∝ 1, Bayes’ formula gives

π(η,θ |d)∼ N
�

m(θ ), [C(θ )]2 s2
�

π(θ ). (E1.3.13)

Under the Gaussian prior distribution, π(η)∼ N(η0,σ2
0), the Bayes’s formula gives

π(η,θ |d)∼ N
�

mp(θ ),σ
2
p(θ )

�

π(θ ), (E1.3.14)

where the posterior mean and variance of η are, respectively,

mp(θ ) = σ
2
p(θ )

�

η0

σ2
0

+
m(θ )

[C(θ )]2s2

�

, σ2
p(θ ) =

�

1

σ2
0

+
1

[C(θ )]2s2

�−1

.

The posterior mean is a weighted mean between the prior η0 and the best estimate m and the
inverse posterior variance, also called precision, is the sum of the prior precision, 1/σ2

0, and the
precision from the best estimate, 1/{[C(θ )]2s2}.

The integration according to (E1.3.9) is performed with a Monte Carlo method. The total number
of Monte Carlo trials is decomposed as follows: nMC draws according to π(θ ) and npost draws
from the Gaussian distributions (E1.3.13) or (E1.3.14) giving a total of nMC × npost simulations.

E1.3.7 Reporting the result

E1.3.7.1 Bayesian analysis of the mass calibration example in JCGM 101:2008

Results obtained with LPU, MCM and the Bayesian approach with non-informative prior (Bayes-
NI) are displayed in Table E1.3.2 (LPU1 and LPU2 denote respectively the first and second order
Taylor approximations) and plotted in Figure E1.3.1. The comparison shows a good agreement
between methods1.

1For the so-called non informative prior, [127] showed that Bayesian marginal posterior uncertainty coincides with
the MCM uncertainty estimate when the model is linear.
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Table E1.3.2: Comparison of results obtained with LPU1, LPU2, MCM and Bayes-NI, the Bayesian
analysis conducted with non informative prior distribution. Results from LPU1, LPU2, MCM are
taken from [3].

Method bδm u(bδm) Shortest 95 %
/mg /mg coverage interval, CI/mg

LPU1 1.234 0 0.053 9 [1.128 5, 1.339 5]
LPU2 1.234 0 0.075 0 [1.087 0, 1.381 0]
MCM 1.234 0 0.075 4 [1.083 4, 1.382 5]

Bayes-NI 1.234 0 0.075 5 [1.084 5, 1.383 0]
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Figure E1.3.1: Distributions of mass difference δm obtained under Gaussian approximation with
LPU2, MCM and Bayes-NI from the values in Table E1.3.2.

Results obtained with a Gaussian prior distribution are displayed in Table E1.3.3 and plotted
in Figure E1.3.2. It can be observed that, when the prior standard deviation σ0 increases, the
weight of the prior distribution decreases and the resulting posterior distribution tends to the
non informative case.

Table E1.3.3: Comparison of results obtained with the Bayesian analysis under Gaussian prior
distributions.

η0 σ0
bδm u(bδm) Shortest 95 %

/mg /mg /mg /mg coverage interval, CI/mg

1.134 0.020 1.184 0 0.039 0 [1.106 9, 1.261 3]
1.134 0.01 1.153 9 0.017 1 [1.127 2, 1.152 5]
1.134 0.040 1.214 0 0.061 0 [1.093 6, 1.334 5]

In this section, all the results obtained with the Bayesian approach involve 2× 107 Monte Carlo
trials (nMC = 20000, npost = 1000).
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Figure E1.3.2: Posterior distributions of δm obtained under Gaussian prior distributions from the
values in Table E1.3.3.

E1.3.8 Conclusion

This document shows the main features of a Bayesian approach of uncertainty evaluation applied
to the mass calibration example in JCGM 101:2008 [3]. The measurement result is represented
by the marginal posterior distribution of the measurand which accounts for both uncertainty
sources and prior information on the measurand, and is comparable in nature with the PDFs
provided by MCM [3] and by the Gaussian distribution from LPU [2].

In general, the Bayesian approach provides a flexible tool for statistical modelling and achieves
added value through prior information, at some computational price. In many circumstances,
reduced uncertainties are obtained.

This example illustrates the well known property that, if a non-informative prior distribution is
chosen, the Bayesian posterior distribution is essentially the same distribution from which the
MCM determines a sample for linear measurement models, see for instance [127] and [128] for
the mass calibration problem.

This example shows that prior distributions can be chosen to allow a simplified Bayesian uncer-
tainty analysis using a Monte Carlo method instead of a Markov Chain Monte Carlo method [129],
usually used to sample from high-dimensional integrals, as in [128] and [130], which can be
helpful for any practitioner already familiar with MCM willing to perform a Bayesian uncertainty
analysis.
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Evaluation of measurement uncertainty
in SBI – Single Burning Item reaction to
fire test

L.L. Martins, A.S. Ribeiro, M.G. Cox, J.A. Sousa, D. Loureiro, M.C. Almeida, M.A. Silva,
R. Brito, A.C. Soares

E1.4.1 Summary

This example illustrates the application of the Monte Carlo Method (MCM) in measurement
uncertainty propagation related to the single burning item (SBI) test, within the European nor-
mative framework of reaction to fire tests for building products, namely, the EN 13823:2010+A1
[131]. The use of the MCM is justified by the multivariate, non-linear and complex nature of the
functional relations between a large number of input, intermediate and output quantities, thus
providing a numerical approach to the validation of the GUM uncertainty framework (GUF) [2]
described in [132].

E1.4.2 Introduction of the application

The objective of the SBI standard test [131] is to measure a set of quantities which determine
the evaluation and classification of a construction material (excluding floorings), aiming to char-
acterise its contribution to the deflagration and propagation of fires in buildings, when exposed
to adverse thermal conditions by means of a combustion item.

In this test, the specimen retrieved from the tested material is composed of two plates vertically
positioned with a 90° angle between both plates, being exposed to a main burner located in the
lower region of the plate’s junction. The specimen’s performance is evaluated for a period of
20 minutes, based on the indirect measurement of quantities related to heat release and smoke
production. Complementary observations are also performed regarding lateral flame propagation
and the production of drops or particles from the combustion process.
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E1.4.3 Specification of the measurand(s)

Two main measurands are defined in the SBI test: the heat release rate (HRR) , which corre-
sponds to the thermal power released in a given time instant (expressed in kW) and, in a similar
way, the smoke production rate (SPR), both being related to the combustion of the specimen
(expressed in m2 s−1). Due to the applied test method [131], the definitions of these quantities
are related to different time periods of the SBI test, namely:

HRR(t) =







0, t ≤ 300s
max [0,HRRtotal(t)−HRRburner] , 300 s≤ 312s

HRRtotal(t)−HRRburner, 312 s< t
(E1.4.1)

where HRRtotal(t) is the total thermal power released by the specimen and the main burner in the
time instant t, while HRRburner is the average thermal power released only by the main burner;
and

SPR(t) =







0, t ≤ 300 s
max [0, SPRtotal(t)− SPRburner] , 300 s< t ≤ 312s

SPRtotal(t)− SPRburner, 312 s< t
(E1.4.2)

where SPRtotal(t) is the total smoke production rate of the specimen and the main burner in the
time instant t, while SPRburner is the average smoke production rate related only to the main
burner.

In both cases, the initial stage of the SBI test time period (between 210 s and 270 s) is used
to determine the quantities HRRburner and SPRburner, based on average values obtained when
combustion occurs only in an auxiliary burner (identical to the main burner) installed in the
experimental apparatus.

The heat release rate is a key intermediate quantity in the determination of two main output
quantities of the SBI test – THR, the total heat release (usually expressed in MJ) from the speci-
men in a certain time exposure to the main burner flames (namely, in the first 600 s), and FIGRA,
the fire growth rate (expressed in W s−1), and defined as the maximum value of the quotient of
heat release rate from the specimen and the time of its occurrence using a THR threshold (such
as 0.2 MJ or 0.4 MJ).

In a similar way, the smoke production rate is also a significant intermediate quantity in the SBI
test since it contributes for the determination of two other main output quantities – TSP, the total
smoke production (in m2) from the specimen in a certain time exposure to the main burner flames
(namely, in the first 600 s), and SMOGRA, the smoke growth rate (expressed in m2 s−2), which is
defined as the maximum value of the quotient of smoke production rate from the specimen and
the time of its occurrence.

This example only addresses the measurement uncertainty evaluation of the quantities heat re-
lease rate and smoke production rate, since the posterior uncertainty propagation from these in-
termediate key quantities to the output quantities of the SBI test (total heat release, fire growth
rate, total smoke production and smoke growth rate) is straightforward and characterised by
simple linear mathematical models. Both the heat release rate and the smoke production rate
quantities are indirectly measured, in a given time instant, based on a large number of input
quantities and mathematical models, as described in the following sections.
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E1.4.4 Measurement model

The heat release rate measurement model is derived from the studies performed by [133] in
the oxygen consumption calorimetry research field. The measurement principle states that the
amount of heat released per unit of consumed oxygen volume, E′, during a combustion process
(in MJ m−3) is considered constant regardless of the combustion material, which can be expressed
by

HRR= E′ · x0
O2
·ϕ · qVs′

(E1.4.3)

where x0
O2

is the oxygen amount fraction in the ambient, ϕ is the oxygen depletion factor and

qVS
is the volumetric flow of air in the ambient (expressed in m3 s−1).

The amount of heat released per unit of consumed oxygen volume quantity can be determined
by the product between the oxygen density, ρO2

, (in kg m−3) and the heat release per unit of
consumed oxygen mass, E (in MJ kg−1), i.e.,

E′ = ρO2
· E (E1.4.4)

The amount fraction oxygen in the ambient is given by

x0
O2
= x initial

O2
·
�

1− xo
H2O

�

(E1.4.5)

x initial
O2

being the amount fraction oxygen measured in the initial stage of the SBI test (in the

time period between 30 s and 90 s), with a gas analyser1, and x0
H2O, the amount fraction water

in the ambient, which can be determined by the following model (derived from the Clausius-
Clapeyron equation for water vapour saturation pressure and based on conventional values for
the gas constant and the heat vaporisation of water)

x0
H2O =

rh
100 · patm

exp
�

23.2−
3816

Tinitial − 46

�

(E1.4.6)

where rh is the relative humidity in moist air (as a percentage), Tinitial is the initial air temperature
inside the exhaust duct (in K) and patm is the atmospheric pressure (in Pa). The oxygen depletion
factor ϕ is calculated by

ϕ =
x initial

O2
(1− xCO2

)− xO2
(1− x initial

CO2
)

x initial
O2

(1− xO2
− xCO2

)
(E1.4.7)

where x initial
O2

and x initial
CO2

are, respectively, the amount fractions of oxygen and carbon dioxide
measured in the initial stage of the SBI test with the gas analyser, while x02 and xCO2

are respec-
tively, the molar fractions of oxygen and carbon dioxide measured with the same equipment in
a given time instant after the initial stage.

The volumetric flow rate of air in the ambient is indirectly measured based on the expression

qVS
=

qVc

1+ (α− 1) ·ϕ
(E1.4.8)

1This equipment receives a gas sample from a normalised exhaust duct in which all water vapour and water soluble
gases are eliminated before measurement.

Examples of evaluating measurement uncertainty First edition



Example E1.4. Single Burning Item reaction to fire test 80

in which qVc
is the volumetric flow rate of the gases in the exhaust duct (in m3 s−1) and α rep-

resents the expansion factor. This last quantity reflects the fact that, in a combustion chemical
reaction, the amount of substance related to combustion products is not identical to the amount
of substance related to the oxygen consumed in the reaction process, i.e.

α= 1+ x0
O2
(β − 1) (E1.4.9)

where x0
O2

is obtained from expression (E1.4.5) and β is the ratio between the amount of sub-
stance of combustion products and of consumed oxygen. A combustion reaction involving reac-
tants such as hydrocarbons (CaHbOcNdXe) and oxygen (O2) originates products such as carbon
dioxide (CO2) , water (H2O) , hydrates (HX), carbon monoxide (CO) and nitrogen (N2) , the over-
all chemical reaction formula being given by

CaHbOcNdXe+
�

a−
g
2
+

b− e
4
−

c
2

�

O2→ (a−c)CO2+
b− e

2
H2O+eHX+gCO+

d
2

N2 (E1.4.10)

where particular constants a to g apply in any specific instance. Therefore, based on expres-
sion (E1.4.10) and by definition, the β ratio is given by

β =
4a+ 2b+ 2e+ 2d

4a+ b− e− 2c − 2g
(E1.4.11)

Depending on the type of hydrocarbon subjected to combustion, several estimates are known for
the β ratio usually values between one and two2. The volumetric flow rate of the gases in the
exhaust duct is obtained by the expression

qVc
=

kt

kp
·

√

√

√
2∆p
ρT0

·
T0

T
· A (E1.4.12)

where ∆p is the differential pressure measured in a bidirectional pressure sensor located inside
the exhaust duct (in Pa ); ρT0

is the moist air density3 for a reference temperature, T0, equal to
298.15 K; T is the gas temperature in the exhaust duct (in K); A is the area (in m2) of the exhaust
duct circular cross-section; kp is the differential pressure correction factor; and kt is the global
correction factor.

Since the exhaust duct as a circular cross-section, its area corresponds to

A=
π

4
· d2 (E1.4.13)

where d is the exhaust duct diameter (in m). For the quantification of the moist air density
(considering the reference temperature T0 in K ), the following expression [134] is used:

ρT0
=

0.34848 · pAtm − 0.009024rhexp [0.0612 · (T0 − 273.15)]
Tn

(E1.4.14)

2Examples of β ratio estimates for the combustion of: carbon (C, β = 1); ethylene (C2H4, β = 1.3); propene
(C3H6, β = 1.3); butane (C4H10, β = 1.4); heptane (C7H16, β = 1.4); propane (C3H8, β = 1.4); ethane (C2H6, β =
1.4); methane (CH4, β = 1.5); hydrogen (H2, β = 2).

3Since the density of the gas mixture inside the exhaust duct is unknown, this quantity is assumed to be close to
the moist air density (expressed in kgm−3).
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The differential pressure correction factor is considered in expression (E1.4.12) due to the use
of a bidirectional sensor [135] instead of a conventional Pitot tube (vulnerable to solid particles
in the flow). This quantity is defined by

kp =

r

∆p
ρTamb

vc
(E1.4.15)

where vc is the linear flow velocity in the centre of the exhaust duct cross-section (in m s−1) and
ρTamb

is the moist air density [134] for ambient temperature, Tamb (in K) given by

ρTamb
=

0.34848patm − 0.009024rh exp [0.0612 (Tamb − 273.15)]
Tamb

(E1.4.16)

The global correction factor, kt, corresponds to the average of three individual corrections, kt,v
kt propane, kt heptane related to the periodic testing of the SBI experimental apparatus aiming, re-
spectively, at the determination of the non-uniformity of the flow velocity in the exhaust duct
and the comparison between experimental and theoretical heat release rate values, concerning
the combustion of known pure substances such as propane and heptane. In the case of the kt,v
correction, its quantification is supported by

kt,v =

∑5
i=1 vi

5 · vc
(E1.4.17)

considering the average4 flow velocities measured in the i radius of the exhaust duct, vi , and in
its centre, vc, all these quantities being expressed in m s−1.

The kt propane correction is expressed by the ratio between the theoretical and the experimen-
tal heat release rate values of the propane combustion (in kW) respectively, HRRtheoretical

i and

HRRexperimental
i , i.e.

kt,propane = k′t ·

∑

i HRRtheoretical
i

∑

i HRRexperimental
i

(E1.4.18)

considering the several testing steps indexed by i of this normalised test [131], where k′t is the
global correction used in the experimental determination of the heat release rate5. The theoret-
ical heat release rate at the i the step is given by

HRRtheoretical
i = qmi

|∆hl
c|propane′ (E1.4.19)

where qmi
is the propane mass flow in the i th testing step (expressed in kg s−1), and

�

�∆hl
c

�

�

propane

is the low enthalpy of propane combustion per unit of mass (in kJ kg−1). It should be noted
that, in the calculation of HRR experimental

i by expression (E1.4.3), the heat released per unit of
consumed oxygen volume adopts a specific estimate and measurement uncertainty known for
propane, instead of the value mentioned in [132] and used for construction materials in the SBI
test. Regarding the ktheptane correction, this quantity is obtained from the expression

kt heptane = k′t ·
|∆hl

c|heptane ·mheptane

THR
(E1.4.20)

4The measurement sample is composed of four velocity measurements in each of five normalised distances from
the exhaust duct centre, in addition to four velocity measurements at the centre.

5This quantity is also included in HRRexperimental
i ; therefore, it can be removed from expression (E1.4.18).
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where k′t is the global correction used in the experimental determination of the total heat re-
lease 6 THR, (in MJ) during the heptane combustion test,

�

�∆hl
c

�

�

heptane is the low enthalpy of

heptane combustion per unit of mass (in kJ kg−1) and mheptane is heptane mass used as burn-
ing combustible (in kg ). As in the case of propane combustion, the estimate and measurement
uncertainty of the heat released per unit of consumed oxygen volume adopts known values for
heptane, when using expression (E1.4.3).

The smoke production rate, SPR, is defined in a similar way to the heat release rate quantity.
However, its measurement is based on the light attenuation phenomenon resulting from the
presence of smoke in an optical path. In this case, the measurement model corresponds to

SPR=
qVc

L
·

T
T0
· ln

�

1
τ

�

(E1.4.21)

where qVc
is the volumetric flow rate of gases in the exhaust duct (in m3 s−1), obtained from

expression (E1.4.12); L is the optical path length (in m); the factor T/T0 is a correction for
the temperature difference between the gases in the exhaust duct, T, (in K) and the reference
temperature, T0, equal to 298.15 K; and τ is transmittance, defined as the ratio between the
luminous intensity measured in a given time instant and in the initial testing stage, I and I0,
respectively. In the SBI test, the luminous intensity that reaches the photo detector installed in
the exhaust duct, is considered proportional to the electrical tension between its terminals so
that the transmittance quantity is determined by electrical tension measurements.

In order to improve the comprehension of the functional relations related to the presented mea-
surement models, figure E1.4.1 shows a schematic representation of the heat release rate cal-
culation process, while figure E1.4.2 refers to the smoke production rate. Particular attention is
given to the global correction factor and to its calculation process, schematically represented in
figure E1.4.3.

E1.4.5 Uncertainty propagation

The measurement uncertainty evaluation shown in this example is composed of two main stages:
(i) the formulation stage, in which all the input quantities of the mathematical models involved
in the measurements are identified and characterised, through the assignment of a probability
density function (PDF) which better represents the dispersion of values related to its measure-
ment; (ii) the calculation stage, from which the measurement uncertainty of the quantities of
interest (heat release rate and smoke production rate) is obtained, based on the propagation of
the measurement uncertainties of the input quantities through the above described mathematical
models.

In the presented case, the MCM was used in the calculation stage [3,4], justified by the multivari-
ate, non-linear and complex nature of the functional relations between a large number of input,
intermediate and output quantities. For this purpose, the Mersenne Twister pseudo-random num-
ber generator [46] was used to obtain numerical sequences with a typical dimension (number of
trials) of 1× 106, in order to give a good assurance in obtaining convergent solutions. In addi-
tion, validated computational tools for converting and sorting the generated numerical sequences
were also used.
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In the SBI test, the heat release rate quantity is measured in different test stages, firstly in the
preliminary periodic combustion of propane and heptane and, afterwards, during the combus-
tion of the tested specimen. The only significant difference is related to the heat release per
unit of consumed oxygen mass quantity, which assumes different estimates and measurement
uncertainties in each test case (propane, heptane or specimen combustion).

Table E1.4.1 shows the adopted probabilistic formulation of the input quantities required for
the determination of the total heat release rate related to the combustion of a certain specimen,
which already includes (in the global correction factor) the measurement uncertainty of the heat
release rate measured in the propane and heptane combustions.

Table E1.4.1: Probabilistic formulation of the input quantities related to the heat release rate
measurement

Quantity Symbol PDF Estimate Standard
uncertainty

Relative humidity rh Gaussian 60.1 % 1.1 %
Atmospheric pressure patm Gaussian 101.4 kPa 0.2 kPa
Initial air temperature inside the
exhaust duct

Tinitial Gaussian 288.3 K 0.1 K

Oxygen density ρO2
Gaussian 1.308 kgm−3 0.003 kgm−3

Heat released per unit of con-
sumed oxygen mass

E Gaussian 13.1 MJ kg−1 0.3 MJ kg−1

Initial amount fraction of oxygen x initial
O2

Gaussian 0.2095 0.000 04
Amount fraction of oxygen xO2

Gaussian 0.206 7 0.000 2
Initial amount fraction of carbon
dioxide

x initial
CO2

Gaussian 0.000 3 0.000 005

Amount fraction of carbon dioxide xCO2
Gaussian 0.001 8 0.000 02

Exhaust duct diameter d Gaussian 0.315 m 0.001 m
Exhaust gas temperature T Gaussian 313.8 K 0.4 K
Ambient temperature Tamb Gaussian 288.6 K 0.7 K
Differential pressure ∆p Gaussian 68.6 Pa 2.1 Pa
Linear flow velocity in the centre of
the exhaust duct cross-section

vc Gaussian 9.6 ms−1 0.7 ms−1

Ratio between the amount of sub-
stance of combustion products and
of consumed oxygen

β Uniform 1.5 0.3

Global correction factor kt Gaussian 0.77 0.02

Regarding the smoke production quantity, table E1.4.2 presents the adopted probabilistic formu-
lation of the input quantities which supported the MCM simulations.
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Figure
E1.4.1:

Functionaldiagram
of

the
heat

release
rate

quantity
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Figure
E1.4.3:

Functionaldiagram
of

the
globalcorrection

factor
quantity

rate
quantity
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Table E1.4.2: Probabilistic formulation of the input quantities of the smoke production rate

Quantity Symbol PDF Estimate Standard
uncertainty

Relative humidity rh Gaussian 60.1 % 1.1 %
Atmospheric pressure patm Gaussian 101.4 kPa 0.2 kPa
Ambient temperature Tamb Gaussian 288.6 K 0.9 K
Exhaust duct diameter d Gaussian 0.315 m 0.001 m
Optical path length L Gaussian 0.315 m 0.001 m
Transmittance τ Gaussian 0.974 0.005
Exhaust gas temperature T Gaussian 313.8 K 0.4 K
Differential pressure ∆p Gaussian 68.6 Pa 2.1 Pa
Linear flow velocity in the centre of
the exhaust duct cross-section

vc Gaussian 9.6 ms−1 0.7 ms−1

Global correction factor kt Gaussian 0.77 0.02

Table E1.4.3: MCM simulation results for intermediate quantities in the calculation of the heat
release rate

Quantity Symbol PDF Estimate Standard
uncertainty

Water vapour amount fraction x0
H2O Gaussian 0.0146 0.0004

Moist air density for ambient tem-
perature

ρTamb
Gaussian 1.180 kgm−3 0.005 kgm−3

Differential pressure correction
factor

kp Gaussian 1.15 0.09

Expansion factor α Gaussian 1.1 0.05
Volumetric flow rate of gases in the
exhaust duct

qVc
Gaussian 0.55 m3 s−1 0.04 m3 s−1

Heat released per unit of con-
sumed oxygen volume

E′ Gaussian 17.1 MJ m−3 0.4 MJ m−3

Ambient oxygen molar fraction x0
O2

Gaussian 0.2074 0.000 05
Oxygen depletion factor ϕ Gaussian 0.015 0.001
Ambient volumetric flow rate qVs

Gaussian 0.55 m3 s−1 0.04 m3 s−1
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Figure E1.4.4: Output PDF of the heat release rate quantity

Figure E1.4.5: Output PDF of the smoke production rate quantity
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Table E1.4.4: MCM simulation results for the heat release rate

Quantity Symbol PDF Estimate Standard
uncertainty

Required
accuracy

Simulation
accuracy

Heat release rate HRR Gaussian 30 kW 3 kW 0.5 kW 0.1 kW

Table E1.4.5: MCM simulation results for intermediate quantities in the calculation of the smoke
release rate

Quantity Symbol PDF Estimate Standard
uncertainty

Moist air density for ambient tem-
perature

ρTamb
Gaussian 1.220 kgm−3 0.005 kgm−3

Differential pressure correction
factor

kp Gaussian 1.11 0.09

Volumetric flow rate of gases in the
exhaust duct

qVc
Gaussian 0.55 m3 s−1 0.04 m3 s−1

Table E1.4.6: MCM simulation results for the smoke production rate (0.05 m2 s−1 level)

Quantity Symbol PDF Estimate Standard
uncertainty

Required
accuracy

Simulation
accuracy

Smoke production
rate

SPR Gaussian 0.05 m2 s−1 0.02 m2 s−1 0.005 m2 s−1 0.0005 m2 s−1

E1.4.6 Reporting the result

The measurement uncertainties of the input quantities shown in table E1.4.1 were propagated
by the MCM to the intermediate quantities (results shown in table E1.4.3) and, posteriorly, to
the total heat release rate quantity (see table E1.4.4 for an example of a 30 kW thermal power
level). Figure E1.4.4 shows the output PDF obtained for the heat release rate quantity.

Additional simulations were performed for higher thermal power levels (up to 250 kW), showing
similar results. The obtained relative standard uncertainty varies between 8 % and 9 %.

The obtained results for the smoke production quantity are shown in table E1.4.5 (intermediate
quantities) and table E1.4.6 (output quantity). Figure E1.4.5 shows the PDF obtained by the
MCM for the smoke production rate.

Additional simulations were performed for higher smoke levels (up to 6.8 m2 s−1), showing sim-
ilar results. The obtained relative standard uncertainty varies between 9 % and 12 %.

E1.4.7 Interpretation of results

As seen in figures E1.4.4 and E1.4.5, the output PDF of both the heat release and smoke produc-
tion quantities have a geometrical shape close to a Gaussian PDF, which was expected since all
the input quantities (with the exception of the ratio between the amount of substance of com-
bustion products and of consumed oxygen, see table E1.4.1) were taken as Gaussian. In terms
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of validation of results, tables E1.4.4 and E1.4.6 show that the number of performed simulations
allowed achieving a computational accuracy quite lower than the required accuracy needed to
perform the SBI test. In this particular example, the major advantage of using the MCM, when
compared with the GUF approach, relies on its greater simplicity and accuracy when dealing with
a large number of input quantities.
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Example E1.5

Statistical reassessment of calibration
and measurement capabilities based on
key comparison results

K. Shirono, M.G. Cox

E1.5.1 Summary

This example illustrates the minimal adjustment of calibration and measurement capability (CMC)
uncertainty claims so they are supported by the results of a key comparison (KC). According to
the CIPM Mutual Recognition Arrangement (MRA) [78, clause T.7], CMC uncertainties are nor-
mally expressed at a 95 % level of confidence. CMC uncertainties are the expanded measurement
uncertainties available to customers under normal conditions of measurement. When laborato-
ries’ CMC claims are unsupported by the relevant KC, modified values must be assigned to their
declared CMC uncertainties.

In the vast majority of cases when CMCs apply to a continuous interval of values such as mass
fraction or wavelength, KCs are carried out for selected discrete values of the quantity concerned.
Since the comparison at each discrete value strictly only supports the CMC uncertainty at that
value, it is not immediately apparent how to modify the CMC uncertainties. Under realistic as-
sumptions, we apply a method that is applicable in such an instance and for which the reported
CMC uncertainties are amplified so that they are underpinned by the results of the KC. The am-
plification factors depend on the laboratories’ degrees of equivalence (DoEs) for these discrete
values, adjusted to achieve consistency with the key comparison reference values (key compari-
son reference values (KCRVs)).

The method is based on the patterns in the individual behaviour of the DoEs of the participating
laboratories for the discrete values, implying the presence of correlation associated with the DoE
values. It applies when the weighted mean of some or all of the measured values reported by the
participating laboratories in the KC is used to obtain the KCRV.

Full details of the example are provided in [136].
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E1.5.2 Introduction of the application

CMCs must be consistent with results derived from KCs [78, clause T.7], a requirement interpreted
in the sense that a CMC uncertainty claimed by a participating laboratory must be no smaller than
the expanded uncertainty associated with the corresponding laboratory’s reported value in the
KC. The extent of agreement of that reported value to the reference value in the KC is assessed
by a DoE calculated in accordance with the MRA [78, clause T.2]. Such an interpretation is
straightforward when there exists a ‘one-to-one’ relationship between the KC and the CMC claim,
that is, when the KC and the CMC relate to the same measurand [137]. In such a case, it is
straightforward to obtain an appropriate uncertainty that should be reported in the KC for the
performance evaluated by the DoE to be satisfactory [137].

This example relates to the commonest class of CMC claims in which laboratories provide uncer-
tainty for a measurand that depends continuously on a quantity (parameter) having an interval of
values, termed here the ‘measurement interval’. This parameter could, for example, be frequency,
wavelength or mass concentration.

The corresponding KC provides DoEs for each participating laboratory for each of a discrete set
of values of the parameter within the measurement interval. An analysis based on the one-
to-one relationship could be applied separately for each of these discrete parameter values. A
consequence of doing so is that any structure present in the data across these parameter values
is not taken into consideration: the analysis of these discrete cases are independent exercises.
Generally there would be a different expansion factor for the CMC uncertainties corresponding
to each discrete value, particularly in cases when the same measuring system is used for each
such case, perhaps due only to random variation. The provision of a single expansion factor for
each national metrology institute (NMI) based on the completed and published KC results would
be helpful for the reassessment of the CMC uncertainties.

Importantly, KC results for these discrete values almost invariably display some degree of corre-
lation that cannot be taken into consideration by an analysis for the one-to-one relationship. The
existence of correlation is often evidenced by patterns in the individual behaviour of the DoEs for
each participating laboratory across the discrete values of the parameter within the measurement
interval. An instance is given in [136] relating to a KC of free-field hydrophone calibrations in the
frequency interval 1 kHz to 500 kHz [138]. Such correlations relate to the biases often associated
with individual participating laboratories’ measured values.

An approach for CMC uncertainty reassessment involving the estimation of correlations is exem-
plified by providing a single multiplicative expansion factor for the CMC uncertainties for each
laboratory. The method described applies Bayesian principles under the assumption that the ob-
served pattern in each laboratory’s DoE value components can largely be explained by a single
correlation coefficient, specific to that laboratory. Since no specific physical adjustments are as-
sumed, the approach is generally applicable to a wide range of practices in metrology. As part
of the approach, for each laboratory a single common expansion factor for CMC uncertainties is
estimated that applies across the measurement interval. Since some estimated expansion factors
may prove to be unity, the corresponding laboratories can be regarded as already having CMC
uncertainties that are consistent with the relevant KC. Thus, the approach is discriminatory: only
some laboratories are required to adjust their CMC uncertainties depending on their DoEs.
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E1.5.3 Specification of the measurand(s)

Suppose there are N laboratories participating in the KC, each providing a measured value at
p stipulated values of a parameter in the measurement interval. The measurand is a vector
measurand consisting of adjusted CMC uncertainties UCMC,adj

i ( j), i = 1, . . . , N , j = 1, . . . , p.

There are intermediate measurands, especially the CMC uncertainty expansion factors, in an
according multi-stage measurement model as described in section E1.5.4.

E1.5.4 Measurement model

The measurement model is multi-staged1 [5] comprising various steps in the analysis of existing
KC data and corresponding CMC data. The measurement model uses the following data.

Each laboratory participating in the KC reports a measured value and an associated standard
uncertainty for each prescribed parameter value within the measurement interval. Specifically,
for each laboratory i, i = 1, . . . , N , the value x i( j), j = 1, . . . , p, and the associated standard
uncertainty u(x i( j)) are provided. The corresponding (unadjusted) CMC uncertainties are also
provided. It is assumed that for each j the KCRV xref( j) relating to the jth measurand is given as
the weighted mean2 (WM) of all or some of the reported values x i( j), j = 1, . . . , p [139]. Thus,
the according DoEs (di( j), U(di( j))), i = 1, . . . , N , j = 1, . . . , p, defined as follows are available.

E1.5.4.1 Degrees of equivalence

The DoE value component for laboratory i and parameter j is

di( j) = x i( j)− xref( j), i = 1, . . . , N , (E1.5.1)

and the corresponding uncertainty component is

U(di( j)) = kiu(di( j)) =

�

ki[u2(x i( j))− u2(xref( j))]1/2, i ∈ Iref,
ki[u2(x i( j)) + u2(xref( j))]1/2, otherwise,

(E1.5.2)

where Iref denotes the set of values of i for which x i( j) and u(x i( j)) are used in the computation
of xref( j) and u2(xref( j)) is the variance (squared standard uncertainty) associated with xref( j)
[139]. Under the assumption of normality, the coverage factors for the DoE uncertainties are
taken as ki = 1.96.

If the DoE for any participating laboratory has an En score3 that is in magnitude greater than
unity, that laboratory’s performance is unsatisfactory and the according CMC uncertainty may
have to be re-assessed.

1In many stepwise processes in metrology, quantities from intermediate measurements are naturally used in a
subsequent measurement. Each stage in the process can be described by a measurement model with input quantities
and output quantities. This set of measurement models constitutes a multi-stage measurement model and can be used
as such.

2It is assumed that no information on correlation was employed in the computation of the WMs. Otherwise, the
treatment here would require modification.

3As a measure of the performance of laboratory i, a normalized error ratio or ‘En score’

E(i)n =
di

U(di)
=

di

kiu(di)
(E1.5.3)

is used: If |E(i)n | ≤ 1, laboratory i’s performance is regarded as ‘satisfactory’; otherwise it is ‘unsatisfactory’ [9].
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Exclusive statistics di,ex( j) rather than di( j) [71, 140], where di,ex( j) = x i − xex( j) and xex( j)
is the exclusive weighted mean, as given in [136], are used to describe the DoEs because of
algebraic advantages over conventional statistics. The associated standard uncertainty u(xex( j))
is provided.

E1.5.4.2 Assumptions

The following assumptions are made:

1. An individual common expansion factor specific to each laboratory applies for the uncer-
tainty over its measurement interval. The expansion factors for the uncertainties reported
in a KC and the CMC uncertainties are considered identical.

2. The measurement errors in the reported values x i(1), . . . , x i(p) from laboratory i can be
regarded as being drawn from a multivariate normal distribution whose covariance matrix
depends on a single correlation coefficient associated with those values.

E1.5.4.3 Steps in the multi-stage model

1. Establish a statistical model for the DoEs for the participating laboratories. The statistical
model contains the following parameters to be estimated from the KC data for i = 1, . . . , N :

• Expansion factor Li for laboratory i.

• Correlation coefficient ρi for laboratory i: see section E1.5.4.4.

• Technical parameter λi related to the standard deviations Si in section E1.5.4.4.

Although the ρi are not primary measurands, they are of interest in understanding the
extent of the correlations involved for the individual laboratories.

2. Solve the statistical model for expansion factors Li for the participating laboratories.

3. Apply the expansion factors to the existing CMC uncertainties to provide adjusted CMC
uncertainties that are supported by the KC.

E1.5.4.4 Statistical model

Let the vector d i,ex = [di,ex(1), . . . , di,ex(p)]⊤ denote the value components of the exclusive DoEs
for laboratory i for the p discrete values of the parameter. The probability distribution used to
describe the vector quantity for which d i,ex is a realization is assumed to be multivariate normal:

d i,ex ∼ N(0,Σi), (E1.5.4)

where 0 is the column vector having p zero elements and Σi is a covariance matrix of dimension
p× p. Consider the decomposition

Σi = SiP iSi ,

where Si is the diagonal matrix whose jth diagonal element is a standard deviation σi( j) equal
to the square root of the jth diagonal element of Σi and P i is a correlation matrix [4]. Neither
Si nor P i is typically available from the KC and must be estimated from reported results.
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Define

ri( j) = u2(xex( j))/u
2(x i( j)), ri,min =min

j
ri( j).

Then, for the matrix Si , σ
2
i ( j) is approximately given by

σ2
i ( j) = λi[u

2(x i( j)) + u2(xex( j))]≈ (1+ ri,min)λiu
2(x i( j)). (E1.5.5)

The expression in the right side of (E1.5.5) is obtained through applying the relationship

τi + [ri( j)− ri,min]≈ τi , τi = (1+ ri,min)λi . (E1.5.6)

Although we cannot say that expression (E1.5.6) is always a reasonable approximation, we can
confirm the extent of its validity after estimating the parameters specified in section E1.5.4.3.
More details are given in [136], where τi is employed as a parameter to be estimated rather
than λi . No essential change happens because of the transformation from τi to λi .

The correlation matrix P i used in [136] has the form

P i = P i(ρi) = (1−ρi)I +ρi11⊤,

where I is the identity matrix of dimension p× p and 1 is the column vector containing p ones.
P i is thus a matrix with ones on the main diagonal and ρi elsewhere. The parameters ρi and λi
are obtained using Bayesian estimation. A uniform distribution over [0, 1] is used as the prior
for ρi since the correlation between DoEs is expected to be non-negative, and a Jeffreys’ prior is
used for λi:

p(ρi)∝
�

1, 0≤ ρi ≤ 1,
0, otherwise

, p(λi)∝
�

λi
−1, λi ≥ 1,

0, otherwise.
(E1.5.7)

E1.5.4.5 Data

The data used in this example is for KC CCL.K-2 [141] relating to gauge block measurements.
Four gauge blocks with nominal lengths 175 mm, 500 mm, 500 mm and 900 mm were circulated
to 12 participating laboratories. Because the data from a particular laboratory were “. . . known
to contain errors and is not representative of their standard measurement technique, its data was
withdrawn from the comparison" [141]. The reported deviations of the remaining 11 laboratory
values from the nominal lengths of the gauge blocks and their associated standard uncertainties
are summarized in table E1.5.1 and figure E1.5.1. The reference values and their associated
standard uncertainties are also given in table E1.5.1.

E1.5.5 Uncertainty analysis

Bayesian estimation with modestly informative priors for the quantities to be estimated was used
to obtain a single factor for each laboratory to expand (only when necessary) its CMC uncertain-
ties. Bayesian modelling allows unknown correlations between reported values to be taken into
consideration by estimating them and to include constraints by using priors. The maximum a
posteriori (MAP) estimator was used because of several advantages [136]:

(a) An expansion factor given by MAP estimation is close to that obtained by the conventional
method when p = 1 (only one stipulated value in the measurement interval),
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Table E1.5.1: Reported values x i( j) and associated standard uncertainties ui( j) with reference values
xref( j) and associated standard uncertainties u(xref( j)). Numbers in square brackets were not used in the
determination of reference values in accordance with reference [141]

Nominal length
175 mm 500 mm 500 mm 900 mm

i x i(1) ui(1) x i(2) ui(2) x i(3) ui(3) x i(4) ui(4)
/nm /nm /nm /nm /nm /nm /nm /nm

1 140 28 916 33 814 33 2033 42
2 122 13 915 16 807 15 1983 21
3 161 30 962 38 861 38 2057 52
4 142 16 908 23 781 23 2075 60
5 150 20 930 20 830 20 2020 35
6 125 27 881 67 786 66 2004 118
7 148 19 938 39 858 39 2070 68
8 194 19 1007 60 912 60 2160 136
9 154 23 885 50 818 50 1982 87

10 180 110 980 150 870 150 2010 250
11 [312] [21] 952 56 868 56 2165 100

xref(1) u(xref(1)) xref(2) u(xref(2)) xref(3) u(xref(3)) xref(4) u(xref(4))
/nm /nm /nm /nm /nm /nm /nm /nm

145 7 923 9 818 9 2016 14

Figure E1.5.1: CCL.K-2 gauge block data for four nominal lengths and weighted means as KCRVs (broken
horizontal lines). Vertical bars depict coverage intervals with coverage factor ki = 1.96
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(b) MAP estimation suggests that no expansion of the CMC uncertainty is required for a labo-
ratory whose performance is satisfactory in the KC, and

(c) The MAP estimator has an analytic solution (given in [136]).

E1.5.6 Reporting the result

Defining Li as the MAP estimator of λi , the variance of dex( j) is estimated as [1+ ri( j)]Liu
2(x i).

Since the variance is supposed to be [Ki + ri( j)]u2(x i) using the expansion factor K1/2
i for the

standard uncertainty u(x i( j)), the following relation holds between Li and Ki:

(Ki + ri,min)u
2(x i) = (1+ ri,min)Liu

2(x i)

when relation (E1.5.6) holds. Thus,

K1/2
i = [Li(1+ ri,min)− ri,min]

1/2

is the expansion factor for the CMC standard uncertainty in this study.

Table E1.5.2 shows the values of the expansion factors K1/2
i and the MAP estimates ρMAP

i of
ρi . The symbol “–" indicates that the computed values are not recommended to be used in the
reassessment because relationship (E1.5.6) does not hold in these results. In [136], we gave the
criterion Ki/ri,max > 4 to check the appropriateness of relationship (E1.5.6).

Table E1.5.2: Estimated expansion factors K1/2
i and MAP estimates ρMAP

i of ρi

Laboratory i K1/2
i ρMAP

i

1 1.0 0.90
2 – –
3 1.0 0.92
4 1.0 0.00
5 – –
6 1.0 0.91
7 1.0 0.83
8 1.3 0.67
9 1.0 0.72

10 1.0 0.96
11 3.3 0.19

E1.5.7 Interpretation of results

For seven of the 11 laboratories (1, 3, 6, 7, 8, 9, 10), the estimated correlation coefficient was
appreciable (between 0.67 and 0.96), implying the presence of systematic effects or biases in the
measured values provided by those laboratories.4

4Since the model (E1.5.4) expresses the variation between the reported values, no bias is shown directly.
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Laboratory 4. The deviations from the reference values are nearly zero for two cases [d4(1) and
d4(2)], and considerably negative and positive respectively for the other two cases [d4(3)
and d4(4)]. The fact that no systematic effect can be seen in these deviations implies that
the correlations are small, and ρMAP

4 is actually zero to two decimal places.

Laboratory 8. For the conventional method, the minimum permissible expansion factors are
1.4, 1.0, 1.0 and 1.0 for the four measurands, suggesting that for that laboratory only the
CMC uncertainty for the shortest gauge block requires expansion. However, if a common
expansion factor for the CMC uncertainty throughout the measurement interval is required,
the conventional method cannot suggest an appropriate value.

Laboratory 10. The correlation for laboratory 10, whose deviations are nearly zero for all four
cases, is estimated to be very large (ρMAP

10 = 0.96). Because the small deviations suggest
small random effects, the large uncertainties must depend on their systematic effects. Thus,
the large correlation is theoretically reasonable.

Laboratory 11. Laboratory 11 reported a value for the shortest gauge block that was far from the
KCRV, which is a likely cause for the resulting expansion factor of 3.3 for that laboratory.
According to the final report on this KC [141], the laboratory found a problematic issue with
its measuring system (see section E1.5.4.5). For that laboratory, whilst all the deviations are
positive, the magnitudes are largely different. Consequently, the correlation is estimated
to be not so large (ρMAP

11 = 0.19).

We conclude from these results and those for other KCs and CMC claims that the method exem-
plified here might also be useful in checking the validity of the measuring system over an interval
of the parameter. We also believe that these results show the rationale of the MAP estimator to
provide values for the expansion factors, and support the validity of the proposed method. Fur-
ther, the results indicate that the correlation existing among each laboratory’s measured values
can be estimated.
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Example E1.6

Model-based unilateral degrees of
equivalence in analysis of a regional
metrology organization key
comparison
K. Shirono, M.G. Cox

Analysis of an RMO key comparison

E1.6.1 Summary

Measurement uncertainties associated with the unilateral degrees of equivalence (DoEs) in a KC
of a regional metrology organisation (RMO) are discussed. Unilateral DoEs are obtained through
assessing a linking invariant to relate the RMO results to the KC conducted by the International
Committee of Weights and Measures (CIPM). A new approach to derive the unilateral DoEs is
suggested, based on statistical testing. Since the mathematical model of the unilateral DoEs is
given by a linear combination of the reported values and the reference value in the CIPM KC, the
principle in the JCGM’s document JCGM 102 [4] is applied to obtain the associated uncertainties.
The proposed approach may give different DoEs from those given by some existing approaches.
Since decisions are made on the basis of calculated DoEs, a conclusion is that it is valuable to
have adequate knowledge of the properties of available linking methods for analyzing the results
from an RMO KC.

E1.6.2 Introduction of the application

Calibration and Measurement Capabilities (CMCs) of a NMI are established through the frame-
work of the RMO [142]. By maintaining CMCs, the progress of measurement science is delivered
to diverse industries. From a technical point of view, KCs support CMCs.

It is noted in the CIPM Mutual Recognition Arrangement (MRA) that “the technical basis of
this arrangement is the set of results obtained in the course of time through key comparisons
carried out by the Consultative Committees of the CIPM, the Bureau International des Poids
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et Mesures (BIPM) and the RMOs”. Further, it is described that “participation in a CIPM key
comparison is open to laboratories having the highest technical competence and experience,
normally the member laboratories of the appropriate Consultative Committee”. Technical and
economic reasons are often barriers to participation in a CIPM KC. In both senses, the linking of
an RMO KC to a CIPM KC is the only realistic way to establish global metrological traceability.
Moreover, such linking is explicitly required: technical supplement T.4 of the MRA states “the
results of the RMO key comparisons are linked to key comparison reference values established
by CIPM key comparisons by the common participation of some institutes in both CIPM and RMO
comparisons”.

For the linking process, the presence of laboratories that participate in both CIPM and RMO
KCs is technically required. Otherwise, statistical relations between the two KCs could not be
established. The laboratories participating in both KCs are termed linking laboratories. The
CMC information of these laboratories has been checked by the participation of the CIPM KC
before the implementation of the RMO KC.

Although no official guidance concerning the linking procedure has been provided by the CIPM,
several suggestions for the method of analysis have been made from the academic point of
view [143–147]. One possible aproach is to determine a linking invariant (cf. [147]) equal to
the difference between the measurands in the CIPM and the RMO KCs. The reported values
in the RMO are adjusted by a estimate of the linking invariant. The value components — see
section E1.6.3 — of the unilateral degrees of equivalences (DoEs) are given as the difference
between the adjusted reported values and the KCRV in the CIPM KC.

In the study by Kharitonov and Chunovkina [146], we find two types of linking invariant. How-
ever, since no statistical models were given in [146], we cannot clearly specify what can be
estimated by these linking invariants. We could not find possible and reasonable models that
gave the mathematical forms in their study. Decker et al. [147] reported the application of one
of the linking invariants proposed in [146].

There are other possible approaches for deriving a linking invariant. In this paper, we will de-
velop a method to derive a linking invariant using a generalized least squares (GLS) method. In
particular, we develop a method in which the measurand that is estimated by the KCRV of the
CIPM KC is not re-estimated using a least squares method, based on the premise that the CIPM
KCRV has been completed before the RMO KC is implemented. Consequently, we obtain a differ-
ent linking invariant from those in some previous studies. Statistical testing using the assessed
unilateral DoEs shows that the choice of linking invariant influences the performance evaluation
of laboratories.

E1.6.3 Specification of the measurand(s)

The principal measurands in this study are the unilateral DoEs in the RMO KC. (A measurand is
defined in the VIM as the quantity intended to be measured [89, definition 2.3].) We regard a
DoE as a measurement result, that is, as a single measured value and a measurement uncertainty,
in accordance with the VIM [89, definition 2.9, note 2] and for compatibility with the MRA [142,
appendix B]. In the MRA, a DoE is regarded as having a value component and an uncertainty
component, with the latter expressed as an expanded uncertainty at a 95 % level of confidence.
Here, the value component of the unilateral DoE for laboratory i is a statistic, denoted by di , to
express the difference between the reported value after adjustment by a linking invariant. The
value component alone is often referred to in the literature as the DoE.
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The linking invariant is an intermediate measurand when obtaining DoEs. The linking invariant
as the population parameter is denoted by η and its estimate by hlink. When reporting yi from
laboratory i in the RMO KC, the relationship between di and hlink is

di = yi + hlink − xref, (E1.6.1)

where xref is the KCRV in the CIPM KC.

The developed uncertainty evaluation is applied to a completed RMO comparison of EURAMET-
AUV.V-K1.1 [148], which was linked to CCAUV.V-K1 [149]. They were key comparisons in which
the charge sensitivities of transducers were measured.

E1.6.4 Measurement model

Suppose m laboratories participate in a CIPM KC and n laboratories in a corresponding RMO KC,
L of which participate in both comparisons and hence are linking laboratories. In this work, it
is assumed that the data have already been screened (that is, no outlier remains) and the data
corresponds to what the CC working group considers suitable for analysis in the RMO KC.

Let the reported values in the CIPM KC, assumed to be obtained independently, and their associ-
ated standard uncertainties be x i and u(x i), i = 1, . . . , m. When the KCRV is given as the weighted
mean (WM) of the reported values, the KCRV xref and its associated standard uncertainty u(xref)
are given by Cox [70]:

xref = u2(xref)
m
∑

i=1

x i

u2(x i)
, u2(xref) =

� m
∑

i=1

1
u2(x i)

�−1

. (E1.6.2)

Define the two sets {x1, . . . xL} and {xL+1, . . . xm} to be the reported values from the linking and
non-linking laboratories, respectively, in the CIPM KC. Although the ordering in these two sets
is not unique, the results of the analysis do not depend on it. We consider only cases where the
reference value for the CIPM KC is given as the weighted mean of x i , i = 1, . . . , m, as given in
formula (E1.6.2).

The data in the RMO KC are likewise classified into two sets: {y1, . . . yL} and {yL+1, . . . yn}. The
correlation between x i and yi for i = 1, . . . , L is denoted by ρi , information to determine which
is typically obtained from the participants’ uncertainty budgets [124, 144]. As in the CIPM KC,
the identification is not unique, but the results of the analysis do not depend on it. For i > L in
the RMO KC, laboratory i is identified as the laboratory that reports yi and u(yi) as its value for
the measurand and the associated standard uncertainty.

It is considered that x i for i = 1 to m and yi for i = 1 to n are realizations of random variables
having probability distributions with (unknown) expectations µx and µy , respectively. Define

z i =

�

x i
yi

�

, V i =

�

u2(x i) ρiu(x i)u(yi)
ρiu(x i)u(yi) u2(yi)

�

, i ∈ IL ,

where V i is the covariance matrix associated with z i and IL = {1, . . . , L}.

To develop a testing method, we assume the following statistical model for the data in the CIPM
KC and the linking laboratories in the RMO KC:

z i ∼ N(µ, V i), i ∈ IL ,
x i ∼ N(µx , u2(x i)), i ∈ Ix .

(E1.6.3)
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where µ = (µx ,µx + η)⊤, N(µ, V) denotes the bivariate normal distribution with mean µ and
covariance V , and Ix = {L + 1, . . . , m}.

Furthermore, we assume the following statistical model for the data from the non-linking labo-
ratories in the RMO KC:

yi ∼ N(µx −η, u2(yi)), i ∈ I y = {L + 1, . . . , n}. (E1.6.4)

E1.6.4.1 Estimation of the linking invariant

We yield the estimators of µx and η as the generalized least squares (GLS) solution xlink and hlink
for µx and η, using the data in model (E1.6.3). First we recall that xlink must take the value xref
since the CIPM KCRV is to be preserved. Accordingly, only hlink is to be determined. The solution
vector for the according GLS problem is thus

hlink = arg min
h

f (h), f (h) =
∑

i∈IL

e⊤i V−1
i e i , (E1.6.5)

where

e i = e i(x , y) = [x i − xref, yi + h− xref]
⊤. (E1.6.6)

At the minimum of f ,

∑

i∈IL

e⊤i V−1
i

�

0
1

�

= 0,

yielding, after some algebra whilst making use of expression (E1.6.6),

hlink = −
1
Q

∑

i∈IL

[pi(x i − xref) + qi(yi − xref)], (E1.6.7)

where
�

pi
qi

�

= V i
−1

�

0
1

�

=
1

(1−ρ2
i )u(x i)u(yi)

�

−ρi
u(x i)/u(yi)

�

(E1.6.8)

and (also defining P, which is used later)

P =
∑

i∈IL

pi , Q =
∑

i∈IL

qi . (E1.6.9)

For purposes (in section E1.6.5) of evaluating the standard uncertainty associated with the degree
of equivalence di for a non-linking laboratory in the RMO key comparison (that is, i ∈ I y), we
express di explicitly and exactly as a linear combination of the values x1, y1, . . . , xL , yL , xref and
yi on which it depends. Using expressions (E1.6.1), (E1.6.7), (E1.6.8) and (E1.6.9),

di = c⊤DoEs i,DoE,

where

c⊤DoE = −
1
Q

�

p1 q1 . . . pL qL −P −Q
�

, (E1.6.10)

s⊤i,DoE =
�

x1 y1 . . . xL yL xref yi
�

. (E1.6.11)

Note that we consider the unilateral DoEs only for non-linking laboratories in the RMO KC, since
the unilateral DoEs for the linking laboratories have already been evaluated in the CIPM KC.
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E1.6.4.2 Data

An example is EURAMET-AUV.V-K1.1 [148], which is an RMO comparison in the area of vibration
and shock. The results in the RMO KC were linked to CCAUV.V-K1 [149]. This key comparison is
the first in that field, where measurements of sinusoidal linear accelerations were compared over
a wide range of frequencies. It was the task of the comparison to measure the charge sensitivity
of back-to-back and single-ended accelerometer standards. We focus on the reported values for
160 Hz and the back-to-back transducer.

There was one linking laboratory. It was noted in the final report that “the covariance of the
different results of the linking lab is considered negligible” [148]. The data is given in table
E1.6.1 and figure E1.6.1.

Table E1.6.1: EURAMET-AUV.V-K1.1 [148] and CCAUV.V-K1 [149] as an example of linking. The
only linking laboratory is laboratory 1. No correlation is assumed between the two reported
values from laboratory 1.

CCAUV.V-K1 EURAMET-AUV.V-K1.1
x i/ u(x i)/x i yi/ u(yi)/yi

Laboratory pC/(m/s2) ×102 Laboratory pC/(m/s2) ×102

1 0.12664 0.05 1 0.125 21 0.05

2 0.12670 0.25 2 0.125 49 0.16
3 0.12660 0.15 3 0.124 72 0.28
4 0.12660 0.23 4 0.125 26 0.30
5 0.12660 0.25 5 0.125 19 0.10
6 0.12660 0.25
7 0.12675 0.15
8 0.12649 0.18
9 0.12660 0.22
10 0.12682 0.20
11 0.12650 0.15
12 0.12660 0.17
xref 0.126 63 0.04

E1.6.5 Uncertainty analysis

E1.6.5.1 Uncertainty evaluation for DoE estimation with linking laboratory data

Define V i,DoE as the covariance matrix of s i,DoE (with zero elements not displayed),

V i,DoE =













V1 v1,ref
. . .

...
V L v L,ref

v⊤1,ref · · · v⊤L,ref u2(xref)
u2(yi)













.

All elements in V i,DoE are known except for those in the vectors v i,ref, i ∈ IL , which we now
establish. For this purpose, we use basic concepts of exclusive statistics as in [136].
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Figure E1.6.1: Reported data in (a) CCAUV.V-K1 (the CIPM KC) [149] and (b) EURAMET-AUV.V-
K1.1 [148] (the RMO KC), which are given in Table E1.6.1. The horizontal red line in (a) shows
xref

The exclusive WM xex, j for laboratory j, that is, the WM after excluding laboratory j’s data, and
the associated standard uncertainty u(xex, j), are given by

xex, j = u2(xex, j)
∑

i∈IL∪Ix\ j

x i

u2(x i)
, u2(xex, j) =

∑

i∈IL∪Ix\ j

1
u2(x i)

.

As a consequence, using expressions (E1.6.2), we can write

xref = u2(xref)
∑

i∈IL∪Ix\ j

x i

u2(x i)
+ u2(xref)

x j

u2(x j)
,

= u2(xref)
xex, j

u2(xex, j)
+ u2(xref)

x j

u2(x j)
,

Using this result, by defining

z j,ref =





xref
x j
y j



, C j,ref =





u2(xref)/u2(xex, j)
u2(xref)/u2(x j) 1

1



,

we have

z j,ref = C⊤j,ref





xex, j
x j
y j



.
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Applying the rule for propagating covariances [4, clause 6.2], the covariance matrix associated
with z j,ref is

V j,ref =

�

u2(xref) v⊤j,ref
v j,ref V j

�

= C⊤j,ref

�

u2(xex, j)
V j

�

C j,ref.

In particular, after explicitly evaluating this product,

v j,ref =

�

u(x j , xref)
u(y j , xref)

�

=





1

ρ j
u(y j)

u(x j)



u2(xref). (E1.6.12)

Using expressions (E1.6.10) and (E1.6.11) and once again the rule for propagating covariances,
the standard uncertainty u(di) associated with di is given by

u2(di) = c⊤DoEV i,DoEcDoE.

Following some algebra, paying regard to symmetry we obtain

u2(di) = u2(yi) +
1

Q2

∑

j∈IL

[p j q j]V j

�

p j
q j

�

− 2
P

Q2

∑

j∈IL

v⊤j,ref

�

p j
q j

�

+
P2

Q2
u2(xref).

Now, using expressions (E1.6.8), (E1.6.9) and (E1.6.12),

[p j q j]V j

�

p j
q j

�

= q j , v⊤j,ref

�

p j
q j

�

= 0.

Hence,

u2(di) = u2(yi) +
1
Q
+

P2

Q2
u2(xref).

The uncertainty component of the unilateral DoE is

Ui = ku(di)

where k is the coverage factor equal to 1.96 in this study as a consequence of the assumed
normality.

E1.6.6 Reporting the result

The unilateral DoEs are shown in table E1.6.2 computed using the proposed method together
with the reported values in the final report of EURAMET-AUV.V-K1.1 [148]. Since the ratios
between the di and the Ui are the test statistics to be employed to check the statistical model
(E1.6.4), the values of di/Ui are also shown in the table. Since the magnitudes of those values
are all smaller than unity, the statistical model (E1.6.4) cannot be rejected. These test results sup-
port the equivalence of measurement that has been technically confirmed through the reviewing
processes.
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Table E1.6.2: Computed value and uncertainty components of unilateral DoEs and their ratios
for EURAMET-AUV.V-K1.1 [148] linked to the reference value in CCAUV.V-K1 [149] using the
proposed method together with a reference analysis proposed by Decker et al. [147].

The proposed method Reference analysis
Laboratory di Ui di/Ui di Ui di/Ui

/fCm−1 s2 /fCm−1 s2 /fCm−1 s2 /fCm−1 s2

2 0.28 0.41 0.68 0.29 0.42 0.69
3 −0.49 0.70 −0.70 −0.48 0.70 −0.69
4 0.05 0.75 0.07 0.06 0.75 0.08
5 −0.02 0.27 −0.07 −0.01 0.29 −0.04

E1.6.7 Interpretation of results

In the analysis implemented in EUROMET-AUV.V-K1.1, the following linking invariant suggested
in the paper reported by Decker et al. [147] was employed:

hlink = x1 − y1.

The unilateral DoEs are hence computed as follows:

di = yi + hlink − xref = yi + x1 − y1 − xref for i ∈ I y .

The variance associated with di is

u2(di) =
�

1 −1 −1 1
�

V i,DoE







1
−1
−1

1






= u2(yi) + u2(x1) + u2(y1)− u2(xref),

since the covariance between x1 and y1 is zero. The identical mathematical method was reported
by Kharitonov and Chunovkina [146]. Moreover, for the case of a single linking laboratory, the
method proposed by Elster et al. [145] gives the same values as the value components of the
unilateral DoEs. (When there are two or more linking laboratories, the method in reference [145]
is not identical to that in reference [147].) The computed values for Ui in table E1.6.2 are slightly
different from those in the final report [148], because k = 1.96 is used as the coverage factor
instead of k = 2 in [148], and some rounding of numbers in the computations in the final reports.
However, these minor differences do not influence the evaluation of the performance.

In the analysis applied in this work to the AUV.V-K1 key comparison, there is compensation for
the difference between x1 and xref. This bias is evaluated to be insignificant in the CIPM KC, and
so no correction to the CMC information of the laboratory is applied. In general, consideration
should be given to the possibility of compensation for biases even if they are insignificant.

In the proposed method, since there is only one linking laboratory, the value components of the
unilateral DoEs for the AUV.V-K1 key comparison are computed as

di = yi − y1.

In fact, since no correlation is assumed for the two reported values from the linking laboratory, the
results in the CIPM KC do not affect the analyses for the RMO KC. In other words, the insignificant
bias in the CIPM KC is fixed to zero in this approach. Considering that the CIPM KC was conducted
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to check the equivalence between the reported values and no significant bias was found for
laboratory 1, the zero bias may naturally reflect the qualitative conclusion obtained through the
CIPM KC.

No serious difference is found between the values with the proposed method and the actually
assessed values in the case of EUROMET-AUV.V-K1.1, because x1 is close to xref. In general, these
two approaches may differ appreciably depending on the data.

To show this possibility, a dummy example is given in table E1.6.3 and figure E1.6.2. As in the
actual example, Laboratory 1 is the only linking laboratory, which claims no correlation between
the two reported values. In this case, the proposed method gives

d2 = d3 = d4 = 1.9, U2 = U3 = U4 = 2.2, d2/U2 = d3/U3 = d4/U4 = 0.9.

The method proposed by Decker et al. gives

d2 = d3 = d4 = 2.6, U2 = U3 = U4 = 2.3, d2/U2 = d3/U3 = d4/U4 = 1.1.

That |di|/Ui is less than unity for the proposed method and greater than unity for Decker’s method
may have significance in terms of any decisions made.

Table E1.6.3: Dummy example. It is assumed that x i and yi are dimensionless. Laboratory 1 is
the sole linking laboratory, and claims no correlation between x1 and y1

CIPM KC RMO KC

Laboratory x i u(x i) Laboratory yi u(yi)

1 0.00 0.50 1 0.00 0.50

2 −1.30 1.00 2 1.90 1.00
3 −1.30 1.00 3 1.90 1.00
4 −1.30 1.00 4 1.90 1.00
5 −1.30 1.00

xref −0.65 0.35

It should be noted that the unilateral DoEs given by the two methods are identical when ρ1 = 1,
because formula (E1.6.7) gives

hlink→ x1 − y1,

when ρ1 → 1 . The value of hlink is obtained using p1/q1 = −ρ1u(y1)/u(x1) = −ρ1 → −1
for ρ1 → 1. This result shows that the compensation implemented for the reference analysis
would be similarly applied for our proposed method if the bias would be implied through the
correlation information. However, when no correlation is suggested, no compensation is given.
Our proposed method is based on the reliability of the uncertainty and correlation information
given by the linking laboratories.

Moreover, since hlink has no uncertainty when ρ1 = 1, the unilateral DoEs are

[di , Ui] =
�

yi + x1 − y1 − xref, k
Æ

u2(yi) + u2(xref)
�

.

The uncertainty component of the unilateral DoE is determined to be smaller than that for the
case of no correlation. In general, since using the correlation information can make the analysis
more precise, the correlation information must be specified reliably.

The advantages of the proposed method and the method by Decker et al. can be summarized as
follows:
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Figure E1.6.2: Dummy example in table E1.6.3. The horizontal red line in (a) shows the CIPM
KCRV xref

1. The presently proposed method compensates insignificant biases in a CIPM KC only when
the possible biases are implied in the correlation information.

2. The method by Decker et al. compensates insignificant biases in a CIPM KC even when the
possible biases are not implied in the given information.

Moreover, since the method proposed here is based on statistical testing with a specific model,
the interpretation of the analysis result is statistically clear. Since the methods have different fea-
tures, the CC should choose an analysis method in accordance with its intention to implement an
RMO KC. Furthermore, when linking laboratories report smaller uncertainties than non-linking
laboratories in an RMO or the number of linking laboratories is large, the difference between
these two methods can be marginal as shown in EURAMET-AUV.V-K1.1.
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Measurement uncertainty when using
quantities that change at a linear rate
— use of quartz He reference leaks to
calibrate an unknown leak
J. Greenwood, M.G. Cox

E1.7.1 Summary

There are numerous practical situations in which, a quantity of interest changes linearly with
respect to another quantity. The mass flow rate from a reference leak as a function of time is an
example of such a quantity. It is described here in terms of the depletion of helium from quartz
membrane reference leaks.

However, the main purpose of the work is to demonstrate what is a generally applicable process
for modelling the quantity and establishing the uncertainty associated with measured values of
the quantity, including those situations where there is covariance within the data.

The intention when presenting this example is to include many of the intervening steps that,
in published examples, might normally be omitted in providing the final result. Although this
may make the treatment rather protracted for those who already have sufficient understanding
of the subject, it is hoped that this approach will be useful to those readers wishing to gain
understanding by following the evaluation in smaller steps. In addition, the cases are presented
in terms of matrices and vectors (as in GUM-S2 [4]), and in the perhaps more familiar notation
of subscripted summations (as in the GUM [2]). The matrix notation can be ignored with no loss
of completeness in the examples.

E1.7.2 Introduction of the application

E1.7.2.1 General

Leak detectors are commonly used instruments for identifying and quantifying the rate of gaseous
material leaving (or entering) an otherwise sealed system. They are routinely used in non-
destructive testing and as analytical tools in the vacuum industry.
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At the heart of many such instruments is a detector that is selectively sensitive to a gas of interest.
These detectors can be based upon a variety of principles ranging from solid state chemical sen-
sors to particle counters. One of the most commonly found types of leak detector is the helium
mass spectrometer leak detector (MSLD).

Gas reference leaks, such as the quartz membrane He reference leak, are often found within mass
spectrometer leak detectors where they are used to perform an ‘internal’ calibration of the gain
of the system.

Quartz membrane leaks usually consist of a sealed reservoir containing the gas; the reservoir has
an outlet connection that incorporates the membrane through which helium is able to permeate
at a rate that depends on temperature. To ensure a steady depletion rate the leak is stored under
stable conditions whilst not in use and is left ‘open’ (that is, not sealed) to maintain a stable
gradient of He across the membrane. An example of such reference leaks is depicted in figure
E1.7.1.

Figure E1.7.1: Reference leaks externally
mounted on a leak detector (photograph cour-
tesy of Vaseco Ltd.)

The leaks can be calibrated using gas flow me-
ters of the type usually found in NMIs. This
would be normal practice for calibration of the
‘master’ reference leaks belonging to a calibra-
tion laboratory.

Alternatively, an ‘unknown’ leak can be cal-
ibrated by using two such reference leaks,
which are chosen to ‘bracket’ the unknown
leak (see Case 3 — section E1.7.8). Typically,
the two reference leaks would be used to es-
tablish a linear calibration function for a mea-
suring instrument over the intervening range.
This would be normal practice for a calibra-
tion laboratory measuring ‘unknown’ leaks on
behalf of its customers and is the subject of the
scenarios presented here.

Both types of calibration are described in
ISO 20486 [150], which in addition recom-
mends that uncertainty in calibrated leak rate
should be evaluated according to GUM prin-
ciples [2], but does not provide details of the
evaluation process. A more general descrip-
tion of leaks and leak detectors can be found
in [151] and the references therein.

E1.7.2.2 Scenarios

This example provides several scenarios that demonstrate the evaluation and use of values of a
quantity that change at a linear rate. The scenarios are presented in terms of the depletion of a
reference quantity over time, specifically, the depletion of He for a quartz membrane reference
leak.

In all cases leak rate is the dependent variable. The independent variable is time or instrument
response and measured values of both (time and response) have negligible uncertainty. Values
of leak rate do have associated uncertainty and in some cases are correlated.
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This example supports the related example E1.1; however the scenarios are intended to have
general applicability for analogous measurements.

Case 1 sets out a basic situation in which there is no correlation. It is treated using the method
described in the ISO Technical Specification (ISO/TS 28037) concerned with the determination
and use of straight-line calibration functions [77, clause 6].

Case 2 has correlations present. It is addressed by following the process described in the GUM
[2, annex F.1.2] and in GUM-S2 [4] to calculate covariance. The covariance is then taken into
account in the evaluation of the fitting parameters using the method described in ISO/TS 28037
[77, clause 9].

Case 3 considers a situation where there are two independent reference leaks (each individually
corresponding to leaks described in Case 1). These are used together to calibrate a leak measuring
instrument, a mass spectrometer leak detector that is subsequently used to calibrate an ‘unknown’
leak. This scenario demonstrates how correlation arises between the values assigned to each leak
when both leaks are in use together.

Case 3 goes on to provide a demonstration of the treatment of correlation in the use of these
leaks. In practice this correlation is usually neglected. This example will demonstrate how it can
be appropriately incorporated in a LPU-type evaluation.

E1.7.3 Specification of the measurands

In all three cases, the measurand of primary interest is the leak (flow) rate Q of helium when
the leak is operating at reference temperature T0. There are also other measurands of interest at
intermediate stages within each scenario — these are the coefficients a and b of various straight-
line calibration functions for two reference leaks L1 and L2 and for the MSLD.

E1.7.4 Measurement model

The measurement model embodied in the following scenarios consists (in the first part) of steps
to establish estimates for the measurands a and b, the coefficients of a straight-line fit through
the given calibration data, and subsequently (in the second part) use of these coefficients and
other data to calculate a value for the measurand Q corresponding to leak rate at a defined
reference temperature. An underpinning concept, employed throughout, is that of a straight-line
calibration function as defined and elaborated in ISO/TS 28037 [77]. Case 1 uses clause 6, and
Case 2 uses clause 9 of that Technical Specification. Case 3 makes use of both clauses.

E1.7.5 Uncertainty propagation

There is uncertainty associated with each leak rate value and, in cases 2 and 3, there is correlation
between these quantities. The independent quantities are either time or detector response; it is
assumed that there is negligible uncertainty in their associated values during fitting. (If this
is not the case then the treatment of clause 7 in ISO/TS 28037 [77] applies in the absence of
correlations; otherwise the more general treatment of clause 10 becomes necessary.)

Measurement uncertainty evaluation follows the standard LPU-approach outlined in ISO/TS 28037
[77], the GUM [2] and GUM-S2 [4]. In particular, it follows the guidance on treatment of corre-
lations elaborated in GUM Annex F.1.2 and in GUM-S2 clause 6.2.
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E1.7.6 Case 1: No correlation within the data

Consider a reference leak L1. When not in use the leak is stored under fixed and stable conditions,
which are sufficient to maintain a linear depletion rate over the course of time. It is periodically
calibrated and it is assumed that there is no correlation within the calibration data. The calibrated
results for reference leak L1 are given in figure E1.7.2 and table E1.7.1.

Figure E1.7.2: Calibration results for a reference leak L1. Data points represent the reference
value with error bars corresponding to ±1 standard uncertainty

Table E1.7.1: Calibrated results for reference leak L1

t/d Q/pmol s−1 u(Q)/pmol s−1

857 9.525 0.105
2571 8.250 0.103
3792 7.192 0.103
4689 6.623 0.094

The reference value Q corresponding to time t and temperature T0 is to be established by forward
evaluation using a straight-line calibration function for the reference leak:

Q = a1 + b1 t, (E1.7.1)

where (a1, b1) are the coefficients of the function.

Since there is no covariance in the data, a model corresponding to clause 6 of ISO/TS 28037 [77]
is assumed to apply. The associated evaluation can be readily implemented in a spreadsheet. It
should be noted that, if in addition there had been uncertainty in the time (independent variable)
data but still no correlations, the approach of [77, clause 7] could instead be followed. This
approach is also relatively straightforward to implement in a spreadsheet calculation.
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The results are found to be:

a1 = 10.185 pmol s−1,

b1 = −7.678× 10−4 pmol s−1,

u(a1) = 0.119 pmol s−1,

u(b1) = 3.506× 10−5 pmol s−1 d−1,

u(a1, b1) = −3.785× 10−6 pmol2s−2d−1.

The computed value Q has associated uncertainty u(Q) given by clause 11 of ISO/TS 28037
which is concerned with the use of the calibration function:

u2(Q) = C⊤QVQCQ,

where CQ is an array containing the sensitivity coefficients, and VQ is the corresponding covari-
ance matrix:

CQ =













∂Q
∂ a1

∂Q
∂ b1

∂Q
∂ t













=













1

t

b1













, VQ =













u2(a1) u(a1, b1) 0

u(a1, b1) u2(b1) 0

0 0 u2(t)













,

which is equivalent to

u2(Q) = u2(a1) + 2tu(a1, b1) + t2u2(b1) + b2
1u2(t),

where u2(t) is the variance associated with the time of use t.

The expression for u2(Q) is the same as that found by applying GUM equation (13) to equa-
tion (E1.7.1).

Suppose that the leak is to be used at t = 5000 d and u(t) = 1 d. Applying forward evaluation
using the above parameter values, the result for the computed value of the reference leak is

Q = 6.346pmol s−1, u(Q) = 0.084pmol s−1.

E1.7.7 Case 2: Correlation between leak rate data

Suppose there is a degree of correlation between each of the calibration results for reference leak
L1.

E1.7.7.1 Measurement model

In this situation (following example in Annex D of [77]) the leak rate data Q j can be modelled
in terms of the observed rate Qo j and a common systematic effect, represented by es:

Q j =Qo j + es, (E1.7.2)

where j = 1, . . . , m for m measurement data points.
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All known corrections are assumed to have been made; therefore, the best estimate of es (its
expectation) is zero, with a standard uncertainty u(es). In this scenario, as will shortly be seen,
a value of u(es) is determined from available knowledge of the systematic effects contributing to
a calibration correction.

The observed values Qo j have uncertainties u(Qo j) that are established in the normal LPU-manner
for all effects other than es.

Suppose that the estimate Qo j is based upon an observed value to which a calibration correction
c j has been applied, where c j has standard uncertainty u(c j). Suppose also that the calibration
process is itself subject to certain effects that are essentially random in nature contributing a
standard uncertainty u(r j) to the overall standard uncertainty; and to other poorly understood
systematic effects that will be the same each time a calibration is performed, contributing a stan-
dard uncertainty u(s) to the overall uncertainty. The calibration standard uncertainty u(c j) is
therefore given by

u2(c j) = u2(r j) + u2(s).

Suppose further (for sake of realistic demonstration) that besides calibration effects there are two
other, independent effects influencing the measurement of Qo j with corresponding uncertainties,
u(e1 j) and u(e2 j). These might for example be the uncertainty associated with correction of a
known bias and the uncertainty associated with finite resolution of observed indications.

In this scenario we therefore have

u2(Qo j) = u2(e1 j) + u2(e2 j) + u2(r j),

u2(es) = u2(s),

which when combined give the result

u2(Q j) = u2(Qo j) + u2(es),

= u2(e1 j) + u2(e2 j) + u2(r j) + u2(s). (E1.7.3)

To illustrate this scenario, consider the calibration results in table E1.7.2.

Table E1.7.2: Uncertainty contributions for reference leak L1

t/d Q j/pmol s−1 u(Qo j)/pmol s−1 u(es)/pmol s−1

857 9.525 0.090 0.055
2571 8.250 0.087 0.055
3792 7.192 0.087 0.055
4689 6.623 0.076 0.055

As in Case 1, the reference value Q corresponding to a time t and temperature T0 is to be es-
tablished by forward evaluation using a straight-line calibration function for the reference leak:

Q = a+ bt, (E1.7.4)

where (a, b) are the coefficients of the function.

Since the quantity es is common to all leak rate measurements, there will be correlation between
the quantities Q j; so a measurement model corresponding to clause 9 of ISO/TS 28037:2010 [77]
is adopted to establish values for the coefficients.
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Firstly though, a covariance matrix VQ is needed that describes the correlations within the Q
data. This is established by following the process described, for example, in annex F.1.2.3 of the
GUM and in GUM-S2, clause 6.2. This process involves defining functions f j of quantities x i such
that

Q j = f j(x i),

with i = 1, . . . , N and j = 1, . . . , m; thus

Q1 = f1(x i) = f1(Qo1,Qo2,Qo3,Qo4, es) =Qo1 + es,

Q2 = f2(x i) = f2(Qo1,Qo2,Qo3,Qo4, es) =Qo2 + es,

Q3 = f3(x i) = f3(Qo1,Qo2,Qo3,Qo4, es) =Qo3 + es,

Q4 = f4(x i) = f4(Qo1,Qo2,Qo3,Qo4, es) =Qo4 + es,

that is, the functions f j are defined in terms of all quantities x i that influence all Q j , even though
some of the quantities only have an effect in one or other functions.

In terms of matrices (as used in GUM-S2, clause 6.2)

Y = Q = f (X),

where

Y = Q =















Q1

Q2

Q3

Q4















; X =





















Qo1

Qo2

Qo3

Qo4

es





















.

The covariance matrix VQ is given by

VQ = C x V x C⊤x =















u2(Q1) u(Q1,Q2) u(Q1,Q3) u(Q1,Q4)

u(Q2,Q1) u2(Q2) u(Q2,Q3) u(Q2,Q4)

u(Q3,Q1) u(Q3,Q2) u2(Q3) u(Q3,Q4)

u(Q4,Q1) u(Q4,Q2) u(Q4,Q3) u2(Q4)















,

where

C x =











∂ f1
∂ x1
· · · ∂ f1

∂ xN
...

. . .
...

∂ fm
∂ x1
· · · ∂ fm

∂ xN











=















1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1














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and

V x =





















u2(Qo1) 0 0 0 0

0 u2(Qo2) 0 0 0

0 0 u2(Qo3) 0 0

0 0 0 u2(Qo4) 0

0 0 0 0 u2(es)





















.

Alternatively, the components of the covariance matrix can be evaluated in terms of subscripted
summations. Thus, the variance, u2(Q j) for Q j can be calculated using GUM equation (F.1) [that
is, GUM equation (10)]:

u2(Q j) =
N
∑

i=1

�

∂ f j

∂ x i

�2

u2(x i),

and the covariance terms u(Q j ,Qk ̸= j) can be calculated using GUM (F.2):

u(Q j ,Qk ̸= j) =
N
∑

i=1

∂ f j

∂ x i

∂ fk

∂ x i
u2(x i).

Note that in cases where any of the terms u(x i , xk ̸=i) ̸= 0, that is, off-diagonal terms are not equal
to zero, then GUM formulæ (F.1) and (F.2) can no longer be used and, noting that u(Q j ,Q j) =
u2(Q j), all terms of the covariance matrix VQ are instead given by

u(Q j ,Qk) =
N
∑

i=1

N
∑

ℓ=1

∂ f j

∂ x i

∂ fk

∂ xℓ
u(x i , xℓ). (E1.7.5)

Whichever approach is used, matrix or subscripted summations, the result is that

u2(Q1) = u2(Qo1) + u2(es),

u2(Q2) = u2(Qo2) + u2(es),

u2(Q3) = u2(Qo3) + u2(es),

u2(Q4) = u2(Qo4) + u2(es).

and

u(Q j ,Qk ̸= j) = u2(es).

E1.7.7.2 Model fitting

In matrix form, the data for fitting by method ISO/TS 28037 clause 9, expressed in terms of the
quantities used therein, correspond to

x = t =







t1
t2
t3
t4






, y = Q =







Q1
Q2
Q3
Q4






, V y =







u2(Q1) u(Q1,Q2) u(Q1,Q3) u(Q1,Q4)
u(Q2,Q1) u2(Q2) u(Q2,Q3) u(Q2,Q4)
u(Q3,Q1) u(Q3,Q2) u2(Q3) u(Q3,Q4)
u(Q4,Q1) u(Q4,Q2) u(Q4,Q3) u2(Q4)






.
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In this example we have

x =







857
2571
3792
4689






d, y =







9.525
8.250
7.192
6.623






pmol s−1,

V y =







0.0111 0.0030 0.0030 0.0030
0.0106 0.0030 0.0030

0.0106 0.0030
sym. 0.0088






(pmol/s)2.

In practice, the correlation matrix may be of more intuitive interest than the covariance matrix
(and has the advantage of being dimensionless). This is defined in terms of the covariance matrix
and component uncertainties by

R(y j , yk) =
u(y j , yk)

u(y j) u(yk)
;

hence

Ry =







1 0.279 0.279 0.306
1 0.286 0.313

1 0.313
sym. 1






. (E1.7.6)

The results of the fitting are

a = 10.184 pmol s−1,

b = −7.671× 10−4 pmol s−1 d−1,

u(a) = 0.115 pmol s−1,

u(b) = 2.939× 10−5 pmol s−1 d−1,

u(a, b) = −2.708× 10−6 pmol2 s−2 d−1.

ISO/TS 28037 [77] provides algorithms to perform the necessary calculations to evaluate a, b,
u(a), u(b) and u(a, b). Unfortunately, they are not generally amenable to implementation using
spreadsheet cell formulae and some other means of solving, such as a mathematical software
package or user-written code, is required. For example, ISO/TS 20837 [77, Annex F] describes
software and source code that is provided free by NPL.

The standard uncertainty u(Q) for a forward evaluation using equation (E1.7.4) is evaluated by
a standard GUM-LPU approach. This can be expressed in matrix format as in ISO/TS 28037,
clause 11.2:

u2(Q) = C⊤QVQCQ,

where CQ is an array containing the sensitivity coefficients, and VQ is the corresponding covari-
ance matrix:

CQ =









∂Q
∂ a1

∂Q
∂ b1

∂Q
∂ t









=









1

t

b









, VQ =









u2(a) u(a, b) 0

u(a, b) u2(b) 0

0 0 u2(t)









,
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which equates to

u2(Q) = u2(a) + t2u2(b) + b2u2(t) + 2tu(a, b).

This is the same expression that is found by applying GUM equation (13).

For example, a forward evaluation using equation (E1.7.4) at say t = 5000d with u(t) = 1 d
gives Q = 6.349 pmol s−1 and standard uncertainty u(Q) = 0.088pmol s−1.

If there was no correlation in the data . . .

The corresponding results of fitting can be evaluated for the situation where there is no correlation
in the data, that is, the effect characterised by u(s) is in this case not common to each flow
calibration measurement. The data model is now described by:

Q j =Qo j , (E1.7.7)

u2(Q j) = u2(Qo j) = u2(e1 j) + u2(e2 j) + u2(c j), (E1.7.8)

which corresponds to the data model in Case 1. For the data in table E1.7.3, the process described
in clause 6 of [77] can be used to calculate the fitting results in this case, giving the following:

a = 10.185pmol s−1 = a1,

b = −7.678× 10−4 pmol s−1 d−1 = b1,

u(a) = 0.119 pmol s−1 = u(a1),

u(b) = 3.506× 10−5 pmol s−1 d−1 = u(b1),

u(a, b) = −3.785× 10−6 pmol2s−2d−1 = u(a1, b1), (E1.7.9)

for which a forward evaluation at t = 5000d with u(t) = 1d gives the estimate Q = 6.346pmol s−1

and standard uncertainty u(Q) = 0.084pmol s−1.

Table E1.7.3: Calibration results for reference leak L1

t/d Q j/pmol s−1 u(Q j)/pmol s−1

857 9.525 0.105
2571 8.250 0.103
3792 7.192 0.103
4689 6.623 0.094

The difference between the results in the two different scenarios (correlation and no correlation)
is not large in this particular example; however, the extent of the difference is entirely dependent
upon the data.

Further data for a second leak

For later reference (in Case 3 — section E1.7.8), consider a second leak L2 for which the data in
table E1.7.4 is available, where the data model for L2 is as described above for L1 in equations
(E1.7.2) and (E1.7.3).
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Table E1.7.4: Data for reference leak L2

t/d Q j/pmol s−1 u(Qo j)/pmol s−1 u(es)/pmol s−1

100 4.391 0.046 0.055
474 4.293 0.045 0.055
856 4.190 0.044 0.055

2568 3.724 0.041 0.055
3791 3.531 0.040 0.055
4692 3.402 0.037 0.055

The results of the fitting for leak L2 are

a = 4.376 pmol s−1,

b = −2.183× 10−4 pmol s−1 d−1,

u(a) = 0.062 pmol s−1,

u(b) = 9.706× 10−6 pmol s−1 d−1,

u(a, b) = −2.208× 10−7 pmol2s−2d−1,

with

Ry =















1 0.594 0.599 0.615 0.620 0.636
1 0.604 0.621 0.626 0.642

1 0.626 0.632 0.648
1 0.648 0.665

1 0.671
sym. 1















. (E1.7.10)

Correlation in this case is considerably higher than previously as seen by comparing the off-
diagonal terms in the correlation matrix with those in the matrix (E1.7.6). Such a statement
could not easily be made by examining covariance matrices.

Forward evaluation using equation (E1.7.4), again at t = 5000d with u(t) = 1 d gives the esti-
mate Q = 3.284 pmol s−1 and standard uncertainty u(Q) = 0.063 pmol s−1.

The corresponding results of fitting a straight line can again be evaluated for the situation where
there is no correlation, as detailed in equations (E1.7.7) and (E1.7.8). In this case the data is
given in table E1.7.5.

Table E1.7.5: Calibration results for reference leak L2

t/d Q j/pmol s−1 u(Q j)/pmol s−1

100 4.391 0.072
474 4.293 0.071
856 4.190 0.070

2568 3.724 0.069
3791 3.531 0.068
4692 3.402 0.066
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The process described in clause 6 of [77] can again be used to calculate the fitting results in this
case, giving

a2 = 4.380 pmol s−1,

b2 = −2.200× 10−4 pmol s−1 d−1,

u(a2) = 0.045 pmol s−1,

u(b2) = 1.620× 10−5 pmol s−1 d−1,

u(a2, b2) = −5.713× 10−7 pmol2s−2d−1. (E1.7.11)

A forward evaluation at t = 5000 d with u(t) = 1d gives the estimate Q = 3.280 pmol s−1 and
standard uncertainty u(Q) = 0.054pmol s−1.

E1.7.8 Case 3: Use of two reference leaks to calibrate a third un-
known leak

In this scenario, the two reference leaks L1 and L2 are used to calibrate a leak detector at points
bracketing the value of an uncalibrated leak Lx. The previously determined calibration functions
for the reference leaks are used to establish reference values at the time of use. Each leak rate is
then calculated for its prevailing temperature and the corresponding MSLD response is observed.
A linear fit is then performed to this stimulus-response data to calibrate the MSLD. Finally, taking
the MSLD response from the ‘unknown’ leak, the corresponding leakage rate is evaluated and
expressed in terms of a defined reference temperature.

E1.7.8.1 Specification of the measurands

In this scenario the principal measurand is the reference value Qx for the ‘unknown’ leak Lx.
During the evaluation process it is necessary to evaluate intervening measurands aM and bM, the
coefficients of the MSLD calibration function.

E1.7.8.2 Measurement model

Reference values

The reference values Q1 and Q2 corresponding to a time t and temperature T0 are established
by forward evaluation using the straight-line calibration functions for each reference leak:

Q1 = a1 + b1 t, Q2 = a2 + b2 t. (E1.7.12)

Measured values

In use at temperatures T1 and T2 respectively, the two reference leaks L1 and L2 produce helium
at rates q1 and q2 given by:

q1 =Q1[1+α(∆T1 + δT )] = (a1 + b1 t)[1+α(∆T1 + δT )],

q2 =Q2[1+α(∆T2 + δT )] = (a2 + b2 t)[1+α(∆T2 + δT )], (E1.7.13)

where
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α is the temperature coefficient for the depletion rate in the region of reference tempera-
ture T0, assumed to be the same for both reference leaks,

∆T1 = T1 − T0,

∆T2 = T2 − T0,

T1 is the temperature assigned to leak L1, for example, measured temperature of its leak
housing or coupling,

T2 is the temperature assigned to leak L2, for example, measured temperature of its leak
housing or coupling,

T0 is the reference temperature for the leaks,

δT is the (unknown) temperature measurement error, corresponding to the difference between
the assigned temperature and the actual temperature of the quartz membrane (which con-
trols the rate of helium permeation). The best estimate (expectation) of δT is zero but the
uncertainty is finite. This is an example of a poorly known systematic effect, as described
in GUM-6 [5, clause 10.4].

MSLD Calibration

The MSLD responses corresponding to q1 and q2 are p1 and p2, respectively, and it is assumed here
that the associated standard uncertainties u(p1), u(p2) are negligible. The calibration function
for the MSLD established from the data (p1, q1) and (p2, q2) and the associated covariance is

q = aM + bMp, (E1.7.14)

where p is the MSLD response and q is the corresponding leak rate.

Calibration of unknown leak

The leak rate qx corresponding to MSLD response px for a leak Lx operating at temperature Tx
can now be evaluated and the value Qx can be established that is referenced to a temperature
T0; thus

qx = aM + bMpx (E1.7.15)

and

Qx =
qx

[1+αx(∆Tx + δT )]
, (E1.7.16)

where

αx is the temperature coefficient for the depletion rate in the region of the reference temper-
ature,

∆Tx = Tx − T0

Tx is the temperature assigned to leak Lx, for example, measured temperature of its leak hous-
ing or coupling,

T0 is the reference temperature for the leaks, assumed to be the same for all three leaks,

δT is the (unknown) temperature error, also assumed to be the same for all three leaks.

Examples of evaluating measurement uncertainty First edition



Example E1.7. Straight-line calibration of a leak flow rate 122

E1.7.8.3 Uncertainty Propagation

Reference values

Correlation within the data for the reference leaks could appear in various forms that are, for rea-
sons of space, not considered here but are nevertheless treatable using the methods in ISO/TS 28037
[77]. The most likely two such scenarios are, firstly, the common effect described in Case 2 is
present for both leaks and for all values (as might arise when the leaks are calibrated using the
same method with the equipment having the same traceability for all reported results); or, sec-
ondly, there is a ‘pair-wise’ common effect between corresponding values for the two leaks, but
little or no correlation within the data for each leak (as might arise if the leaks are both calibrated
at the same time but the method, equipment and traceability are not fixed as in the first case).

In our example scenario we shall assume that the correlations within and between the data for
each reference leak are not significant and the results evaluated in Case 2, equations (E1.7.9)
and (E1.7.11), will be used.

Measured values

Since the quantities t, α and δT are common to both leak rate expressions [equations (E1.7.13)],
there will be correlation between the estimates q1 and q2 of those quantities.

A covariance evaluation is needed that represents the correlations in the data. This can be es-
tablished by following the process described in matrix form in clause 6.2 of GUM-S2 [4] and in
subscripted summation form in GUM Annex F.1.2.3.

The process begins by defining two functions f1 and f2 from equations (E1.7.13) such that

q1 = f1(x i) = f1(a1, b1, a2, b2, t,α,∆T1,∆T2,δT ) = (a1 + b1 t)[1+α(∆T1 + δT )],

q2 = f2(x i) = f2(a1, b1, a2, b2, t,α,∆T1,∆T2,δT ) = (a2 + b2 t)[1+α(∆T2 + δT )],

that is, f1 and f2 are defined in terms of all quantities x i that influence both q1 and q2, even
though some of the quantities only have an effect in one or other function.

In the terminology of GUM-S2 [4] clause 6.2, the quantities are

X = (a1 b1 a2 b2 t α ∆T1 ∆T2 δT )⊤,

Y = (q1 q2)
⊤.

The covariance matrix V y is given by

V y = C x V x C⊤x =





u2(q1) u(q1, q2)

u(q2, q2) u2(q2)



,

where, in this example, N = 9, m= 2 and we have
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C⊤x =

























































∂ f1
∂ a1

∂ f2
∂ a1

∂ f1
∂ b1

∂ f2
∂ b1

∂ f1
∂ a2

∂ f2
∂ a2

∂ f1
∂ b2

∂ f2
∂ b2

∂ f1
∂ t

∂ f2
∂ t

∂ f1
∂ α

∂ f2
∂ α

∂ f1
∂∆T1

∂ f2
∂∆T1

∂ f1
∂∆T2

∂ f2
∂∆T2

∂ f1
∂ δT

∂ f2
∂ δT

























































=

























































1+α(∆T1 + δT ) 0

t [1+α(∆T1 + δT )] 0

0 1+α(∆T2 + δT )

0 t [1+α(∆T2 + δT )]

b1 [1+α(∆T1 + δT )] b2 [1+α(∆T2 + δT )]

(a1 + b1 t)(∆T1 + δT ) (a2 + b2 t)(∆T2 + δT )

α (a1 + b1 t) 0

0 α (a2 + b2 t)

α (a1 + b1 t) α (a2 + b2 t)

























































and

V x =

























































u2(a1) u(a1, b1) 0 0 0 0 0 0 0

u(a1, b1) u2(b1) 0 0 0 0 0 0 0

0 0 u2(a2) u(a2, b2) 0 0 0 0 0

0 0 u(a2, b2) u2(b2) 0 0 0 0 0

0 0 0 0 u2(t) 0 0 0 0

0 0 0 0 0 u2(α) 0 0 0

0 0 0 0 0 0 u2(∆T1) 0 0

0 0 0 0 0 0 0 u2(∆T2) 0

0 0 0 0 0 0 0 0 u2(δT )

























































.

Alternatively, the covariance matrix can be calculated in terms of subscripted summations in line
with annex F.1.2 of the GUM [2], albeit using equation (E1.7.5) rather than GUM equations (F.1)
and (F.2) as several of the quantities are correlated (namely a1 with b1 and a2 with b2.

This gives (remembering that the expectation of δT is zero),

u2(q1) = u(q1, q1)

= (1+α∆T1)
2u2(a1) + t2(1+α∆T1)

2u2(b1) + b2
1(1+α∆T1)

2u2(t)

+∆T1
2(a1 + b1 t)2u2(α) +α2(a1 + b1 t)2u2(∆T1) +α

2(a1 + b1 t)2u2(δT )

+ 2t(1+α∆T1)
2u(a1, b1),
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u2(q2) = u(q2, q2)

= (1+α∆T2)
2u2(a2) + t2(1+α∆T2)

2u2(b2) + b2
2(1+α∆T2)

2u2(t)

+∆T2
2(a2 + b2 t)2u2(α) +α2(a2 + b2 t)2u2(∆T2) +α

2(a2 + b2 t)2u2(δT )

+ 2t(1+α∆T2)
2u(a2, b2)

and

u(q1, q2) = u(q2, q1)

= b1 b2(1+α∆T1)(1+α∆T2)u
2(t)

+ (a1 + b1 t)(a2 + b2 t)∆T1∆T2u2(α)

+α2(a1 + b1 t)(a2 + b2 t)u2(δT ).

MSLD Calibration

In matrix form, the data for fitting by method ISO/TS 28037, clause 9 (expressed in terms of the
variables used in [77]) correspond to

x = p =

�

p1
p2

�

, y = q =

�

q1
q2

�

, V y = Vq1,q2
=

�

u2(q1) u(q1, q2)
u(q1, q2) u2(q2)

�

.

Solving the model establishes estimates for the coefficients aM and bM [for equation (E1.7.14)]
and the elements of the covariance matrix

Va,b =

�

u2(aM) u(aM, bM)
u(aM, bM) u2(bM)

�

.

Note on calculations

Note that in general the calculations in ISO/TS 28037 clause 9, Steps 1 and 2 cannot easily be
implemented within a spreadsheet and some means of performing matrix algebra is required;
however, the solution when fitting to just two data points can be written out in a relatively short
form that is amenable to spreadsheet evaluation.

Step 1: described in clause 9.2.2 of ISO/TS 28037 requires factorisation of the covariance matrix.
For a matrix V such as Vq1,q2

established in Case 3 above, this involves calculating the components
of a lower left matrix L such that

V =

�

v1 v2
v2 v3

�

= LL⊤

and

L=

�

l1 0
l2 l3

�

,

which is satisfied when

l1 =
p

v1,

l2 =
v2p
v1

,

l3 =

√

√

√

v3 −
v2

2

v1
.
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Step 2: described in clause 9.2.2 of ISO/TS 28037 requires solving several systems of equations
to establish values for variables identified as f , g and h. For the 2-point systems described above
the values are found to be:

f1 =
1
l1

,

f2 =
1− (l2/l1)

l3
,

g1 =
p1

l1
,

g2 =
p2 − p1 (l2/l1)

l3
,

h1 =
q1

l1
,

h2 =
q2 − q1 (l2/l1)

l3
.

Calibration of unknown leak

Forward evaluation, to establish a value for an unknown leak rate qx and its associated standard
uncertainty u(qx) from an observed MSLD response px and associated standard uncertainty u(px),
uses equation (E1.7.15):

qx = aM + bMpx,

and again follows the process described in clause 11 of ISO/TS 28037 [77], giving in matrix form

u2(qx) = C⊤x VxC x,

where C x is an array containing the sensitivity coefficients and Vx is the corresponding covariance
matrix

C x =









∂ qx
∂ aM

∂ qx
∂ bM

∂ qx
∂ px









=









1

px

bM









, Vx =









u2(aM) u(aM, bM) 0

u(aM, bM) u2(bM) 0

0 0 u2(px)









,

which is equivalent to

u2(qx) = u2(aM) + 2pxu(aM, bM) + p2
xu2(bM) + b2

Mu2(px),

as is found by applying GUM equation (13) to equation (E1.7.15)

Calculation of reference value

The reference value Qx calculated using (E1.7.16), namely,

Qx =
qx

[1+αx(∆Tx + δT )]
,

has an associated uncertainty u(Qx) given in matrix form by

u2(Qx) = C⊤Qx
VQx

CQx
,
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where

CQx
=





















Cqx

Cαx

C∆Tx

CδT





















=





















Qx
qx

,

−Q2
x

qx
(∆Tx + δT ),

−Q2
x

qx
α,

−Q2
x

qx
α,





















; VQx
=





















u2(qx) 0 0 0

0 u2(αx) 0 0

0 0 u2(∆Tx) 0

0 0 0 u2(δT )





















,

which is equivalent to

u2(Qx) = C2
qx

u2(qx) + C2
αx

u2(α) + C2
∆Tx

u2(∆Tx) + C2
δT u2(δT ),

as is found by applying GUM equation (13) to equation (E1.7.16)

E1.7.8.4 Numerical illustration

To illustrate, consider a calibration that is performed using the two reference leaks for which
calibration data is available as depicted in figure E1.7.3 and tables E1.7.6 and E1.7.7.

Figure E1.7.3: Calibration data for the two reference leaks. Data points represent the reference
value with error bars corresponding to ±1 standard uncertainty

Table E1.7.6: Calibrated reference values for reference leak L1

t/d Q j/pmol s−1 u(Q j)/pmol s−1

857 9.525 0.105
2571 8.250 0.103
3792 7.192 0.103
4689 6.623 0.094

Examples of evaluating measurement uncertainty First edition



Example E1.7. Straight-line calibration of a leak flow rate 127

Table E1.7.7: Calibrated reference values for reference leak L2

t/d Q j/pmol s−1 u(Q j)/pmol s−1

100 4.391 0.072
474 4.293 0.071
856 4.190 0.070

2568 3.724 0.069
3791 3.531 0.068
4692 3.402 0.066

Reference values

Since there is no covariance in the data, a straight line can be fitted for each set of data following
the approach detailed in clause 6 of ISO/TS 28037 [77]. The results of these operations are

a1 = 10.185 pmol s−1,

b1 = −7.678× 10−4 pmol s−1 d−1,

u(a1) = 0.119 pmol s−1,

u(b1) = 3.506× 10−5 pmol s−1 d−1,

u(a1, b1) = −3.785× 10−6 pmol2 s−2 d−1

and

a2 = 4.380pmol s−1,

b2 = −2.200× 10−4 pmol s−1 d−1,

u(a2) = 0.045pmol s−1,

u(b2) = 1.620× 10−5 pmol s−1 d−1,

u(a2, b2) = −5.713× 10−7 pmol2 s−2 d−1.

Note that values for the reference leaks do not need to be enumerated in this example; however,
for completeness the values found by applying forward evaluation using the above parameters
and the process described in clause 11 of ISO/TS 28037 for equations (E1.7.12) above are found
to be:

Q1 = 6.346pmol s−1, u(Q1) = 0.084pmol s−1,

Q2 = 3.280pmol s−1, u(Q2) = 0.054pmol s−1

when t = 5000 d and u(t) = 1d.

Measured values

Suppose that the leak is to be used at t = 5000d, u(t) = 1 d and the calibration conditions are
as in table E1.7.8 for which it is calculated [equation (E1.7.13)] that

q1 = 6.735 pmol s−1, q2 = 3.473pmol s−1.
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Table E1.7.8: Conditions during use of reference leaks L1 and L2

Quantity Value Standard uncertainty
∆T1 2.11 K 0.52 K
∆T2 2.03 K 0.53 K
α 0.029 K−1 0.005 K−1

The covariance matrix for the data is then

V y = Vq1,q2
=

�

u2(q1) u(q1, q2)
u(q1, q2) u2(q2)

�

=

�

0.030 0.0066
0.0066 0.009

�

(pmol/s)2.

Hence, the correlation matrix is

Rq1,q2
=

�

1 0.398
0.398 1

�

.

MSLD Calibration

Suppose that the MSLD indications (in display units, du) corresponding to q1 and q2 are observed:

p1 = 149.2 du, p2 = 52.1du.

The parameter values in the measurement equation (E1.7.14) are then found to be

aM = 1.722pmol s−1,

bM = 0.034pmol s−1 du−1,

u(aM) = 0.139pmol s−1,

u(bM) = 0.0017pmol s−1 du−1,

u(aM, bM) = −1.701× 10−4 pmol2 s−2 du−1.

Calibration of unknown leak

Suppose now that when an unknown reference leak Lx is connected to the MSLD the response
is 120du. Forward evaluation using the MSLD calibration function then estimates a leak rate of
qx = 5.754 pmol s−1 and an associated standard uncertainty of u(qx) = 0.135 pmol s−1.

Calculation of reference value

Finally, a value for the unknown leak rate can be established that is referenced to a temperature
T0. Suppose that the calibration conditions are those in table E1.7.9.

The reference value Qx at time t is therefore calculated to be

Qx = 5.427pmol s−1; u(Qx) = 0.158pmol s−1.
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Table E1.7.9: Conditions during measurement of Qx

Quantity Value Standard uncertainty

∆Tx 2.01 K 0.55 K
αx 0.030 K−1 0.005 K−1

E1.7.9 Reporting the result

The estimate of the measurand Q and the associated standard uncertainty are directly reported
in the conventional manner according to the GUM [2] including the less common additional
reporting of covariance where required.

In practice two situations might arise. In the one case the evaluation of a leak rate may be a
multi-step process, in which case the intermediate measurands a and b will be reported and
taken as explicit inputs to the next stage of the evaluation process (perhaps by a different party).
In the other case a and b may not be explicitly evaluated at all; instead they may be directly
incorporated into the evaluation process which reports a result for the measurand Q.

In the scenarios presented here, for the sake of completeness, the first case is taken to apply.

E1.7.10 Interpretation of results

Case 2 demonstrates that when correlation is present the correlation matrix gives greater insight
as an indicator than the covariance matrix. Correlation in this case is considerably greater for L2
than for L1 as seen by comparing the off-diagonal terms in the correlation matrix (E1.7.10) with
those in the matrix (E1.7.6). Such a statement could not easily be made by examining covariance
matrices.

The overall significance of correlation is dependent on the specific data and it cannot easily be
evaluated without a measurement model and a proper analysis.

The data for L2 show signs of curvature, visually evident in figure E1.7.3, even though a chi-
squared test for linearity is passed (a straight line just about passes through all error bars). A
higher order function such as a quadratic [110] would likely result in lower and more random
residuals. A similar approach to that described here could be applied, but this is beyond the
scope of the present work.
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Example E1.8

Factoring effects such as calibration
corrections and drift into uncertainty
evaluations

J. Greenwood, M.G. Cox, N. Fischer

E1.8.1 Summary

This activity comprises two examples that demonstrate potential danger in the practice of factor-
ing effects such as calibration corrections and drift into uncertainty evaluations as rectangular
distributions, and presents ways of handling these effects that is consistent with the GUM suite
of documents. These examples illustrate that, in spite of the availability of appropriate guidance,
significant known bias as a result of effects such as calibration corrections, drift or consumption,
hysteresis and non-linearity is often not properly handled. This abuse could bias conformity
decisions and thereby place either the consumer or supplier at an unfair disadvantage.

E1.8.2 Introduction of the application

Poor practice in the evaluation of measurement uncertainty can influence decisions on which it
depends. Still, known corrections are often not applied to observed values when computing a
measurement result and instead the uncertainty is enlarged in an attempt to compensate. This
poor practice inflates coverage intervals and could bias conformity decisions and therefore place
either the consumer or supplier at a disadvantage. The consequences of such poor practice are
demonstrated in several examples.

E1.8.3 Specification of the measurand(s)

Denote an output quantity by Z and an input quantity by Y representing an indicated value. The
measurand generically is

Zuncor = Y (E1.8.1)
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for an uncorrected model as in section E1.8.4. For a corrected model it is

Zcor = Y + X , (E1.8.2)

where X is the quantity regarded as a correction.

E1.8.4 Measurement model

A ‘best estimate’ of Y is the arithmetic mean

y =
1
n

n
∑

i=1

yi , i = 1, . . . , n, (E1.8.3)

where the yi are unbiased observations made independently under repeatability conditions of
measurement.

A ‘best estimate’ of Zuncor is then

zuncor = y. (E1.8.4)

A value x of a correction quantity X is often incorporated to account for a systematic effect:

zcor = y + x . (E1.8.5)

x is the correction for a known bias or systematic error in the measuring system. A further
term can be included in model (E1.8.4) or (E1.8.5) relating to the resolution of the measuring
instrument. Its inclusion is straightforward and is treated by Lira and Wöger [152]. We do not
consider that term here.

The ‘known systematic error’ can arise from a variety of sources including calibration, effects due
to temperature deviation, drift, hysteresis, consumption of material and ‘wear’, and effects due
to method or operator bias.

E1.8.5 Uncertainty propagation

Knowledge concerning Y is in terms of a set of repeated observations made under repeatability
conditions (section E1.8.4). The arithmetic mean y of the observations is taken in (E1.8.3) as
an estimate of Y . The associated standard uncertainty u(y) is given by [2, clause 4.2]

u2(y) =
1

n(n− 1)

n
∑

i=1

(yi − y)2.

Knowledge concerning the systematic error is that a value x and an associated standard uncer-
tainty u(x) are available. The use of this knowledge in practice depends on whether a correction
is or is not to be made to y .

In expressions (E1.8.4) and (E1.8.5), y can be considered as a realized value of a random variable
with that variable typically modelled by the normal distribution N(y, u2(y)), which is strictly valid
only for large n. In cases where n is small, the t-distribution should be used [2, annex G.3].
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E1.8.5.1 Case 1: Good practice

Good practice, as assumed by JCGM guidance, dictates that a correction is made for a known
systematic error. This is the situation represented in expression (E1.8.5), in which x is a realized
value of a random variable. That variable is often modelled by a rectangular distribution with
mean x and standard deviation u(x).

The standard uncertainty u(zcor) associated with the corrected value zcor in expression (E1.8.5)
is given by

u2(zcor) = u2(y) + u2(x). (E1.8.6)

There is a correspondence between the right-hand sides of expressions (E1.8.5) and (E1.8.6) in
that the terms in the former are the means of the corresponding random variables and the terms in
the latter are the according variances of these random variables. That is, expression (E1.8.6) can
be regarded as giving the squared standard uncertainty associated with the corrected measured
value zcor in (E1.8.5). Said another way, expression (E1.8.5) is a realisation of measurement
model (E1.8.2) and expression (E1.8.6) gives the squared standard uncertainties corresponding
to the terms in the model.

For purposes of conformance assessment, we can regard the corrected value zcor as modelled by a
probability distribution with mean zcor and standard deviation u(zcor). When n is large and x has
a normal distribution, the distribution relating to zcor can be taken as normal: N(zcor, u2(zcor)). If
that is not the case, a Monte Carlo method [3] can be used to obtain its probability distribution
given probability distributions for Y (for example, Student’s t) and X (for example, rectangular).

E1.8.5.2 Case 2: Poor practice

Common practice [152–156] often involves making no correction and increasing the uncertainty
associated with the value of the measurand. On this basis the reported uncorrected value would
be

zuncor = y (E1.8.7)

A variety of approaches have been adopted for evaluating the associated uncertainty [154]. For
the purposes of demonstration let us suppose that the associated ‘standard uncertainty’ u(zuncor)
is given by one of the commonly used approaches, for which it is assumed that

u2(zuncor) = u2(y) + u2(x) + x2/3. (E1.8.8)

The term x2/3 is included in the uncertainty evaluation as a consequence of modelling the sys-
tematic effect as a rectangular distribution with mean of zero and half-width equal to the mag-
nitude of x . Other assumptions would give rise to generally somewhat different contributions.

‘Standard uncertainty’ is given in quotation marks since, as stated in [157], it is not a standard
uncertainty as defined in the GUM [2]. There is no one-to-one correspondence between the terms
in expressions (E1.8.7) and (E1.8.8) as in the expressions for the corrected value (E1.8.5) and the
associated variance (squared standard uncertainty) (E1.8.6). It does not possess the properties
of internal consistency, transferability and universality: see GUM [2, clause 0.4] and the strong
comments in [157].

The use of expression (E1.8.8) to obtain a ‘standard uncertainty’ for an uncorrected value con-
stitutes poor practice.
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It is not proper to attach a probability distribution to zuncor. However, poor practice might assume
the normal distribution N(zuncor, u2(zuncor)).

Not correcting for a systematic effect can be serious. Molinar et al. [158] report in the context
of methods for evaluation of uncertainty increase due to chemical impurities:

‘If no correction is applied, an additional type B uncertainty component u ≈ 0.2mK
if a rectangular probability distribution is assumed. The additional component is
nearly one order of magnitude larger than the other uncertainty components of the
fixed-point realization.’

Further, Westgard et al. [159] state in the context of laboratory medicine:

‘To characterize analytical quality of a laboratory test, common practice is to estimate
Total Analytical Error (TAE) which includes both imprecision and trueness (bias).
The metrologic approach is to determine measurement uncertainty, which assumes
bias can be eliminated, corrected, or ignored. Resolving the differences in these
concepts and approaches is currently a global issue [. . . ]

Elimination or correction of [. . . ] biases is not always possible, even with calibration
based on comparative patient results; therefore, bias must still be measured and
monitored and should not be ignored or assumed to be accommodated by long-term
estimates of measurement uncertainty.’

E1.8.6 Reporting the result

E1.8.6.1 Impact on tests against specification or tolerance limits

General

Conformance probability [6, definition 3.3.7] is the probability p that the measurand Z lies in a
tolerance interval [a, b], with a < b, that is

p = Pr(a ≤ Z ≤ b) =

∫ b

a
g(η)dη,

where g is the probability density function for Z [6, clause 7.4]. An interval such as [a, b] is called
a coverage interval for Z and p is the associated coverage probability. Guidance on constructing
a coverage interval with a desired coverage probability given the probability distribution for Z is
contained in JCGM 101:2008 [3].

Using the recommended practice in section E1.8.5.1, when g is normal, resulting from Y and X
being normal, the integral can straightforwardly be computed. Otherwise, a Monte Carlo calcu-
lation [3] can be used to establish an approximation to g since a false assumption of normality
might lead to an invalid indication of conformance probability.

Conformity decisions based on poor and good practice

The consequences of the poor practice regarding corrections in subsection E1.8.5.2 can be demon-
strated by example. Suppose the primary length of a product is tested using an appropriate mea-
suring instrument and there is an upper tolerance limit TU = 100cm on the length. Suppose the
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known correction and its associated standard uncertainty are

x = 0.20cm, u(x) = 0.05 cm.

A measured length value and its associated standard uncertainty are

y = 99.75 cm, u(y) = 0.15cm.

Both x and y have Gaussian distributions.

Using expressions (E1.8.5) and (E1.8.6), the corrected value and associated standard uncertainty
are

zcor = y + x = 99.95cm, u(zcor) = [u
2(y) + u2(x)]1/2 = 0.16cm.

The conformance probability is the area to the left of TU = 100cm under the normal curve having
mean zcor and standard deviation u(zcor). That probability is 0.62.

On the other hand, working with uncorrected values, expressions (E1.8.7) and (E1.8.8) give

zuncor = y = 99.75 cm, u(zuncor) = [u
2(y) + u2(x) + x2/3]1/2 = 0.20 cm.

The conformance probability is now the area to the left of TU = 100 cm under the normal curve
having these values as mean and standard deviation. That probability is 0.90, implying that a
significantly greater proportion of non-conforming items might be accepted.

Figure E1.8.1 depicts these two situations.

Figure E1.8.1: Using a corrected value, the conformance probability (0.62) is the shaded area in
the left figure, whereas using the uncorrected value, the conformance probability (0.90) is the
shaded area in the right figure; the latter (poor practice) approach allows a greater proportion
of non-conforming items to be accepted

Figure E1.8.2 shows the conformance probability for a range of values y .
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Figure E1.8.2: Conformance probability for a range of measured values y with corrected and
uncorrected bias in the example described in section E1.8.6.1

E1.8.7 Treatment of drift

In many practical situations it is difficult to model drift with any degree of confidence – in most
cases it is probably one of the least reliable among the influence quantities.

In general terms calibration drift usually corresponds to a change in a calibration value over
the course of time. This variation might occur in a predictable or not so predictable fashion
depending upon the underlying source of the variation.

In situations where a calibration function is established from data consisting of reference values
and corresponding observed values (as elaborated in [77] and [110]). The drift could be mod-
elled in terms of a time dependent relationship for the fitted coefficients, perhaps resulting in a
linear function

Z(t) = a(t) + b(t)Y, (E1.8.9)

in which a and b are time-dependent parameters whose value is influenced by historical calibra-
tion data as well as the most recent data.

This procedure is generally not straightforward and is unlikely to be widely adopted. In these
circumstances some other approach is usually adopted, such as analysis of any trend in estimated
values of the parameters.

However, in many situations such a calibration function that directly relates an observation to
an estimate of the measurand is not established. Instead the available calibration data is used to
estimate an additive (or multiplicative) correction, as for example

Z = Y + C . (E1.8.10)

In use, the measurand is estimated by

z(t) = y + c(t),
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where the estimate for the calibration correction c(t) at time of use t is based upon calibration
data

ci = c(t i) = zi − yi ,

and where zi = z(t i) and yi = y(t i) are calibration values corresponding to a reference value
and observation obtained at time t i

These approaches usually seem intuitively more reasonable to laboratory practitioners, but in
practice problems remain due to the generally small amount of information available (say 3 or 4
successive annual observations) and the question of how much weight to give to historical data.

Where there is enough data to perform a fit to a trend in the ci , such a fit and use of an extrapo-
lated calibration value c(t) based upon a functional fit to historical data seems appropriate. This
approach is demonstrated in Models 1 and 4 below.

In other situations there is insufficient data to draw any strong conclusions about how ci varies
over time. Consequently, the most recent calibration correction cn is often taken to be the best
estimate of C . In other words, an estimate

c(t) = cn + d(t), (E1.8.11)

is made, in which d(t) is a poorly understood bias effect with an assumed mean value of zero.
This is the approach demonstrated in Models 2, 3, and 5 below. (Arguably the mean calibration
value could be chosen rather than cn; however, there is usually a preference to give more weight
to the most recent value.)

The question that remains is how to evaluate the uncertainty associated with equation (E1.8.11).
If the expectation of the drift is genuinely zero (rather than this simply being a convenient as-
sumption) then assigning a distribution centred on zero is quite reasonable. Some guidance [160]
suggests that in this case the data should be considered as a Type A contribution (see Model 5
below). In practice, however, the available data is often used to identify limit values for a rect-
angular distribution with expectation value zero and limits ±ad .

Common estimates for ad are

ad =max(|di|),

where di is the difference between successive values ci and ci−1 (see Model 2 below). Occa-
sionally the estimate is more sophisticated, for example (Model 3 below), the larger value when
comparing the average |d̄| of the absolute differences |di|, and the most recent value dn, that is

ad =max(|d̄|, |dn|).

E1.8.7.1 Example of treatment of drift

The issue is demonstrated in the following example in which the conformance probability pc is
calculated using GUM-consistent measurement models (E1.8.10) with various approaches taken
for evaluating drift.

In this example suppose that a test is defined with an upper tolerance TU = 10 for the measurand
Z .

Suppose that the available calibration data consists of four equally spaced results ci corresponding
to times t i for i = 1, . . . , n = 4 as shown in Table E1.8.1. Let u(ci) = 0.15 and the evaluation be
conducted for some later time t > tn, say t = 42.
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Table E1.8.1: Annual calibration correction data ci and difference di = ci − ci−1

i t i ci di

1 0 0.3
2 12 0.3 0.00
3 24 −0.15 −0.45
4 36 0.1 0.25

The conformance probability pc is calculated for a range of measured values y using different
drift models as described below. Figure E1.8.3 summarises the results. These drift models are
some that are used in practice. Note that many other variations on these models are possible and
are also encountered.

Model M1:
A straight-line fit to the data is performed to establish c(t) at the time of use; hence c(t) = a0+a1 t,
where a0 and a1 are the coefficients of the fitted function and u(ct) is the uncertainty associated
with c(t), all of which can be established using ISO/TS 28037 [77]; hence

z(t) = y + c(t),

u2(z) = u2(y) + u2(ct).

Model M2:
The most recent calibration result cn is used. There is a genuine belief (perhaps due to some
metrological knowledge or experience) that the expectation of drift is zero despite the recent
albeit sparse evidence to the contrary. The drift is therefore assumed to have mean value of zero.
Its associated standard uncertainty is evaluated as the standard deviation of a rectangular distri-
bution with semi-width corresponding to the maximum absolute difference between successive
calibration results; hence

z(t) = y + cn + 0,

u2(z) = u2(y) + u2(cn) + ad
2/3,

ad =max(|di|).

Model M3:
The most recent calibration result cn is used. Again, there is a genuine belief that the expectation
of drift is zero despite the recent evidence to the contrary. The drift is therefore assumed to have
mean value of zero. In order to give more weight to the most recent data, its associated standard
uncertainty is evaluated as the standard deviation of a rectangular distribution with semi-width
corresponding to the larger of a) the most recent absolute difference, and b) the mean of all
absolute differences between successive calibration results.

z(t) = y + cn + 0,

u2(z) = u2 + u2(cn) + ad
2/3,

ad =max(|dn|, d̄),

d̄ =
1
n

n
∑

i=2

|di|.
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Model M4:
A straight-line fit c(t) = a0 + a1 t to the data is performed to establish c(t) at the time of use.
The coefficients a0 and a1 of the fitted function are established using ordinary least squares (for
example, using the Excel SLOPE and INTERCEPT functions). The standard uncertainty associated
with c(t) is evaluated as the standard deviation of a rectangular distribution with semi-width
corresponding to the maximum fitting residual; hence

z(t) = y + c(t),

u2(z) = u2(y) + u2(ct),

u2(ct) = u2(cn) + r2
max/3,

rmax =max(|ci − (a0 + a1 t)|).

Model M5:
There is a genuine belief that the expectation of drift is zero despite the recent evidence to the
contrary. The drift is therefore assumed to have mean value of zero. Its standard uncertainty
u(d) is taken as the standard deviation of the set of available data for di . It is assumed to be
characteristic of quantity with a t-distribution centred at zero having standard deviation equal
to u(d). The best estimate of the appropriate correction at the time of use is assumed to be the
most recent value, cn. (Arguably the mean value should be chosen; however, there is usually a
preference to weight towards the most recent value.)

z(t) = y + cn + 0,

u2(z) = u2(y) + u2(cn) + u2(d),

νeff = (n− 1)
u4(z)
u4(d)

.

The conformance probability is evaluated on the basis that z has a t-distribution with νeff effective
degrees of freedom (evaluated using the Welch-Satterthwaite formula [2]).

The conformance probability pc has been calculated for a range of measured values y with the
different drift models described above. The conformance probabilities are depicted in Figure
E1.8.3 in which it is evident that the choice of drift model can have a significant impact upon the
measurement uncertainty and upon any subsequent decisions.

All of these models, when based upon little data, make more or less arbitrary choices for u(c) and
u(d). For this reason any significant assumptions should be clearly stated with the results and
the choice of model should be justified, either by additional measurements, or with supporting
information based upon metrological experience and expertise. For example, where a linear
model seems appropriate M1 might seem justified, whereas M2 is more conservative and may
be preferable if the risk of false acceptance is a key concern and no additional information about
the drift is available.

E1.8.8 Interpretation of results

As an alternative to correction, a number of methods have been proposed or adopted that in-
crease the expanded uncertainty to take account of bias. In [161], ‘all sensible combinations’ of
correcting or enlarging uncertainty for bias, whether considered significant or not, were modelled
by a Latin hypercube simulation of 1.25×105 ‘iterations’ for a range of bias values. The fraction
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Figure E1.8.3: conformance probability for a range of observed values y , evaluated at t = 42
using the various models, M1 to M5 and the data in Table E1.8.1
of results for which the value and the associated expanded uncertainty contained the true value
of a simulated test measurand was used to assess the various methods. The strategy of estimating
the bias and always correcting is consistently the best throughout the range of biases.

Laboratories are routinely faced with the question of whether they need to correct for biases
(such as temperature effects, calibration corrections or drift) with the associated investment of
time and effort in maintaining such a process. The attraction of a simple approach whereby such
biases are factored into an uncertainty budget makes this a commonly adopted approach in which
there is usually no appreciation of the potential problems that are created for others further along
the measurement chain, as demonstrated in section E1.8.6.1 and in section E1.8.7.1.

Unfortunately, however (as explained in section E1.8.5.2), there is no way to state the uncertainty
associated with an uncorrected value that is consistent with the GUM [2].

On the basis of the explanation in section E1.8.5.2 and supported by these simulations it is
strongly recommended that whenever possible a corrected value and the associated uncertainty
is reported as in section E1.8.5.1.

Otherwise, when an uncorrected value and an uncertainty are reported, it should be stated that
the result is inconsistent with the GUM in that a measurement model has not been used but
the result follows the advice of a publication that is cited. Reference [154] usefully categorises
several approaches.

The consequent impact on conformity decisions must also be considered. In some cases the effect
on conformance probabilities would be considerable, as seen in section E1.8.6.1 and in section
E1.8.7.1.

Even when a model is consistent with the GUM, the choice of how to treat drift can have signif-
icant impact on conformance intervals and upon decisions, as discussed in the previous section.
It is strongly recommended that the practitioner gives sufficient details in the report on how drift
has been handled.
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Example E2.1

Conformity assessment of an influenza
medication as a multicomponent
material
F. Pennecchi, M.G. Cox, P.M. Harris, A.M.H. van der Veen and S.L.R. Ellison

E2.1.1 Summary

The main goal of the present study is to show how to calculate risks of false decisions in the
conformity assessment of a multicomponent material, taking into account both the measurement
uncertainties and the covariances for the measured content values of the components. As a case
study, a particular influenza medication (NyQuil tablets) is here considered.

E2.1.2 Introduction of the application

Medicinal products are typical examples of multicomponent materials, since they are made of
several active compounds and excipients. Conformity assessment has to be performed in the
content of each of its components. However, even when conformity assessment is successful for
all the components individually and relevant consumer’s and producer’s risks are acceptable, the
total probability of a false decision (total risk) on the conformity of the material as a whole might
still be significant.

An IUPAC Project [162] was dedicated to the modelling of total risks of false decisions due to
measurement uncertainty for multicomponent materials or objects. The mathematical frame-
work was developed as a generalization of that suggested in [6] for conformity assessment of
a single item. For this reason, the notation used here is consistent with the notation in [6]
and [163], the latter being a relevant paper in which the reader can find more details on this
case study.

E2.1.3 Specification of the measurands

This case study concerns test results for NyQuil tablets [164], a cold medication containing four
active components:
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• acetaminophen (APAP), as a pain reliever and fever reducer;

• dextromethorphan hydrobromide (DEX), as a cough suppressant;

• doxylamine succinate (DOX), as an antihistamine and hypnotic;

• phenylephrine hydrochloride (PE), as a nasal decongestant.

The measurands are the content values ci , i = 1, . . . , 4, of the components of the tested medication
tablets. Corresponding measured values (test results) cim, obtained according to the test method
described in [163], undergo conformity assessment. Quantities are masses of the components in
a tablet expressed as a fraction (%) of the corresponding labelled amount li . Labelled amounts
are l1 = 325 mg for APAP, l2 = 10 mg for DEX, l3 = 6.25 mg for DOX, and l4 = 5 mg for PE,
respectively, per tablet (a tablet mass is 775 mg on average).

E2.1.4 Measurement uncertainty and correlations

A full uncertainty budget for the test results of the components’ content is available in [163].
Relative measurement uncertainty is evaluated as 2.8 % of cim.

A total of 105 lots of the medication produced and released at the same factory during a year are
tested in the same laboratory belonging to the factory. Linear correlation among the test results
for different components is estimated by the Pearson’s correlation coefficients ri j [2, sec. C.3.6],
i < j. Only APAP test results are not significantly correlated with the other components’ contents,
whereas test results for the low-dose active components – DEX, DOX and PE – show to be signif-
icantly correlated (at a 99 % level of confidence) [163]. Correlation coefficients are reported in
table E2.1.1.

Table E2.1.1: Correlation coefficients between components’ content values

Component Index APAP DEX DOX PE
i/ j 1 2 3 4

APAP 1 1 0.107 0.125 0.177
DEX 2 1 0.311 0.404
DOX 3 1 0.539
PE 4 1

E2.1.5 Specification or tolerance limits

The lower and upper tolerance limits, TLi and TUi , for the product release are 95.0 % and 105.0 %
of the labelled amount li for each active component, i = 1, . . . , 4. The tolerance limits derive from
regulatory authorities controlling the quality of marketed medicinal products.

E2.1.6 Decision rule and conformity assessment

In the present case study, the “simple acceptance”, or “shared risk”, rule is considered as the deci-
sion rule for conformity assessment [6, sec. 8.2.1], i.e., acceptance limits of test results coincide
with tolerance limits (ALi = TLi and AUi = TUi).
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The producer of the medication is the pharmaceutical company producing the drug, whereas
the consumer is any individual who may take that medication. In the present example, only the
calculation of consumer’s risks is shown, but the counterpart models for the producer’s risks are
easily obtainable as well.

E2.1.6.1 Bayesian framework

In the framework of the IUPAC project [162], evaluation of total risks of false decision for mul-
ticomponent materials is based on a multivariate version of the evaluation of specific and global
risks for a single characteristic of an item, as defined in [6, sec. 9.3.2 and 9.5.2]. The underlying
Bayesian approach requires defining a multivariate prior probability density function (PDF) g0(c)
for “true” values of the components’ content, where c = [c1, . . . , c4], and a multivariate likelihood
function h(cm |c ) for the corresponding test results, where cm = [c1m, . . . , c4m].

As discussed in [163], a multivariate normal distribution is used for modelling both the prior
knowledge and the likelihood function. The former multivariate normal PDF, g0(c), has vec-
tor mean m = [m1, . . . , m4], where mi is the ith experimental sample mean, calculated from
the available production data (see table E2.1.2), and covariance matrix Sc made by terms
Sci j
= ri j si s j , where ri j are the correlation coefficients in table E2.1.1 and si is the ith exper-

imental standard deviation (see table E2.1.2). For each fixed vector value c, the multivariate
normal PDF modelling the likelihood function h(cm |c ) has vector mean c and covariance matrix
Scm made by terms Scmi j

= ri j ui u j , where ui = 0.028 cim, % of labelled amount, is the ith associ-

ated standard uncertainty1. The same correlation coefficients are used for both the prior PDF and
the likelihood function since it is supposed that no further correlation effect is attributable to the
analytical measurement process: just the correlation between “true” values, maybe due to tech-
nological conditions in the production of the medication, is effective and induces, consequently,
a correlation between the corresponding test results.

Table E2.1.2: Experimental mean and standard deviation of the components’ content values of
105 lots of the medication

Component Index Mean Standard deviation
i mi , % of labelled amount si , % of labelled amount

APAP 1 99.18 1.37
DEX 2 97.70 1.02
DOX 3 99.33 1.05
PE 4 98.94 1.22

E2.1.6.2 Total specific risk

For a vector of test results cm of a specific multicomponent item, when all the cim are measured
within their own acceptance interval and hence the material is accepted as conforming, the total
specific consumer’s risk R∗tot is defined as the probability of at least one of the “true” ci values
of the components’ contents being outside its tolerance interval. Therefore, it is calculated as

1Standard deviations si are smaller than measurement uncertainties ui , since each released lot has passed several
quality tests (any out-of-specification test result preventing the lot release), whereas 2.8 % is a target relative standard
uncertainty (hence, the actual measurement standard uncertainty may be smaller).
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one minus the probability that all the “true” values ci are inside their tolerance interval. Such a
probability is provided by the posterior PDF integrated over the multivariate tolerance domain
[TL1, TU1]×[TL2, TU2]×[TL3, TU3]×[TL4, TU4]. The integral can be obtained by calculation of the
corresponding cumulative distribution function at the desired limits.

In the current study, since both prior g0(c) and likelihood function h(cm |c ) are modelled by
multivariate normal PDFs, also the joint posterior function for the “true” components’ content
values results in a multivariate normal PDF with covariance matrix Spost and vector of posterior
means cpost respectively equal to [65, eq. 3.13]:

Spost =
�

S−1
c + nrepS−1

cm

�−1
(E2.1.1)

cpost = Spost

�

S−1
c m + nrepS−1

cm c̄m

�

, (E2.1.2)

where m is the vector of the prior mean values, c̄m is the vector of the arithmetic means of
replicated measurement/test results and nrep is the number of such replicates (in this study, since
each component is measured once, nrep = 1 and c̄m = [c1m, . . . , c4m]).

Considering, for example, the special case in which all the test results cim are exactly equal to the
corresponding prior mean values mi , the total specific consumer’s risk is R∗tot = 0.0029. When
cim = TLi for each i, hence R∗tot = 0.0117; when cim = TUi , R∗tot = 0.0002. Details of the calcu-
lation can be found in the code file A121_Medicine_total_specific_risk.r, where the “pmvnorm”2

function from the R package “mvtnorm” [51] is used for the calculation of the posterior cumula-
tive distribution.

E2.1.6.3 Total global risk

The total global consumer’s risk Rtot is defined as the probability that test results cim of all the
components’ contents of an item, drawn at random from the item population, are in their re-
spective acceptance intervals and at least one of the corresponding “true” values ci is outside its
tolerance interval. Such probability is the integral of the joint multivariate PDF of “true” and
test results, which is given by the product g0(c) h(cm |c ). It can be calculated by a Monte Carlo
(MC) simulation in which, for each vector c randomly drawn from g0(c), a corresponding vector
cm is drawn from h(cm |c ). Hence, the total risk is approximated by the frequency of cases in
which, within randomly generated vectors [cm, c], all the cim values are within their respective
acceptance intervals but at least one ci value is outside its tolerance interval.

In the present study, for a number N = 107 of MC simulations, such risk value is equal to
Rtot = 0.0018, being numerically stable up to the fourth decimal digit. Details of the calcula-
tion are in the code file A121_Medicine_total_global_risk.r. The obtained result is slightly dif-
ferent from that reported in [163] (Rtot = 0.0019), which was obtained by a composition of
several probability terms, arranged according to the law of total probability, each calculated by
the “adaptIntegrate” function of the R package “cubature”.

E2.1.7 Interpretation of results

The above-reported values of total specific risk are for illustrative purposes. Value R∗tot = 0.0029
means that, whenever test results coincided with prior mean values, for instance, there would be
a probability of 0.29 % of selling a nonconforming product, in the sense that at least one of the

2The absolute error of the reported values, provided as an output of the function, is about 10−5 for R∗tot = 0.0029
and for R∗tot = 0.0117, and 10−6 for R∗tot = 0.0002.
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“true” values of the components’ content would be actually out-of-specification. The dependence
of total specific risk on the test result of a particular component at a time (while the other cim
values are fixed and equal to the prior mean values) is depicted in [163], showing that the risk
behaviour is not easily predictable.

The obtained total global risk Rtot = 0.0018 indicates that, out of 10 000 tablets chosen at random
from the whole medication production, 18 of them might be assessed as conforming without
actually being (i.e., presenting conforming test results for all the four component contents, while
actually having at least an out-of-specification “true” value).
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Example E2.2

Measurement models involving
additive or multiplicative corrections
A. Bos̆njaković, V. Karahodžić, J. Greenwood, M.G. Cox

E2.2.1 Summary

A common form of presentation for calibration results involves expressing the result as an additive
or multiplicative correction. This is the case for vacuum gauges and is illustrated with data using
the models described in [165]. The examples and conclusions do, however, have much wider
applicability.

This example demonstrates the effect of model assumptions concerning errors in the reference
value. In addition it demonstrates how conformance probability can be affected by these assump-
tions. The example concludes by demonstrating how correlation can be handled for calibration
corrections.

E2.2.2 Introduction

Calibration measurements are reported in a wide variety of forms. A particularly popular form
involves presenting measurement error as a calibration correction.

Often a limit or tolerance is defined for this correction and a conformity test is required. To make
such a conformity decision requires knowledge of the measurement uncertainty associated with
the correction.

Measurement uncertainty plays a crucial role, both here and in the decision processes found in
most activities concerned with product or process conformity assessment. Without some account
for measurement uncertainty the risk associated with a decision is undefinable.

The evaluation of measurement uncertainty and conformance probability are illustrated here
for the calibration of a vacuum gauge; however, the analysis and methods described have more
general applicability.

The calibration of vacuum (pressure) gauges is achieved by using a reference standard to es-
tablish the calibration pressure value at the inlet port of the unit under calibration (UUC). Of-
ten [166], this reference pressure is measured directly by a reference gauge and is obtained from
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a corrected reading from that gauge. A model for the evaluation of measurement uncertainty in
vacuum calibration is described in some detail in ISO 27893 [165], whose principles can readily
be transferred to other measurement applications.

Using the same set of calibration data, this example considers an additive (‘sum’) model, in which
the calibration pressure value can be used to determine a reading error∆p for the UUC; it consid-
ers a multiplicative ‘quotient model’ (applicable when the calibration value is used to determine
a correction factor, sensitivity coefficient, accommodation coefficient or gauge constant), and a
‘combined model’.

Three scenarios are considered, representing different practices, illustrating how these practices
can affect the associated conformance probability.

In the first scenario, following best metrological practice, a reference pressure correction (that is,
a known systematic bias, due for example to the calibration method, thermal transpiration, height
correction, etc.) is applied, and its associated uncertainty is incorporated in the uncertainty
evaluation.

In the second scenario, the reference pressure correction is not applied, and instead it is combined
with the associated uncertainty to establish a larger ‘correction uncertainty’. In metrological
terms this way of working represents poor (albeit common) practice when it is adopted for a
known bias, and can have significant consequences for conformity decisions [167]. In situations
where the correction is not known, but is perhaps considered to be in a defined range then this
approach is more justified [168].

In the final scenario, the correction and its associated uncertainty are simply neglected, repre-
senting what might be termed ‘bad practice’.

In each case the output PDF is assumed to be normal and conformance probability is calculated
using a standard normal cumulative distribution function.

Data for the analyses are taken from a calibration certificate IMT-LMT-80-2019, produced by the
Laboratory of Pressure Metrology, Institute of Metals and Technology, Ljubljana, Slovenia. The
UUC in this example is a capacitance diaphragm vacuum gauge with full scale range of 11 kPa.

The specification adopted for the UUC in our example requires that calibration errors should be
no larger than 0.5 % of the reading.

Finally, a physically different ‘sum model with correlation’ is presented, demonstrating how cor-
relation might be treated in that case.

E2.2.3 Measurands

Adopting the nomenclature of [165] the measurand is defined for the various classes of model
as one of the following:

∆p – pressure difference (sum model) having standard uncertainty u(∆p),

f – correction error (quotient model) having standard uncertainty u( f ),

e – error of reading (combined model) having standard uncertainty u(e).

Other useful nomenclature:

pUUC, u(pUUC) – pressure for unit under calibration and its associated standard uncertainty,
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pstd, u(pstd) – reference standard pressure and its associated standard uncertainty,

∆pm, u(∆pm) – reference pressure correction term and its associated standard uncertainty.

E2.2.4 Measurement model

The measurement models are of the explicit, univariate type [4]:

In such models, a single real output quantity Y is related to a number of input quantities X =
(X1, . . . , XN ) by a functional relationship f in the form Y = f (X) as stated in the GUM [2]. The
estimate of the output quantity is taken as y = f (x ). The standard uncertainty u(y) is associated
with y is evaluated from

u2(y) =
N
∑

i=1

N
∑

j=1

ciu(xi, x j)c j ,

where ci is the partial derivative ∂ f /∂ X i evaluated at X = x and is known as the ith sensitivity
coefficient, u(x i) is the standard uncertainty associated with x i , and u(x i , x j) the covariance
associated with x i and x j . For independent input quantities, we would obtain the better-known
simplified expression

u2(y) =
N
∑

i=1

[ciu(x i)]
2 =

N
∑

i=1

u2
i (y),

where

ui(y) = |ci|u(x i).

E2.2.4.1 Sum model

In the sum model, the measurand ∆p is defined as the difference between the reading of the
unit under calibration (UUC) and the reference value, which is given by the pressure indication
of the reference standard corrected by a (possible) reference pressure correction term ∆pm:

∆p = pUUC − (pstd +∆pm). (E2.2.1)

E2.2.4.2 Quotient model

The standard ISO 27893 [165] describes how a model can be established in general situations
where the UUC output and the reference standard output are not necessarily given in the same
units of measurement. For example the UUC output may be measured as a current, voltage or
frequency that is relatable to pressure through some functional relationship.

rUUC =
xUUC

pstd
.

In this example we are only concerned with a simple case in which xUUC = pUUC and where
rUUC = 1/ f defines a correction factor f as the measurand; hence

f =
pstd +∆pm

pUUC
, (E2.2.2)

Note that equation (E2.2.2) is not a pure quotient but is a simple example of a ‘combined’ model.
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E2.2.4.3 Combined model

In practice, realistic measurement models are seldom a pure sum or product of quantities and a
combined model is required. For example, the measurand e, the relative error of reading, can be
defined by

e =
pUUC − (pstd +∆pm)

pstd +∆pm
=

pUUC

pstd +∆pm
− 1. (E2.2.3)

E2.2.4.4 Sum model with correlation

An example that demonstrates how to evaluate a sum model with correlation is presented in
section E2.2.7.

E2.2.5 Uncertainty propagation

The GUM’s law of propagation of uncertainty (LPU) [2, eqn. (10)] is applied to establish the stan-
dard uncertainty associated with an estimate of the measurand for each of the three measurement
models.

E2.2.5.1 Sum model

The standard uncertainty in the sum model is

u(∆p) =
�

u2(pUUC) + u2(pstd) + u2(∆pm)
�1/2

. (E2.2.4)

E2.2.5.2 Quotient model

The standard uncertainty in the quotient model is

u( f ) =
pstd +∆pm

pUUC

�

u2(pUUC)
p2

UUC

+
u2(pstd)

(pstd +∆pm)2
+

u2(∆pm)
(pstd +∆pm)2

�1/2

. (E2.2.5)

E2.2.5.3 Combined model

The standard uncertainty in the combined model is

u(e) =
pUUC

pstd +∆pm

�

u2(pUUC)
p2

UUC

+
u2(pstd)

(pstd +∆pm)2
+

u2(∆pm)
(pstd +∆pm)2

�1/2

. (E2.2.6)

E2.2.6 Measurand expanded uncertainty and conformance proba-
bility for three scenarios

In this section the measurand expanded uncertainty at the 95 % level of confidence (k = 2) and
the conformance probability are evaluated for three different scenarios, described below.
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For the purposes of these examples the reference pressure correction term ∆pm is taken to be
0.05 % of pstd and the associated expanded uncertainty (k = 2) is assumed to be 1 Pa for all
pressure values.

The calibration data, calibration corrections and associated expanded measurement uncertainties
are summarised in Table E2.2.1. This data applies to all scenarios and models.

Table E2.2.1: Calibration data used for all scenarios and models (data is given and used as
provided rather than in line with common reporting principles [169]).

Point, n pstd/Pa U(pstd)/Pa pUUC/Pa U(pUUC)/Pa

1 10.89 0.050 10.7 0.23
2 17.02 0.090 17.0 0.23
3 26.03 0.13 25.4 0.23
4 40.28 0.20 39.5 0.23
5 63.10 0.32 63.0 0.23
6 96.89 0.48 97.1 0.23
7 161.3 1.0 161.2 0.23
8 256.4 1.5 255.9 0.23
9 403.3 2.4 403.7 0.23

10 647.5 3.9 647.8 0.23
11 978.7 5.9 980.4 0.23
12 1610.6 5.0 1613.2 0.23
13 2505.4 5.0 2509.2 0.23
14 4075.9 0.50 4079.5 0.23
15 6278.6 0.70 6282.7 0.23
16 9069.2 1.0 9072.9 0.23
17 10 932.8 1.1 10937.1 0.23

E2.2.6.1 Scenario 1

In the first scenario, following best metrological practice, the reference pressure correction ∆pm
is applied to the measured reference pressure pstd.

The calibration corrections and expanded measurement uncertainty are summarised in Table
E2.2.2 where the corrections ∆p, f and e are evaluated using equations (E2.2.1), (E2.2.2) and
(E2.2.3) respectively and standard uncertainties are evaluated using the corresponding equations
(E2.2.4), (E2.2.5) and (E2.2.6).

Figures E2.2.1 and E2.2.2, respectively, depict the correction factor f and the pressure difference
∆p as a function of UUC pressure indication.

The red broken lines on these and later figures represent the specification limits defined by the
UUC owner. These often, but not necessarily, correspond to limits defined by the equipment
manufacturer.

Conformance probability can be calculated regarding ∆p, f and e. Since all three quantities
are linearly related their PDFs describe the same physical situation and the same conformance
probability will be established whichever is evaluated. We therefore arbitrarily choose f for the
purpose of these examples.
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Table E2.2.2: Calibration corrections for Scenario 1. All uncertainties are expanded (k = 2)

Point ∆p/Pa U(∆p)/Pa e U(e) f U( f )

1 −0.20 1.0 −0.0179 0.093 1.0183 0.096
2 −0.03 1.0 −0.0017 0.061 1.0017 0.061
3 −0.64 1.0 −0.0247 0.039 1.0253 0.041
4 −0.80 1.1 −0.0199 0.0025 1.0203 0.026
5 −0.13 1.1 −0.0021 0.0017 1.0021 0.017
6 0.16 1.1 0.0017 0.0011 0.9983 0.011
7 −0.18 1.4 −0.0011 0.0088 1.0011 0.0089
8 −0.63 1.8 −0.0024 0.0071 1.0025 0.0071
9 0.20 2.6 0.0005 0.0065 0.9995 0.0065

10 −0.02 4.0 0.0000 0.0062 1.0000 0.0062
11 1.21 6.0 0.0012 0.0061 0.9988 0.0061
12 1.79 5.1 0.0011 0.0032 0.9989 0.0032
13 2.55 5.1 0.0010 0.0020 0.9990 0.0020
14 1.56 1.1 0.0004 0.00028 0.9996 0.00028
15 0.96 1.2 0.0002 0.00020 0.9998 0.00020
16 −0.83 1.4 −0.0001 0.000 16 1.0001 0.000 16
17 −1.17 1.5 −0.0001 0.000 14 1.0001 0.000 14

Figure E2.2.1: Correction factor as a function of UUC pressure indication (logarithmic scale),
scenario 1
To calculate the conformance probability we further assume that the PDF for f is normal:

p(x) =
1

σ(2π)1/2
e−[(x−m)2/(2σ2)],

where m is the mean and σ is the standard deviation.
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Figure E2.2.2: Pressure difference as a function of UUC pressure indication, scenario 1
To demonstrate evaluation of the conformance probability, consider a point 13 where say m =
f = 0.999 and σ = u( f ) = 0.002. The conformance probability is given by integrating the PDF
over the limits of interest, say 0.995≤ x ≤ 1.005:

pc =

∫ 1.005

0.995

1
0.002 (2π)1/2

e−[(x−0.999)2/(2×0.0022)] dx (E2.2.7)

This integral is not analytically solvable, but it can be expressed through tabulated functions such
as Q, φ or erfc. In this example the use of the Q function will be demonstrated where

Q(x) =

∫ +∞

x

1

2π1/2
e−t2/2 dt.

Letting t = (x −m)/σ, we find new limits for the integral

(1.005− 0.999)/0.002= 3,

(0.995− 0.999)/0.002= −2,

and (E2.2.7) becomes

pc =

∫ 3

−2

1

2π1/2
e−t2/2 dt

=

∫ +∞

−2

1

2π1/2
e−t2/2dt −

∫ +∞

3

1

2π1/2
e−t2/2 dt

=Q(−2)−Q(3)

= 0.977− 0.001

= 97.6 %.

Note: To implement the calculations in Microsoft Excel, the Q(x) function can be evaluated using
the relation Q(x) = 0.5erfc(x/

p
2) and the Excel function ERFC.PRECISE().
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Table E2.2.3: Conformance probability – Scenario 1

Point pUUC/Pa ∆p/Pa e f pc/%

7 161.30 −0.18 −0.00112 1.0011 72.4
8 256.40 −0.63 −0.00245 1.0025 74.5
9 403.30 0.20 0.000 492 0.9995 87.3

10 647.50 −0.02 −0.000037 1.0000 89.2
11 978.70 1.21 0.001 236 0.9988 87.1
12 1610.60 1.79 0.001 114 0.9989 99.3
13 2505.40 2.55 0.001 016 0.9990 100.0
14 4075.90 1.56 0.000 383 0.9996 100.0
15 6278.60 0.96 0.000 153 0.9998 100.0
16 9069.20 −0.83 −0.000092 1.0001 100.0

The conformance probability for this scenario using the given data and the stated specification is
summarised in Table E2.2.3 (restricted to data in the top two full decades for sake of clarity).

No general conclusions should be drawn from the values in this table. The results are however in-
formative for this specific calibration where, as might be expected for a well behaved instrument
of this type, conformance probability tends to be highest at higher pressures. The acceptabil-
ity or otherwise of the result can be based on a straightforward consideration of conformance
probability.

E2.2.6.2 Scenario 2

In the second scenario no reference pressure correction ∆pm is applied, that is, the model equa-
tions are

f =
pstd

pUUC
,

∆p = pUUC − pstd,

e =
pUUC

pstd
− 1.

This situation might (correctly) arise because little is known about∆pm; hence the best estimate
of its value is taken to be zero, albeit the uncertainty remains finite. It might also be the case that
the value of the correction is known but following common (albeit poor) practice it is instead
somehow combined with its uncertainty to establish a bigger uncertainty estimate which, it is
argued, accounts for the failure to apply the correction. (See [167] and [157] for explanations
of why this is considered to be poor practice.) This latter situation is evaluated in this scenario.

In this case, the standard uncertainty u(∆pm) associated with the unused correction term is
calculated using

u(∆pm) =

�

0.52 +
(0.05 % pstd)2

3

�1/2

in which ∆pm = 0.05 % pstd is assumed to be the semi-range of a rectangular distribution.

The quantities ∆p, f and e and their uncertainties are again recalculated and given in Table
E2.2.4

Figures E2.2.3 and E2.2.4, respectively, depict the correction factor f and the pressure difference
∆p as a function of UUC pressure indication.
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Table E2.2.4: Data for scenario 2. All uncertainties are expanded (k = 2)

Point ∆p/Pa U(∆p)/Pa e U(e) f U( f )

1 −0.19 1.0 −0.0174 0.093 1.0178 0.096
2 −0.02 1.0 −0.0012 0.061 1.0012 0.061
3 −0.63 1.0 −0.0242 0.039 1.0248 0.041
4 −0.78 1.1 −0.0194 0.026 1.0197 0.027
5 −0.10 1.1 −0.0016 0.017 1.0016 0.017
6 0.21 1.1 0.0022 0.012 0.9978 0.012
7 −0.10 1.4 −0.0006 0.0089 1.0006 0.0089
8 −0.50 1.8 −0.0020 0.0071 1.0020 0.0071
9 0.40 2.6 0.0010 0.0065 0.9990 0.0065

10 0.30 4.0 0.0005 0.0062 0.9995 0.0062
11 1.70 6.0 0.0017 0.0061 0.9983 0.0061
12 2.60 5.1 0.0016 0.0032 0.9984 0.0032
13 3.80 5.3 0.0015 0.0021 0.9985 0.0021
14 3.60 2.6 0.0009 0.00064 0.9991 0.00064
15 4.10 3.8 0.0007 0.00061 0.9993 0.00061
16 3.70 5.4 0.0004 0.00060 0.9996 0.00060
17 4.30 6.5 0.0004 0.00059 0.9996 0.00059

As would be expected from equations (E2.2.1), (E2.2.2) and (E2.2.3) the uncertainty for scenario
2 is always larger than the corresponding uncertainty for scenario 1. In this case the difference
is not large, but this is dictated by the data and may be more (or less) significant for other data.

The conformance probability for this scenario using the given data and the stated specification is
summarised in Table E2.2.5 (restricted to data in the top two full decades for sake of clarity).

Table E2.2.5: Conformance probability – scenario 2

Point pUUC/Pa ∆p/Pa e f pc/%

7 161.30 −0.10 −0.0006 1.0006 73.4
8 256.40 −0.50 −0.0020 1.0020 77.8
9 403.30 0.40 0.0010 0.9990 85.9

10 647.50 0.30 0.0005 0.9995 88.6
11 978.70 1.70 0.0017 0.9983 84.2
12 1610.60 2.60 0.0016 0.9984 98.3
13 2505.40 3.80 0.0015 0.9985 100.0
14 4075.90 3.60 0.0009 0.9991 100.0
15 6278.60 4.10 0.0007 0.9993 100.0
16 9069.20 3.70 0.0004 0.9996 100.0

The behaviour for conformance probability is generally more complex than is the case for mea-
surement uncertainty. In this example the conformance probability for scenario 2 is generally
lower than for scenario 1, which can be explained by one or both of the measurand (based upon
uncorrected reference pressure) being closer to a tolerance limit, and the uncertainty being larger,
and hence the PDF being ‘wider’ and extending more beyond the tolerance limits. It is however
quite possible for a value to be closer to the centre of the tolerance interval when no correction
is applied, which may have a larger influence on the calculation of conformance probability than
the increase in uncertainty, as is seen for example for our point no. 8.
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Figure E2.2.3: Correction factor as a function of UUC pressure indication (logarithmic scale),
scenario 2

Figure E2.2.4: Pressure difference as a function of UUC pressure indication, scenario 2

E2.2.6.3 Scenario 3

The third scenario is obtained when the correction term and associated uncertainty are excluded,
which is equivalent to setting∆pm = u(∆pm) = 0 in our three models, yielding the results shown
in Table E2.2.6 in which the conformance probability pc is again given for all points in the second
and third decade.
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Table E2.2.6: Data for scenario 3. All uncertainties are expanded (k = 2)

Point ∆p/Pa U(∆p)/Pa e U(e) f U( f )

1 −0.19 0.24 −0.0174 0.022 1.0178 0.022
2 −0.02 0.25 −0.0012 0.015 1.0012 0.015
3 −0.63 0.26 −0.0242 0.010 1.0248 0.011
4 −0.78 0.30 −0.0194 0.0075 1.0197 0.0078
5 −0.10 0.39 −0.0016 0.0062 1.0016 0.0063
6 0.21 0.53 0.0022 0.0055 0.9978 0.0055
7 −0.10 1.0 −0.0006 0.0064 1.0006 0.0064
8 −0.50 1.5 −0.0020 0.0059 1.0020 0.0059
9 0.40 2.4 0.0010 0.0060 0.9990 0.0060

10 0.30 3.9 0.0005 0.0060 0.9995 0.0060
11 1.70 5.9 0.0017 0.0060 0.9983 0.0060
12 2.60 5.0 0.0016 0.0031 0.9984 0.0031
13 3.80 5.0 0.0015 0.0020 0.9985 0.0020
14 3.60 0.55 0.0009 0.00014 0.9991 0.00013
15 4.10 0.74 0.0007 0.00012 0.9993 0.00012
16 3.70 1.0 0.0004 0.00011 0.9996 0.00011
17 4.30 1.1 0.0004 0.00010 0.9996 0.00010

Figures E2.2.5 and E2.2.6, respectively, depict the correction factor f and the pressure difference
∆p as a function of UUC pressure indication.

The conformance probability for this scenario using the given data and the stated specification is
summarised in Table E2.2.7 (restricted to data in the top two full decades for sake of clarity).

Table E2.2.7: Conformance probability – scenario 3

Point pUUC/Pa ∆p/Pa e f pc/%

7 161.30 −0.10 −0.0006 1.0006 87.7
8 256.40 −0.50 −0.0020 1.0020 83.8
9 403.30 0.40 0.0010 0.9990 88.8

10 647.50 0.30 0.0005 0.9995 89.9
11 978.70 1.70 0.0017 0.9983 84.8
12 1610.60 2.60 0.0016 0.9984 98.6
13 2505.40 3.80 0.0015 0.9985 100.0
14 4075.90 3.60 0.0009 0.9991 100.0
15 6278.60 4.10 0.0007 0.9993 100.0
16 9069.20 3.70 0.0004 0.9996 100.0

As was the case for scenario 2, the behaviour for conformance probability is complex. In this case
the conformance probability is generally higher when compared to scenario 1. The difference is
entirely due to the nature of the data and the unused reference pressure correction and will vary
depending upon the data and corrections in question. Conformity decisions based upon these
(scenario 3) conformance probabilities would therefore likely be unreliable.
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Figure E2.2.5: Correction factor as a function of UUC pressure indication (logarithmic scale),
scenario 3

Figure E2.2.6: Pressure difference as a function of UUC pressure indication, scenario 3

E2.2.7 Measurement model: sum model with correlation

Suppose that by some mechanism not already accounted for, both pstd and pUUC are both de-
pendent upon another common quantity, say for example a potential systematic error ∆T in
measuring gas temperature due to placement of temperature probes. This situation might be
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modelled as:

pstd = p′std(1+αstd ∆T ),

pUUC = p′UUC(1+αUUC ∆T ), (E2.2.8)

where, for example, p′std and p′UUC now represent the observed values and αstd and αUUC are cor-
responding temperature coefficients. Suppose also that a reliable estimate of∆T is not available;
hence the ‘best’ estimate is taken to be∆T = 0K with an associated standard uncertainty u(∆T ).

For this example we will also assume that the reference pressure correction ∆pm is fully inde-
pendent and is not affected by the possible temperature error; hence the measurands are to be
calculated using equations (E2.2.1), (E2.2.2) and (E2.2.3).

The standard uncertainties associated with the quantities pstd and pUUC in equation (E2.2.8) are
therefore

u2(pstd) = u2(p′std)(1+αstd ∆T )2 + u2(αstd)(p
′
std∆T )2 + u2(∆T )(p′stdαstd)

2,

u2(pUUC) = u2(p′UUC)(1+αUUC ∆T )2 + u2(αUUC)(p
′
UUC∆T )2 + u2(∆T )(p′UUCαUUC)

2.

To illustrate the situation, let u(∆T ) = 0.57K, αstd = αUUC = 1/300 K−1 and u(αstd) = u(αUUC) =
1/3000K−1; hence, for example, at calibration point 8, p′std = 256.4Pa and p′UUC = 255.9Pa. We
find from equation (E2.2.1) that ∆p = −0.63 Pa and

u(pstd) = 0.90 Pa,

u(pUUC) = 0.51 Pa.

Combining these without taking account of the correlation between pstd and pUUC gives, using
equation (E2.2.4), a standard uncertainty of u(∆p) = 1.14Pa.

In this case the estimate is about 25 % larger than is obtained by taking account of the correlation,
as can be achieved by following the process described in matrix form in clause 6.2 of GUM-S2 [4]
(demonstrated below) and in subscripted summation form in the GUM [2, Annex F.1.2.3].

Equations (E2.2.1), (E2.2.2) and (E2.2.3) are real univariate measurement functions of the form
Y = f (X) where in the case of equation (E2.2.1) we have

Y =∆p,

X = (pstd, pUUC,∆pm)
⊤.

Applying the LPU, the variance in this case is given by

u2(∆p) = V∆p = C⊤∆p V inC∆p , (E2.2.9)

where C∆p is an array containing sensitivity coefficients, and V in is the corresponding covariance
matrix for the input quantities:

C∆p =













∂∆p
∂ pstd

∂∆p
∂ pUUC

∂∆p
∂∆pm













=













−1

1

−1













,
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V in =





u2pstd) u(pstd, pUUC) u(pstd,∆pm)
u(pUUC, pstd) u2(pUUC) u(pUUC,∆pm)
u(∆pm, pstd) u(∆pm, pUUC) u2(∆pm)



 . (E2.2.10)

Equation (E2.2.9) is the matrix representation of the equation obtained by applying GUM equa-
tion (13).

The covariance matrix (E2.2.10) is obtained from

V in = C X VXC⊤X ,

where, in this example we have

C⊤X =



































∂ pstd
∂ p′std

∂ pUUC
∂ p′std

∂∆pm
∂ p′std

∂ pstd
∂ αstd

∂ pUUC
∂ αstd

∂∆pm
∂ αstd

∂ pstd
∂ p′UUC

∂ pUUC
∂ p′UUC

∂∆pm
∂ p′UUC

∂ pstd
∂ αUUC

∂ pUUC
∂ αUUC

∂∆pm
∂ αUUC

∂ pstd
∂∆T

∂ pUUC
∂∆T

∂∆pm
∂∆T

∂ pstd
∂∆pm

∂ pUUC
∂∆pm

∂∆pm
∂∆pm



































=



































1+αstd∆T 0 0

p′std∆T 0 0

0 1+αUUC∆T 0

0 p′UUC∆T 0

p′std αstd p′UUC αUUC 0

0 0 1






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










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


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and

VX =


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




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










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



u2(p′std) 0 0 0 0 0

0 u2(αstd) 0 0 0 0

0 0 u2(p′UUC) 0 0 0

0 0 0 u2(αUUC) 0 0

0 0 0 0 u2(∆T ) 0

0 0 0 0 0 u2(∆pm)
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



.

Alternatively, the elements of (E2.2.10) can be calculated in terms of subscripted summations in
line with annex F.1.2 of the GUM [2] using GUM equations (F.1) and (F.2). As we have assumed
that the reference pressure correction∆pm is fully independent and is not affected by the possible
temperature error, off-diagonal covariances involving ∆pm are zero. The remaining covariance
u(pstd, pUUC) = u(pUUC, pstd) is non-zero since both pstd and pUUC depend upon ∆T . Its value is
given by

u(pstd, pUUC) = (p
′
std αstd)(p

′
UUC αUUC)u

2(∆T ).

Evaluating the uncertainty by either equation (E2.2.9) or GUM equation (13) yields a value
of u(∆p) = 0.91 Pa and a conformance probability of pc = 0.75 rather than a probability of
pc = 0.67 that is obtained when correlation is neglected. The impact of such a difference in
conformance probability is dependent upon the particular application of interest, but clearly any
such differences have the potential to affect conformity decisions.
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E2.2.8 Interpretation of results

This example has demonstrated the evaluation of measurement uncertainty and conformance
probability for various related calibration models under several common scenarios. It has also
demonstrated how correlation between quantities (arising from dependency on a common effect)
is treated within the GUF. In each case the consequences for conformity decisions are complex,
depending as they do upon the particular data, model, and assumptions. No general rule can
easily be established. For some data points the conformance probability decreases when sim-
plifying assumptions are made, in others it increases. Caution is therefore needed unless best
practice (scenario 1) is followed to avoid the risk of making poor decisions.
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Example E2.3

Conformity assessment of mass
concentration of total suspended
particulate matter in air
F. Pennecchi, F. Rolle, A. Allard, S.L.R Ellison

E2.3.1 Summary

The main goal of the present study is to show how to calculate risks of false decisions in the
conformity assessment of test results, according to the framework of [6], in the case in which a
normal distribution is not a valid assumption for modelling prior information on the measurand.
As a case study, test results of mass concentration of Total Suspended Particulate Matter (TSPM)
in ambient air are considered.

E2.3.2 Introduction of the application

A total of 496 test results of mass concentration of TSPM in ambient air, collected in 2009 in the
proximity of three stone quarries located in Israel, were obtained according to the Environmental
Protection Agency (EPA) method IO-2.1 [170]. Such results were compared with the national
(Israeli) regulation limit for air quality to study the occurrence of Out-Of-Specification (OOS)
test results, as detailed in [171] and in [172].

In the present example, the focus is on the calculation of global and specific risks of false decision
in the conformity assessment of such kind of test results. The risk of underestimating the pollutant
concentration is the consumer’s/inhabitants’ risk and that of overestimating is the producer’s
risk. Calculation of such risks is as important for the Regulator (the Ministry of Environmental
Protection) protecting the inhabitants’ quality of life in the area surrounding the quarries, as for
the Manufacturers’ Association acting in the interests of the stone producers in the country.

Risk values of false decisions on conformity of the TSPM concentration are here calculated for
each quarry separately. Nonetheless, total risks of false decisions concerning the environmental
compartment as a whole can also be calculated, hence characterizing the conformity of the TSPM
concentration in the overall region encompassing the three quarries. Such total risks were mod-
elled on the basis of the law of total probability in [173], but are out of the scope of the present
example.
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E2.3.3 Specification of the measurand

For characterization of TSPM, the EPA method IO-2.1 [170] indicates the use of a high-volume
sampler for collection of particles with aerodynamic diameters of 100µm or less. A large volume
V of air, in the range 1600 m3 to 2400 m3, was typically sampled at an average rate and the mass
m of the matter in the sampled air volume, collected on the sampler filter, was measured as the
difference between the results of weighing the filter before and after sampling. The measurand is
the average value of the TSPM mass concentration over the sampling period: c = m/V (mgm−3).
In this study, TSPM from the i-th quarry, i = 1,2, 3, is considered as the i-th pollutant.

E2.3.4 Test results and associated measurement uncertainty

Three quarries were monitored by the Israeli National Physics Laboratory (INPL) at four points
in the compass approximately 1 km to 3 km from each quarry, four to five times per month. A
total of 496 test results were collected (220 relevant to quarry 1, 176 to quarry 2 and 100 to
quarry 3), each test lasting 24 h. In [171] it was demonstrated, by means of analysis of variance
(ANOVA), that the monthly variation was not a significant factor in the data variability, whereas
TSPM mass concentration seemed significantly influenced by the factor ‘quarry’. Thus, it was
concluded that the anthropogenic contributions to TSPM mass concentration due to the activity
of the quarries were dominant and the test results for each quarry had to be studied separately.

Measured TSPM concentration values cm are reported (in mgm−3) within Q1data.txt, Q2data
and Q3data.txt files for quarry 1, 2 and 3, respectively (available in the repository [17]), and
depicted in figure E2.3.1.

Figure E2.3.1: Histograms of the measured TSPM mass concentration values for each quarry and
corresponding lognormal probability density functions smoothing the data.
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A full uncertainty budget for the considered test results is available in [171], where it was shown
that the major contribution to the combined measurement uncertainty associated with the results
is that coming from the measurement of the sampled air volume. The combined relative standard
uncertainty associated with a typical test result was evaluated as 7.0 %. No correlation among
test results from different quarries was observed.

E2.3.5 Tolerance limits

The Israeli national regulations of ambient air quality prescribe an upper tolerance (regula-
tion) limit TU = 0.2mg m−3 for TSPM mass concentration for 24 h sampling. This limit holds
for any location, also close to the quarry. Hence, for each quarry and at any sampling point,
TUi = 0.2 mgm−3, for i = 1,2, 3.

E2.3.6 Decision rule and conformity assessment

Regulations require direct comparison of measured values cim with TUi . In the present example,
acceptance limits AUi will be made varying in order to show their impact on the risk values of
false decisions. When acceptance limits are taken to coincide with the tolerance limits (that is,
AUi = TUi), a “shared risk” rule is considered as the decision rule for conformity assessment [6,
sec. 8.2.1].

In the present example, the consumers are the inhabitants living in the area surrounding the
quarries, whereas the producers are the owners of the stone quarries.

The global and specific risks of false decisions in conformity assessment are defined in [6, sec. 3.3]
for both the consumer and the producer, and have different interpretations. While a specific risk
is the risk of an incorrect decision made for a particular measurement result, global risks refer to
the probability of an incorrect decision based on a future measurement. Both kinds of risks rely
on a Bayesian framework but require the calculation of different probability objects. Indeed, the
posterior distribution (obtained through Bayes’ theorem) is used for specific risks while the joint
distribution is used for global risks.

E2.3.6.1 Bayesian framework

In the framework of the JCGM document on the role of measurement uncertainty in conformity
assessment, the evaluation of risks of false decisions on a characteristic of an item is described in
[6, clause 9.3.2 and 9.5.2] for specific and global risks, respectively.

The underlying Bayesian approach requires defining a prior probability density function (PDF)
g0(ci) for the “true” values of TSPM mass concentration. Based on the Kolmogorov–Smirnov
criterion of goodness-of-fit, the widely-used null hypothesis of a normal PDF was tested on the
data available for each quarry and had to be rejected [171]. The normal distribution was found
instead to be the best-fitting distribution for the experimental results after their logarithmic trans-
formation. Therefore, for each quarry i, a lognormal distribution was chosen for modelling the
actual values of TSPM mass concentration ci:

g0(ci) =
1

ciσi
p

2π
exp

�

−
(ln(ci)−µi)2

2σ2
i

�

, (E2.3.1)
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whose distributional parameters are reported (on the logarithmic scale) in table E2.3.1. They
were taken respectively as the mean and the standard deviation of the log-transformed data.
The corresponding lognormal prior PDFs are the curves approximating the histograms in fig-
ure E2.3.1.

Table E2.3.1: Location and scale parameters of the prior PDF for each quarry.

Quarry Location parameter Scale parameter
i µi (adimensional) σi (adimensional)

1 −2.325 0.434
2 −2.031 0.279
3 −2.337 0.402

The distribution of the measurement results cim at an actual concentration ci was modelled by
a normal distribution with expectation equal to ci and standard deviation equal to the standard
measurement uncertainty ui = 0.07cim [171]. The corresponding likelihood for each quarry is
hence a normal distribution:

h(cim|ci) =
1

ui
p

2π
exp

�

−
(cim − ci)2

2u2
i

�

. (E2.3.2)

When both the prior PDF and the likelihood are normal distributions, the posterior PDF [6,
Eq. (1)] is also normal [6, Sec. 7.2.1]1. In such a case, the evaluation of specific and global
risks is straightforward, as detailed in [6]. In the present example, instead, the prior PDF is log-
normal, for each quarry, hence requiring some numerical approximation of the consumer’s and
producer’s risks.

E2.3.6.2 Global risks

For each quarry, and for any considered (upper) acceptance limit AU, global risks for the consumer
and the producer were calculated as a numerical approximation of the (double) integral of the
product of the prior PDF (E2.3.1) and the likelihood (E2.3.2), according to [6, equations (19)
and (20)]. In the considered case, since all the involved PDFs were defined on the positive axis
only, the lower integration limits (both TL and UL) were taken as zero. Details of the calcula-
tion are in the code file A123_Global_risk_TSPM.r (available in the repository [17]), where the
R-function dlnorm [11] was used for evaluating the density of the considered lognormal distri-
butions, whose logarithms have the mean and the standard deviation, reported in table E2.3.1
for each quarry, of the data distributions on the log scale (note that the log-transformed data
have a normal distribution by the definition of the lognormal distribution). The integration of
the joint PDF was performed by means of the R function integrate.

The obtained consumer’s (red line) and producer’s (blue line) global risks are displayed in fig-
ure E2.3.2, for AU values varying in the interval [TU − 0.05, TU + 0.05] mg m−3. Considering,
for example, the special case in which AU = TU, consumer’s and producer’s global risks were
respectively 0.58 % and 0.74% for quarry 1, 1.04 % and 1.52% for quarry 2, and 0.46 % and
0.62 % for quarry 3. Focusing on quarry 1, for example, one could be interested in finding the

1If the prior information is meagre and the likelihood function is characterised by a normal distribution, then the
posterior PDF is approximately normal [6, Sec. 7.2.2].
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Figure E2.3.2: Consumer’s (red line) and producer’s (blue line) global risks versus acceptance
limit values.
maximum acceptable AU in order to have a desired small consumer’s risk, let us say 0.01 %: it
turns out that such an acceptance limit should not exceed 0.17 mgm−3. However, in this case,
the global producer’s risk would increase from 0.74% to about 5%. The other way round, AU
should be at least equal to 0.23 mgm−3 in order to assure a producer’s risk smaller than 0.01%,
again. In this case, the global consumer’s risk would increase from 0.58 % to about 2%.

E2.3.6.3 Specific risks

For each quarry i, and just for the special case AU = TU, specific risks for the consumer and
the producer were calculated according to the framework of [6, Sec. 9.3.2]. For a specific value
cim < AU (that is, the measured TSPM mass concentration is assessed as conforming to the
regulation limit), the consumer’s specific risk is the integral of the posterior PDF h(ci|cim) on the
region [TU,∞], that is on the region of true values which would not be actually conforming.
For a specific value cim > AU (that is, the test result is not conforming to the regulation limit),
the producer’s specific risk is the integral of the posterior PDF on the region [0, TU], the region
of actually conforming true values. In both cases, the posterior PDF h(ci|cim) [6, equation A.11]
was needed, but in the considered case it does not have a closed form because the prior PDF is
lognormal.

Details of the calculation are in the code file A123_Specific_risk_TSPM.r (available in the repos-
itory [17]), where, for each cim value, the posterior PDF was evaluated as the exponential of the
log-posterior PDF, the latter being implemented as the sum of the log-prior PDF, evaluated in ci ,
and the corresponding log-likelihood function at cim (i.e., the logarithm of a normal PDF, with
mean ci and standard deviation equal to 0.07 cim, evaluated at cim). The integral of the posterior
PDF was calculated by means of the R function integrate.

The obtained consumer’s and producer’s specific risks are displayed in Figure E2.3.3 (when
AU = TU) for quarry 1 – blue line, quarry 2 – green line and quarry 3 – red line. They are
plotted versus values cim varying in the interval [0.15, TU]mgm−3 and [TU, 0.25]mg m−3 for the
consumer and the producer, respectively.
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Figure E2.3.3: Consumer’s and producer’s specific risks versus test results, for quarry 1 (blue
line), 2 (green line) and 3 (red line).
These results have been validated against those from CASoft [174], which relies on simulation
using a Metropolis-Hastings algorithm to estimate the posterior distribution used to calculate the
specific risks. The results agreed within the small random variation expected for Monte Carlo
estimates of small probabilities.

E2.3.7 Interpretation of results

Studies on global risks, such as that conducted in section E2.3.6.2, can allow the involved par-
ties (consumers and producers) to agree on an acceptance limit (balancing the safeguarding of
the inhabitants’ health and the economical interests of the quarries’ owners, in the considered
example).

The approach in section E2.3.6.3 provides risks of false decision for a specific test result and for
a particular acceptance limit (AU = TU, in the considered case). From a practical point of view,
no action will be undertaken when a measurement result is under the acceptance limit, that is
when it is conforming with the requirements. However, when a test result exceeds the limit, it
will be declared as non conforming and some corrective action will be required. In this case,
the producer has at hand a tool for assessing the extent of his/her responsibility for such failure
and possibly elaborate an appropriate reaction. As an example, for a non-conforming test result
c1m = 0.225 mgm−3, the specific producer’s risk for quarry 1 is about 12 %, meaning that there
is a non-negligible 12 % probability of such a test result to correspond to an actually conforming
true value c1.
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Uncertainty evaluation of nanoparticle
size by AFM, by means of an optimised
Design of Experiment for a hierarchical
mixed model in a Bayesian framework
approach

T. Caebergs, B. de Boeck, J. Pétry, N. Sebaïhi, M.G. Cox, N. Fischer, J. Greenwood

E2.4.1 Summary

This example presents a comprehensive framework for uncertainty evaluation for measurement
of the mean size of nanoparticles in dispersion samples by Atomic Force Microscopy (AFM). No
comprehensive measurement model exists for this measurement and a statistical model is built
up for measurement uncertainty evaluation. Random effects and fixed effects are simultane-
ously considered and interactions cannot be neglected, a priori. This is realised by a Design of
Experiment (DoE) for a hierarchical model|indexhierarchical model, and following a Bayesian
approach. An optimised DoE is used instead of a full DoE to speed up the acquisition of data
by reducing the number of AFM images. A calibration curve obtained by measurements of step-
height of certified topography standards provides the traceability of the measurements to the
metre definition of the Système International d’unités (SI).

This example is intended to be adaptable as a template example for commercial calibration ser-
vice application: balancing the need for limited manpower while keeping the uncertainty evalu-
ation to the best accuracy. It is based on a scientific paper already published [175], giving here
more importance to the explanation of the methodology. It has also been successfully applied to
ISO/IEC 17025 [7] accredited activities in Belgium.

171



Example E2.4. Uncertainty evaluation of nanoparticle sizing by AFM 172

E2.4.2 Introduction of the application

The properties of a chemical substance are usually associated with its bulk form. For example,
gold is a yellow metal as ingots or in jewellery (solid gold or coating), being a good electrical
conductor. The properties of a material can drastically change when the size of the functional
element is of the order of 1 nm to 100 nm – the nanometre scale. Size is thus the first-line
measurement in the physico-chemical characterisation of the product.

Gold is yellow in its bulk form and red in its nanoparticle form. Upon agglomeration of the
nanoparticles, some blue tints additionally appear. Other than just colour, the functional prop-
erties are also different. For example, silicon dioxide acts as an anti-caking agent for powders
(whether food or not). By reducing the physical size of items in a sample of the elements while
keeping the same mass (quantity of matter of bulk material), the contact surface increases. For
chemical reagents or catalysts, kinetics therefore increase, leading to explosive behaviour in ex-
treme cases.

The discovery of the creation of these properties has led to recent technological development and
new industrial applications have rapidly been discovered. The market has already experienced
a boom in recent times. Unfortunately, adverse effects on health are not yet known and under-
stood in detail. Following ideas of precautionary principles, several EU regulations have been
established [176–178]. Two examples are to be cited: regulation on labelling of consumer prod-
ucts [177] and the more recent regulation on medical devices [179]. In addition, some countries
have set up registers to monitor their nano-material market [180–182]. The common point of
these regulations is the sizing, the EU has agreed on a formal definition [183]. These reasons mo-
tivate the work on a metrological approach for nanoparticle sizing: through traceability to the SI
and rigorous uncertainty evaluation. The field of metrology at the nanoscale is nowadays facing
challenges. Numerous techniques have been developed to size nanoparticles but they provide
different measured sizes, with results sometimes incompatible between techniques. A deeper
metrological understanding is thus needed.

This example presents an instance of uncertainty evaluation when no full measurement model
is available: a statistical modelling (top-down) approach is thus followed. This application is
related to example [184], which deals with one source of uncertainty in detail: the pixel size of
the raster image. In the following example, this source of uncertainty is kept under control (that
is, giving negligible uncertainty) by appropriate choice for the purpose of this study, in order to
avoid unnecessary complication of the problem.

AFM belongs to the class of methods termed Scanning Probe Microscopy (SPM) and produces a
topography of the specimen. In its classical use, the tapping mode, the topography is measured by
scanning the surface by keeping a small tip probe (see figure E2.4.1) in intermittent contact with
the specimen. In tapping mode, the probe is kept in intermittent contact with the sample. The
specimen is less affected by the measurement in this mode. This form of contacting is carried
out by oscillating the probe near its resonance frequency and this oscillating probe is brought
nearer to the sample by a piezoelectric actuator. When contact is made, some absorption occurs
and the oscillation amplitude (measured by mirroring a laser beam onto the back of the probe)
diminishes. The ratio of the amplitude when in contact to the amplitude when not in contact is
the amplitude ratio. The smaller is the amplitude ratio, the greater is the interaction between
the probe and the specimen. The feedback control (by a Proportional Integral Derivative (PID)
controller) to keep this intermittent contact at a constant amplitude ratio by moving the piezo
actuator is used to make measurement of the vertical topography of the specimen.
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Figure E2.4.1: Electron microscopy picture of an Olympus AC160TS-R3 AFM probe
The scanning of the surface to measure the topography and render the latter as a raster image
is carried out line by line in a back-and-forth movement of the tip, at a given speed (the scan
speed). Two raster images of the topography are thus obtained: the “trace” image with all the
lines scanned in the forward direction, and the “retrace” image made from all the lines scanned
in the backward direction. The “retrace” image is usually used as the measurement. This back-
and-forth scanning is illustrated by a figure in example [184].

Assuming a spherical shape for nanoparticles, the height at the top of the nanoparticle with refer-
ence to the flat substrate – on which the nanoparticles are deposited – is equal to the diameter of
the spherical nanoparticle, and acts as a measurand for it. An example of topography is presented
in figure E2.4.2a.

(a) 3D view of AFM topography of a polystyrene
100 nm nanoparticle sample deposited on flat
mica substrate

(b) AFM topography of a grid surface topogra-
phy standard. The standard height is the height
difference between the black and orange areas
(the colour stands for the z-scale)

Figure E2.4.2: AFM topographies of the two types of samples considered in this example

Some influence factors have been identified by the experimenters, and some of them have been
studied individually, like in [185]. The feedback control parameters are adjusted manually by the
operator, based on image quality (by eye) and independently for each sample. In addition, the tip
probes are consumables subject to wear, which can also be dirtied during measurement and are
often to be replaced. Unfortunately, no full measurement model exists to relate the measurement
parameters, as would be needed for the GUM LPU [2], or a Monte Carlo approach as in [3] for
uncertainty evaluation. Furthermore, correlations between effects are unknown but cannot be
neglected, a priori. The effects can be categorised into fixed effects (feedback parameter, imaging
parameter, type of tip probe), on which the experimenter has some control, and random effects,
time dependent at different time scales (ambient conditions, tip wear, tip dirtied), which are very
difficult to control. Human factors are a priori also present: as operator for image collection and
for image analysis, with their own prior experience, skills and thus their potential biases.
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The statistical model – an optimised DoE for a hierarchical mixed model, in a Bayesian framework
– is built upon several features here briefly explained:

hierarchical mixed model : presence of uncertainty sources from fixed effects and hierarchical
model for random effects to extract intermediate precision conditions with several levels
of nesting – an ANOVA test would fit that purpose if only random effects were considered;

Design of Experiment (DoE) : in order to appreciate the influence of the fixed effects (indi-
vidually and also jointly, by the interaction terms) and to structure the random effects
(intermediate precision conditions);

optimised : it is an optimised DoE: not all the combinations of effects are considered to reduce
the time needed for measurements, but this subset is optimally selected in order to minimise
the induced bias;

Bayesian : parameters are estimated using the Bayesian approach instead of the frequentist
approach, using a MCMC method (with the rstan library [186]).

In order to simplify the model and limit the number of images to be acquired, only significant
effects are kept after a first analysis with topography standards (in addition to providing calibra-
tion data). This analysis results in a reduction of data and experimental time and is a second
“optimisation” feature of the model, important for commercial applications.

Two main criteria are to be met to claim metrological quality for a measurement: the measure-
ment should be traceable to SI units and an evaluation of the uncertainty on that measurement
should accompany it. Surface Topography Standards are used as calibration artefacts, externally
calibrated: it is a calibration by comparison. This z-scale (vertical) calibration provides the trace-
ability of the measurement. The raw measurement data are the raster images of the topography,
on which image analysis is performed to obtain the measured heights. The uncertainty contribu-
tions are evaluated at the same time as the central “mean” value for the measurement. For fixed
effects, the central value is an averaged opinion over the different factors, for each uncertainty
source. Each factor represents a reasonably valid choice (from expert knowledge), also for con-
tinuous variables, and can thus reasonably be represented as categorical variables, each value
(“level”) being considered as equally valid as the others.

The experiments have been performed on an Asylum Research MFP-3D Infinity AFM (Oxford In-
struments, USA), in tapping mode. Only “retrace” images were considered for measurement. The
Surface Topography Standards (VLSI Standards Inc., Milpitas, CA, USA) are grid standards for
x-y lateral and z vertical dimension calibration (see figure E2.4.2b; the black parts represents the
reference holes) and were externally calibrated by means of a metrological AFM. Their specifica-
tions are listed in table E2.4.1. Gold nanoparticles of this work are RM8012 (NIST, Gaithersburg,
USA) reference material, with a (24.9 ± 1.1)nm (k = 2, 95 % coverage probability) certified
size [187]. Deposition on substrate is performed following the procedure explained in [188].
The tip probes are the consumables part of the uncertainty evaluation and they will be detailed
together with other uncertainty sources later in the text.

E2.4.3 Specification of the measurand(s)

The height of the nanoparticle is the measurand acting for its size, under the assumption of
the nanoparticles being of spherical shape. Figure E2.4.3 illustrates the measurement of the
topography along one scanning line, and how the size h of the nanoparticle would ideally appear
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Table E2.4.1: Properties of the VLSI Surface Topography Standards used for AFM calibration

Grating Product name Nominal step height Calibrated step height (k = 2)
µn/nm µc/nm

S[1] STS 3 180p 18 15.6± 1.0
S[2] STS 2 440p 44 42.3± 1.2
S[3] STS 3 1000p 100 99.0± 1.2
S[4] STS 3 1800p 180 177.4± 1.3

in it. The height of a nanoparticle is extracted as the height of the pixel of maximum height
within the set of pixels identified as belonging to the nanoparticle, in the 2-dimensional raster
image of the topography. For the topography standards (grids or gratings), the characteristic
height is the step height, which is obtained by comparing the height between the valleys and the
plateau in the pattern (see figure E2.4.4), and averaging the height at their centre with removal
of the edges to avoid some instrumental effects (ISO 5436-1 [189]) by only using the greyed
parts of figure E2.4.4. This averaging is done by a modified least square fit, taking into account
the step shape.

h

Figure E2.4.3: Measurement of nanoparticle size by AFM. The tip probe is represented at several
positions along its path, and the broken line represents the measured topography

h

Figure E2.4.4: Height measurement for topography standards along an AFM scanning line. Only
the regions in grey (i.e. regions away from the steps) are considered for measurement

The mean size of the sample is extracted, together with uncertainty evaluation, simultaneously.
Each nanoparticle under measurement is assigned the same weight; it is the number-based mean
size, like other microscopy techniques but unlike other measurement techniques such as light
scattering or light-absorption based.
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E2.4.4 Measurement model

The measurement data are collected according to a D-optimised DoE computed by the SAS JMP
software [190], in order to limit the experiment time: 150 images for nanoparticles and 69, 24,
105 and 75 images for grids of 18 nm, 44 nm, 100 nm and 180 nm nominal step height (further
labelled S[1...4] in the text), respectively. Not all the combinations of effects are considered,
but only a limited number of them without introducing much bias; this is the purpose of the
optimised DoEs. It took about one month of full-time measurement, with the optimisation already
applied. Common procedures are used but some parameter adjustment is still needed on the
instrument, dependent on the sample at hand and operator skills, which could introduce some
uncertainty. The measurements are extracted from the processed raster images. After subtraction
of the background (substrate), the analysis of the images is performed by an operator to identify
the relevant pixels for the measurements: sets of contiguous pixels for nanoparticles and sets of
lines passing through the central areas of patterns for step height standards. Again, some skills
are needed and the image analyst could potentially introduce some bias in the results.

No physical measurement model can be obtained; a statistical modelling of the measurement is
used instead, taking into account the different aspects listed above. Its global equation is

hi jkl = β0
︸︷︷︸

grand mean

+
m f
∑

f=1

X f ,i jk β⃗ f +
∑

f ̸=g

Y f g,i jk β⃗ f g

︸ ︷︷ ︸

fixed effects

+ ai + bi j + ci jk
︸ ︷︷ ︸

random effects

+ εi jkl , (E2.4.1)

where hi jkl represents the measured height and where indices i, j, k and l are for different days,
positions, images and nanoparticle size measurements respectively. It contains three parts: the
grand mean β0, which is the bare mean measured size in the absence of uncertainty sources (said
another way, the average opinion among the fixed effects, and when removing the random ef-
fects), the latter being in fixed and random effect parts. The unknown m f fixed effects (labelled
by f ) are considered in β⃗ f , with their DoE matrix X f ,i jk coded for each effect and their 2-way
interactions β⃗ f g . Y f g,i jk is the combined DoE with coded effects matrix expressed as the tensor
product of the matrices for single effects. Random effects form the third part, where the hier-
archical structure with 3 nested blocks (hierarchical layers, see figure E2.4.5) can be understood
from the indices. In this model ai ∼N (0,σ2

ai
), where σai

is the actual estimated parameter; and

similarly for bi j (with parameter σbi j
) and ci j (with parameter σci jk

), where N (µ,σ2) denotes
the normal distribution with mean µ and standard deviation σ. εi jkl is the residual fitting term
and has a particular significance for the measurement that will be later explained. The DoE is
defined as the set of values i, j,k together with the β⃗ f coded in it and its blocking structure. The
blocking structure is the roadmap of measurements in timely order and grouping, that is, the in-
termediate precision conditions (day, position, image). Priors are chosen to be non-informative.

Each opinion of the categorical variables is considered equally valid, and thus should be modelled
as balanced. In the coding, a contrast between each categorical value (“level”) is desired; this is
the aim of orthogonality. The effect-type coding matches these purposes [191,192]. Effect-type
coding codes n effects into n− 1 variables by using an identity matrix for the first n− 1 effects
and a vector with its n−1 elements set to −1 for the last effect. This choice brings n−1 degrees
of freedom for the uncertainty evaluation of the considered fixed effect, and 1 degree of freedom
to the estimation of the grand mean value: estimation of the mean size, in our example. The
fixed effects considered here are:
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tip probe type 3 levels: Olympus AC160TS (illustrated in figure E2.4.1), Olympus AC240TS,
NanoSensors PPP-NCHR (classically used probes with different geometric tip shape, stiff-
ness constant and resonance frequencies),

tapping force 4 levels: 65 %, 70 %, 75 % and 80 % (set-point amplitude ratios for the feedback
control in tapping mode; the ratio is relative to the free oscillation of the tip: the smaller
is the ratio, the more the tip pushes on the specimen),

scan speed 3 levels: 1.8µms−1, 3.6µms−1 and 5.4µm s−1 (lateral scan speeds along the scan-
ning line),

operator, image analysts 3 levels each, all operators/analysts were trained but with different
experience with AFM.

position

image

day

Figure E2.4.5: Nested design schema for the random variables, with its 3 stages of blocks

Considering all these possible effects would lead to a large amount of data and a huge time
needed for experiment (recall that the AFM is considered as a slow measurement technique). A
first DoE is thus followed for step height standards, which are somewhat faster to measure, and
data are then processed to identify significant effects and interactions (with the mixed procedure
in the SAS software [193], with 95 % confidence level criterion). The operator and image analyst
effects turned out to be not significant, for both step height standards and nanoparticles. For step
height standards, only the probe effect was significant. Only interaction terms between the probe
type and the scan speed, and between the amplitude ratio and the scan speed were found to be
significant. The set of considered parameters is then reduced to those that are significant and
the new restricted optimised DoE is applied on nanoparticle measurements.

E2.4.4.1 Calibration

Measurement data are calibrated according to height measurement performed on Surface Topog-
raphy Standards, based on measurement reported in section E2.4.6. These step height standards
were purchased from VLSI Standards Inc. and externally calibrated by a metrological AFM, re-
sulting in directly traceable measurement and small uncertainties.

The proposed calibration model is

qc = α+ γqm +δq2
m + ε, (E2.4.2)

where qc is a certified value, qm a measured value, and α, γ, δ and ε are adjustable parameters.
In the Bayesian approach, all these terms are to be understood as random variables rather than
simple real numbers. The parameter ε is a normal deviation from the quadratic model and α, γ
and δ are calibration curve parameters.
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Calibration parameter estimation

Information at hand are certified values for the step height standards together with their uncer-
tainties. In the model, they were assigned normal distribution with relevant information from
certificate (this would form the prior). A thorough analysis of the step height standard was car-
ried out by following the full procedure of this DoE (see results in other sections of this text).
For each standard, the information was summarised in the form of a mean value with an asso-
ciated uncertainty. A normal distribution with parameters adopted from summary information
was used for qm, for each standard. The validity of the approximation by a normal distribution
was checked by eye.

The approach of establishing estimates of the calibration curve coefficients is similar to MCMC
that would be applied in rstan [186], but without the merit function optimisation. The use
of ordinary least squares regression is the single optimisation step present. The joint density
for (α,γ,δ,ε) is approximated by sampling N times from its distribution through the following
procedure:

– take N samples (µm j ,µc j)[r] (for j = 1, .., N) from the 4 calibration points (r = 1,2, 3,4);

– calculate for j = 1, .., N the estimated coefficients α j , γ j and δ j , and the mean squared er-
ror s2

j by performing N times an ordinary least-squares method (OLS) quadratic regression
with regression data (µm j ,µc j)[r] for r = 1,2, 3,4;

– sample a random value ε j from N(0, s2
j ) (for j = 1, .., N);

– collect the sample (α j ,γ j ,δ j ,ε j).

The joint distribution of (α,γ,δ,ε) is approximated by merging the N samples (α j ,γ j ,δ j ,ε j) for
j = 1, .., N . The table in figure E2.4.6 shows the results obtained for the parameters with N = 106.
Given the value of δ, the calibration curve can be defined as linear. The 95 % confidence interval
of the calibration curve and the mean calibration curve are also illustrated in figure E2.4.6. The
random trials of all 4 parameters (α,γ,δ,ε) are saved as tuples and form the calibration curve
information, as a joint PDF. Full correlations inferred from the Bayesian fit are thus kept.

Parameter E[.] s[.]

α/nm −0.2059 0.7724
γ 1.0025 0.0252
δ/nm−1 0.000 003 0.000135
ε/nm −0.0007 0.6919
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Figure E2.4.6: Expected values and standard uncertainties for the calibration curve parameters
– graphical representation of the 95 % confidence interval of the calibration curve
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Calibrating measurements

To apply the calibration on a real measurement (a nanoparticle height, for example), each data
value is applied to the calibration curve, with all the saved trial information. For each original
data point, a set of certified values is thus obtained.

E2.4.5 Uncertainty propagation

The uncertainty evaluation is performed by MCMC in rstan. It is important to keep in mind that
the evaluation is not a full Bayesian inversion. The main estimated parameter is the mean height
(i.e. mean nanoparticle size or mean step height, depending on the case of application), and
the other parameters are uncertainty contributions, which were unknown a priori. In parallel, a
frequentist methodology has also been followed in the SAS software (version 9.4) and its mixed
procedure [193]. Measurement uncertainties derived in the Bayesian approach are generally
slightly smaller, although not significantly, for the fixed effects and comparable for the random
effects.

E2.4.6 Reporting the result

The results to be reported are extracted using the distributions obtained from MCMC. A com-
bination of variables can be constructed by using the random trials. For example, if only fixed
effects are considered, the measured mean size is:

µfixed = β0 +
m f
∑

f=1

X f ,i jk β⃗ f +
∑

f ̸=g

Y f g,i jk β⃗ f g . (E2.4.3)

If random errors are also considered:

µfix, rnd = β0 +
m f
∑

f=1

X f ,i jk β⃗ f +
∑

f ̸=g

Y f g,i jk β⃗ f g + ai + bi j + ci jk. (E2.4.4)

From the distributions provided by MCMC, the expected value (E) and the standard deviation (s)
are extracted to report the mean parameters. For the random effects, the mean of the MCMC
estimation of the σ2 parameters is reported. For the fixed effects, the standard deviation will be
reported to evaluate the uncertainty coming from this effect, after merging the MCMC PDFs of
all effect levels into a single PDF. It is important to note that these are only summary information
and the real information is instead the distribution underlying the estimated values, i.e. the full
set of MCMC trials (less those associated with the MCMC warm-up stage). The full sets are
presented in several figures of the PDFs, for nanoparticles and for illustration purposes, not only
for the main fixed effects, but also their interactions.

E2.4.6.1 Step height standards

The results of parameter estimation for the step height standards are summarised in table E2.4.2
for the estimated mean size. The intermediate precision uncertainties estimated from this statis-
tical model are presented in table E2.4.3. Day and position (very approximately chosen position
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before starting any measurement) effects are coarsely of similar magnitude, for each step height
standard considered apart. One possible explanation for this effect is the difficulty in arriving
at exactly the same position with an AFM. This means that in attempting to image the same
position, a nearby position is imaged instead. Variability is thus present, which behaves in a sim-
ilar way to the day-to-day variability. A further consequential uncertainty arises that increases
with increasing nominal step height. One possible explanation would come from fluctuations (of
different spatial frequencies) in the lithography process, which would scale with nominal step
height.

Table E2.4.2: Expected values and standard uncertainties for the measured mean step height µm
for each reference standard grating

Grating E[µm]/nm s[µm]/nm

S[1] 15.91 0.13
S[2] 42.15 0.01
S[3] 99.06 0.54
S[4] 177.04 0.70

Table E2.4.3: Variance of the random effects influencing the step height measurements for each
grating

Effect σ2/nm2 for S[1] σ2/nm2 for S[2] σ2/nm2 for S[3] σ2/nm2 for S[4]

day 0.0075 0.0001 0.5439 1.0923
position 0.0149 0.0016 0.1623 0.6170

image repeat. 0.0000 0.0003 0.0002 0.0018
within image var. (εres) 0.0309 0.0455 0.0105 1.4797

It is also observed that image repeatability has almost null contribution; and this effect is thus
not considered for nanoparticles, again considering the experiment time issue. The within-image
variability (residual) is the main contributor to observed variability of results.

Table E2.4.4: Standard uncertainty of the probe fixed effect for each grating

Grating s[βprobe]/nm

S[1] 0.11
S[2] not significant
S[3] 0.25
S[4] not significant

Details for the probe fixed effects are given in table E2.4.4, for which the effect is significant
for standards S[1] and S[3] and not for the other two standards. No explanation could be found
for this peculiar effect: the standards come from the same manufacturer and are produced in
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a similar way. This effect possibly results from the different number of images and in relation
to the difference enhanced by the optimisation of the DoE. The observed effect is nevertheless
taken into account in further calculations.

E2.4.6.2 Nanoparticles

Main effects

Figure E2.4.7 presents the general estimated distributions for the means β0, µfixed and µfix, rnd
from the mixed model, showing that the main contributor is from the random effects. Summary
values are provided in table E2.4.5, where hm is the measured gold nanoparticle height (raw
data, from equation (E2.4.1)) and µm is the estimated mean measured height (µfixed in equation
(E2.4.3)). The estimated mean value is E[µm] = 23.40 nm, s[µm] = 1.19nm.
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Figure E2.4.7: MCMC PDFs of the means, scaled to their maximum peak heights. The grand
mean β0 (intrinsic mean) is in red, the mean when taking into account from fixed effects µfixed
(eq. (E2.4.3)) in blue and when considering all uncertainty factors, µfix, rnd (eq. (E2.4.4)), in
green.

Table E2.4.5: Expected values and standard uncertainties for the measured particle height hm
and the mean measured height µm of the gold nanoparticle sample

E[hm]/nm s[hm]/nm E[µm]/nm s[µm]/nm

23.39 3.18 23.40 1.19

The contributions of intermediate precision conditions (hierarchical random effects) are pre-
sented in table E2.4.6, where parameters are summarised blocking level per blocking level. As for
the step height standards, the main source of variability of the measurement is the within-image
variability (residual εres). The position random effect seems to bring a little more variability than
the day of measurement.
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Table E2.4.6: Evaluated variance of the random effects influencing the nanoparticle height mea-
surements

effect u2[.]/nm2

day E[σ2
day] = 0.16

position E[σ2
pos] = 0.88

within image variability (εres) E[σ2
res] = 7.61

More detailed investigation of the fixed effects is presented in figures E2.4.8, E2.4.9 and E2.4.10.
An amplitude ratio of 80 % shows higher estimation of the size, compared to other amplitude
ratio parameter values. No clear effect of the scan speed nor the probe could be observed. Note
that a null average is expected over the whole effect (if merging all effects levels into a single
PDF), because of the choice of effect-type coding. If a bias were present in the data for a given
fixed effect, its contribution would be propagated and included in the grand mean β0. The
fixed effect contributions to uncertainty are summarised in table E2.4.7, by taking the estimated
standard deviations (after merging the MCMC PDFs from all levels of the fixed effect) as fixed
effect contributions. The different fixed effects lead to contributions of similar magnitude, about
0.5 nm.
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Figure E2.4.8: MCMC fixed effect coefficients PDFs for the amplitude ratio (related to tapping
force). The amplitude ratio of 80 % has a tendency to increase the size; this value has a smaller
tapping force (free and contact amplitudes are closer). The other values have very similar be-
haviour

Interactions

Interrelations of the various quantities are investigated via the estimated interaction terms. A
trend with the scan speed is observed from figure E2.4.11 at high amplitude ratio (80 %). Its
magnitude is as high as 1 nm, but only visible via the interaction terms.
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Figure E2.4.9: MCMC fixed effect coefficients PDFs for scan speed
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Figure E2.4.10: MCMC fixed effect coefficients PDFs for the probe model
The PPP-NCHR probe displays different behaviour from that of the other probe types, and seems
to measure higher nanoparticles at high speed, as can be seen from figure E2.4.12. The observed
effect would be of the order of 1 nm in magnitude.
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Table E2.4.7: Estimated standard deviation of the respective fixed effects significantly influencing
the nanoparticle height measurements

Effect u[.]/nm

probe s[βprobe] = 0.49
amplitude ratio s[βtapping force] = 0.52

scan speed s[βspeed] = 0.39
65 %

70 %
75 %

80 %
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Figure E2.4.11: Interaction PDFs between the amplitude ratio and the scan speed parameters,
grouped by amplitude ratio

E2.4.7 Interpretation of results

Only the interpretation of nanoparticle results is reported here, because the interpretation of
results on step height standards was already carried out in the previous section, and the purpose
of step height measurement is more to derive a calibration curve than to be the subject of the
main measurement, itself.

β0 is the “central-intrinsic” mean value of the sample. This is the average response over the differ-
ent fixed effects, with their levels all considered on an equal footing. To consider the uncertainty
sources from fixed and random effects, µfixed and µfix,rnd are computed as MCMC distributions.
εi jk carries the remaining variability in the model: for nanoparticles, it is the variability within
the image and thus relates to the spread of the nanoparticle size distribution (intrinsic, physical).
As the interest here is in measuring the mean size of the nanoparticle sample by parametric esti-
mation, εi jk (being equal to εres on average) is left aside. For characterisation of the object under
measurement and comparison with other measurement techniques, the value with fixed effects,
µfixed, is to be considered. If biases are present for some fixed effects values, they should be
covered as an uncertainty, and averaged out because of the effect-type coding, and this average
part propagated to the grand mean. The following result for the gold nanoparticle sample is ob-
tained from the MCMC distribution: E[µm] = 23.40 nm, s[µm] = 1.19 nm (table E2.4.5). Under
normality assumption, these values can be used, after calibration, to compare with other results
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Figure E2.4.12: Interaction PDFs between the probe and the scan speed parameters, grouped by
scan speed

Table E2.4.8: Expected values and standard uncertainties for the certified particle height hc and
the certified mean height µc of the gold nanoparticle sample

E[hc] /nm s[hc] /nm E[µc] /nm s[µc] /nm

23.24 3.28 23.25 1.44

obtained via a classical GUM-LPU method. The final result E[µc] = 23.25nm, s[µc] = 1.44 nm
(table E2.4.8) is compatible with the certified value of the sample: (24.9±1.1)nm (k = 2, 95 %
coverage probability), validating the approach.

With this approach, µfixed and µfix,rnd cannot be obtained by splitting contributions from each
contribution and summing them up quadratically, as in a GUM-LPU approach. This is, again,
related to the fact that numbers are only summary information and not the full distribution
information. Furthermore, correlations and non-linearities of the model are better accounted for
by the Bayesian approach. In the present case of uncertainty evaluation by means of an optimised
DoE, correlations appear via estimated interaction terms1 but also in simultaneous trials among
the estimated variables (Bayesian approach), and this, non-linearly. It would only be linearly in
the GUM-LPU approach.

More precisely, interactions and correlations are different in several respects. Correlations relate
to simultaneous fluctuations of variables, while interactions, defined in the paradigm of contin-
uous variables, more relate to non-linearities of the physics here statistically modelled. In this
example, the continuous variables (i.e. scan speed and amplitude ratio) are encoded as categor-
ical, to be implemented in the same way as naturally categorical variables (i.e. probe type). The
continuity aspect is lost, which could be damaging in case of modelling, but not in this case,
as occurrences of these continuous variables are all equally valid, experimentally speaking, and

1In [191] (p.221), a note is inserted to make clear the distinction between interaction and correlation. However,
in the present context of uncertainty evaluation and potential comparison with a classical approach, the distinction is
not so straightforward
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should thus be considered on an equal footing (not necessarily in their sequence order, 65 %,
70 %, 75 % and 80 % amplitude ratio, for example). In an ideal non-optimised DoE, all probed
combinations of parameters would be equally populated : no correlation is present among the
parameter input quantities, only the response variable (the measured height h, here) fluctuates.
The estimated interactions thus reflect properties of the underlying physics, which is statistically
modelled.

We now continue with the amplitude ratio example (a similar discussion holds for the scan
speed). Experimentally, its continuous values are manually typed into the machine, and any
fluctuation in the parameter adjustment by the machine will be reflected in the result. The cov-
erage of the valid range is made through this choice of the four values. As a reminder, the
amplitude ratio is the ratio of the amplitude set point (when in contact) to the free amplitude
(when not in contact). A bigger amplitude ratio means less contact with the specimen, which
can cause bad tracking of the specimen, resulting in a parachuting effect. With this effect, the
measured height (hence nanoparticle size) can be greater, as can be clearly seen in figure E2.4.8.
This is also one interpretation of the behaviour seen of interactions for the 80 % amplitude ratio
with scanning speed variation, as can be seen on figure E2.4.11: the faster is the scan, the more
pronounced is the parachuting effect and the higher is the measured size. Note that this effect
might be related to pixel size effect described in example [184]: the higher size coming from av-
eraging higher points in the vicinity of the apex over the pixel, its being measured higher because
of the parachuting effect. From expert knowledge, no parachuting effect is expected from the
lower amplitude ratio values, the topography being more closely tracked. The other fluctuations
present in the estimated effect magnitudes could be attributed to non-ideality of the optimised
DoE and fluctuations in data, enhanced by the chosen effect-type coding which makes the global
average null and forces some shuffling of the estimated effects around zero. This effect should be
further investigated with more data but it is not visible without looking at interactions, because
it is averaged out by the methodology of effect-type coding for the main effect. If looking at
correlation among variables without use of categorical variables, this effect would be much less
pronounced and could have gone unnoticed because of dilution of the information with data at
the three other amplitude ratios.

Unfortunately, no sensible explanation could be provided for the different behaviour of the
PPP-NCHR probe at high scan speed, compared to the other probes, as seen from figure E2.4.12.
Some speculation can however be drawn about its origin. The PPP-NCHR has a different tip shape
than the other probes, and maybe some discrepancies could be observed in non-ideal conditions,
like it is for the high scan speed. In addition, it is also possible that the different spring constants
play some role, through the interplay of several adjusted factors. Despite the lack of explanation,
this effect is nevertheless taken into account in the calculations.

Both of these effects at high amplitude ratio and for the PPP-NCHR probe were not visible from the
analysis of the main effects. If not considering these significant interaction terms, the fixed effect
estimations could be biased and some correlation be present among the estimated fixed effects
(if not averaged out). In an ideal case, a DoE should be balanced among all the levels, meaning
that input quantities (experimental parameters of the fixed effects) do not present correlations.
By reducing the number of combinations in the DoE, some correlations between estimates can
appear by imbalance among the effects (at their levels). It is the case here because an optimised
DoE is used, although the D-optimality criterion was applied, mitigating the problem. Some
enhancement of this issue can also potentially occur because the number of nanoparticles in an
image can vary. It is also to be noticed that the magnitude of the observed effects is rather small,
being less than 1 nm.
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E2.4.8 Conclusions

This example illustrates uncertainty evaluation when no full measurement model is available.
For the present example of nanoparticle size measurement, some models to describe behaviour
of single effects can be found in the literature, but they unfortunately do not permit to take into
account their interrelations into a single full measurement model. A statistical model is thus
adopted (in the spirit of [5, clause 11]), and the uncertainty evaluation is carried out within
a common framework for intermediate precision conditions and fixed effects. When several
parameter values are to be considered on an equal footing for a given effect, categorical variables
is used instead of continuous variables. These variables are also effect-type coded for equally valid
experimental parameter values. An optimised DoE is followed to limit measurement time, and
significant parameters are identified to reduce further this time. The mean of the size distribution,
with size being the height measured by the AFM, is the measurand. A Bayesian approach is
followed for this parameter estimation, using rstan.

This method allows for a better handling of these interrelations, at several steps of the process:
for the calibration curve and by using categorical variables. For the calibration curve estimation,
full correlations among the calibration parameters are kept by retaining the vector of parameters
(and not their individual PDFs) for each trial. By using categorical variables, some insight is lost
on modelling the physics of the effects, but one has access to interrelations under the form of
interactions, value-per-value (= level-per-level) of each effect and not effect-per-effect as in the
conventional methodologies. This phenomenon was highlighted for the case of amplitude ratio
of 80 %, together with the scan speed variation. The main goal of the methodology developed
here is to provide a measurement and its uncertainty evaluation in more affordable time, and
not a to provide a detailed investigation of the various effects. Some interesting features could
nevertheless be observed and discussed.

The relevant variables and relevant interactions were first identified by a frequentist estimation
with the SAS software and the final parameter evaluation by MCMC (rstan). The two methods
however yield similar results for this parameter estimation, with slightly smaller uncertainties
for fixed effects with the Bayesian approach.

This approach has already been successfully applied to ISO/IEC 17025-accredited activities by
the authors in Belgium, and could be adapted to other commercial application where no full
measurement model exists and time savings are important.
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Example E2.5

GUM-LPU uncertainty evaluation —
importing measurement traceability
from a conformity statement

J. Greenwood, A. Bošnjaković, V. Karahodžić, P. Pedone, F. Manta, M.G. Cox

E2.5.1 Summary

Measurement traceability is commonly obtained from calibration measurements that provide a
result in terms of a single value and its associated uncertainty. However, there are circumstances
where instead, the result may consist of a range of possible values. Such circumstances might
arise when a result is provided in the form of the output from a conformity decision process, for
example as a conformity statement in which a range of acceptable values rather than a specific
value is reported. In terms of metrological traceability this style of result provides less informa-
tion than a specific value, but it may be sufficient to obtain an acceptable target measurement
uncertainty for a given application. The standard ISO/IEC 17025 acknowledges the provision of
such information in informative annex A. This example describes how such information might
be used to propagate traceability.

E2.5.2 Introduction

Under typical circumstances, evaluation of measurement uncertainty following the GUM [2] law
of propagation of uncertainty (LPU), involves assigning a probability density function (PDF) to
the measurand that usually has a normal distribution (or sometimes a t distribution). This ‘out-
put’ PDF corresponds to a combination of the PDFs for all the inputs to the measurement. It is
characterised by a location parameter — the mean value corresponding to the estimate y of the
value of the measurand; and a dispersion parameter — the corresponding variance u2(y) associ-
ated with that estimate. If this result subsequently becomes an input to a further measurement,
the variance is ‘imported’ into the corresponding uncertainty evaluation.
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However, suppose instead that whilst we still obtain information that allows us to establish the
variance u2 = u2(y), we are not given a specific value for y . Instead we receive only information
about the interval A, e.g. [−a, a], in which the estimate y is located. In other words, we know
the dispersion of y , but we do not have a value for the location of y , only a range of possible
values.

In this case, the information can be still be brought into a subsequent uncertainty budget, but
now since two independent PDFs, say for example a normal distribution N(0, u) characterising
the dispersion of values around any given value of y , and a rectangular distribution R(−a, a)
characterising the available information about the location parameter. For ease of explanation
we will usually assume here that intervals A for y are centred on zero, but this is not a necessary
requirement.

This situation is of potential interest to those concerned with meeting the requirements of
ISO/IEC 17025:2017 since this standard [7, Informative Annex A.2.3] accepts that metrologi-
cal traceability could be provided by statements of conformity.

Ideally, a statement of conformity will include (i) the specification or tolerance interval C for
the measurand Y (such that −c ≤ Y ≤ c), (ii) an acceptance interval A for the estimate y (such
that −a ≤ y ≤ a) defined by a decision rule that takes direct or indirect account of measurement
uncertainty, and (iii) a conformance probability pc, which is the basis for (or a consequence of)
how the acceptance interval is defined. In fact, in many practical situations a so-called ‘Simple Ac-
ceptance’ criterion is used to define the limits for deciding conformity, in which case A= C . In this
case, in order to meet the requirements for a decision rule appropriate for ISO/IEC 17025:2017,
uncertainty is taken into account indirectly, usually by specifying an upper limit umax that, as a
prerequisite, must not be exceeded for the Simple Acceptance criteria to be applied.

The aim here is to provide examples with various forms for the statement of results and to show
whether they allow the results to be traceably propagated. We begin by describing some likely
scenarios and then provide two extended examples.

E2.5.3 Examples

In all the following examples it is assumed that the estimate y ∈ A, that is, the outcome is accepted
as conforming, and that intervals are centred on zero. For this (two-distribution) model to be
applied it is therefore necessary to identify A and u in each case.

E2.5.3.1 Information given: Acceptance interval and measurement uncertainty
for any specific value

For purposes of metrological traceability, it makes no difference how the interval A has been
established (A ̸= C or A = C), only that it is somehow defined. Given A and u the approach is
straightforward; the information can be brought into a subsequent uncertainty budget as two
distinct distributions e.g. R(−a, a) and N(0, u) respectively.

In this situation the information might be obtained from a statement such as

“The measured value y has a standard uncertainty u = 1.3 and is within the range
−10.0≤ y ≤ 10.0.”

Note that such a statement is not a conformity statement, as no specification or tolerance interval
is given, nor is there an associated decision rule.
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E2.5.3.2 Information given: Acceptance interval is the same as the tolerance in-
terval

This scenario, in which we only know that y ∈ A and A= C , corresponds to ‘unconstrained’ simple
acceptance, as there is no account of measurement uncertainty either ‘directly’ or ‘indirectly’. (For
this reason alone it would not meet the decision rule requirements of ISO/IEC 17025:2017.)

For example, suppose that a result is stated as:

“The specified tolerance interval is from −2.0 to +2.0; the measured result is ‘con-
forming’ as it is within the tolerance interval”

In this case there is insufficient information to establish a PDF for the outcome. The ‘uncon-
strained’ simple acceptance conformity statement is therefore insufficient to provide metrological
traceability. It could not be ‘imported’ into an uncertainty evaluation, nor could any statement
of risk be made on the basis of this information.

To make use of such a statement it would be necessary to establish uncertainty by other (external)
means, e.g., to request the value of u from the information provider.

E2.5.3.3 Information given: Tolerance and acceptance intervals and a statement
about limits of probability or risk of acceptance

In this case, as well as stating C and A, a statement may include the minimum conformance
probability pcmin

or the related quantity, maximum probability of false acceptance R∗Cmax
(in the

notation of [6]), which for the usual specific risk scenario is given by R∗Cmax
= 1− pcmin

.

The information might be found in a statement of conformity, for example, a statement such as

“. . . the specified tolerance interval is from −2.0 to +2.0; the measured value is con-
forming as it is within the acceptance interval −1.5 to 1.5. The minimum confor-
mance probability is 0.97”

An acceptance interval A has been provided for which we see that−1.5≤ y ≤ 1.5, that is, a = 1.5.
The standard uncertainty u is not given, but can be calculated from the information provided
since pcmin

occurs when y = ±a; hence, for a normal distribution, measurement uncertainty u is
calculable from

u= (c − a)/r, (E2.5.1)

where r is the guard band multiplier [6] (sometimes called the guard band factor) by which the
standard uncertainty has been scaled to obtain the particular conformance probability,

r = G−1(pcmin
), (E2.5.2)

and G−1(p) is the inverse of the cumulative standard normal distribution G.

In Microsoft Excel, r can be evaluated using r = NORM.S.INV(pcmin
) for situations where a sig-

nificant proportion of the PDF lies beyond only one or other of the tolerance limits. Otherwise,
in situations where the PDF is broad with respect to the tolerance interval, r must be established
by other means (for example, UKAS LAB-48 ed 2, appendix D [194])

In this example we find that c = 2, a = 1.5 and r = 1.88; hence u = 0.266. As above, this
information can be brought into a subsequent uncertainty budget as two distinct distributions
N(0, u) = N(0,0.266) and R(−a, a) = R(−1.5,1.5).
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Special case 1: interval not centred at zero

For a tolerance interval that is not centred at zero, say [c1, c2], with corresponding (co-centred)
acceptance interval [a1, a2], the uncertainty is instead

u= [(c2 − c1)− (a2 − a1)]/(2r). (E2.5.3)

Special case 2: Simple acceptance

Consider the special case when A = C , which corresponds to the so-called Simple Acceptance
criteria. In this scenario it is usually reported that pcmin

= 50 %. For such a case (where A = C ,
pcmin

= 50%) we find that u is undefined since (c − a)/r = 0/0, that is, there is insufficient
information to calculate u; therefore the information is not sufficient to provide metrological
traceability.

Note that this simple acceptance scenario (A= C) is sometimes misleadingly referred to as ‘shared
risk’, referring to the situation when an accepted value corresponds to the tolerance limit (y =
±a). In fact, this equality of risk is only true for single-sided specifications, or situations where
u≪ c. In other situations where u is sufficiently large that both tails of the PDF have a significant
portion outside C , then pcmin

< 50 % and the risk is no longer ‘shared’ equally. Fortunately, in
those cases (where A= C and pcmin

< 50%), it is possible to calculate u for a normal PDF from

u=
2c

G−1(pcmin
+ 0.5)

, (E2.5.4)

Alternatively, for a tolerance interval that is not centred on zero, say [c1, c2], the uncertainty is
instead

u=
c2 − c1

G−1(pcmin
+ 0.5)

. (E2.5.5)

In Microsoft Excel G−1(pcmin
+ 0.5) is given by the cell function NORM.INV([pcmin

+ 0.5], 0, 1).

E2.5.3.4 Information given: Acceptance intervals and a statement about limits of
probability or risk of acceptance

This case corresponds to that described in section E2.5.3.3 but without information concerning
the tolerance interval C . There is now insufficient information to establish a PDF for the outcome
as u is not provided and cannot be calculated from the information given. The information is
therefore not sufficient to provide metrological traceability (as it could not be ‘imported’ into an
uncertainty evaluation).

Note that, for accredited conformity decisions under ISO/IEC 17025:2017 it is a requirement to
define and report the specification (or standard), which usually corresponds to providing C .

E2.5.3.5 Information given: Tolerance and acceptance intervals and a statement
about limits of global conformance probability or global risk of accep-
tance

In certain situations, it is possible that the conformance probability pc may be presented in terms
of global risk [6]. Global risk is a measure of the risk associated with future measurements,
i.e. measurements that have not yet taken place. Although it is an important quantity in the
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evaluation of risk in general quality processes, it is arguably not consistent with the definitions
of calibration [89, clause 2.39] or of a metrological traceability chain [89, clause 2.42], being a
“sequence of measurement standards and calibrations that is used to relate a measurement result
to a reference".

The information needed to implement the approach described in this example is therefore not
generally available in such a conformity statement.

E2.5.3.6 Traceability from a statement of conformance to an OIML weight classi-
fication

In this example we demonstrate how traceability might be propagated when the available infor-
mation consists only of an OIML R111-1 [195] weight classification. This example corresponds
to the case in section E2.5.3.3 above and is depicted graphically in Figure E2.5.1.

Figure E2.5.1: OIML Guard Band criteria [195]

From OIML R111-1, for each weight, the expanded uncertainty U of the conventional mass shall
be less than or equal to one-third of the maximum permissible error: U ≤ δm/3, where U relates
to a coverage interval with a 95 % coverage probability.

Also, for each weight, the conventional mass, mc shall not differ from the nominal value of the
weight m0 by more than the maximum permissible error (δm) minus the expanded uncertainty.
The acceptance interval A is defined such that

m0 − (δm− U)≤ mc ≤ m0 + (δm− U) (E2.5.6)

and the tolerance interval C is defined by [m0 − δm, m0 + δm].

Following the approach described above, the standard uncertainty associated with a classified
weight value can be evaluated by combining the standard uncertainties of the PDFs describing
the acceptance interval (information about location) and the standard uncertainty associated
with dispersion.

For example, for an E2 class weight of nominal value 2 kg, OIML R111 defines the maximum
permissible error δm as [195]

δm= 3 mg. (E2.5.7)

The corresponding maximum expanded uncertainty (95 % coverage, assumed normal distribu-
tion) is defined as

U =
δm
3
= 1mg (E2.5.8)

with the related standard uncertainty

u1 =
U

1.96
= 0.51mg. (E2.5.9)
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Note that the standard uncertainty characterising dispersion in this and similar scenarios is based
upon an upper limit of possible values. In situations where this standard uncertainty is likely to
represent a significant contribution to the overall uncertainty it may be appropriate to seek further
information.

The limits of the acceptance interval for δm are ±a, where

a = δm− U = 2mg. (E2.5.10)

If A is represented by a rectangular PDF, then the corresponding standard uncertainty is

u2 =
δm− U
p

3
= 1.15mg. (E2.5.11)

The standard uncertainty uc associated with the nominal mass value can therefore be evaluated
by combining these uncertainties:

uc =
q

u2
1 + u2

2 = 1.3 mg. (E2.5.12)

More generally, if the expanded uncertainty U is required to be some factor D less than a max-
imum permissible error δm (D = 3 for the example above), and if the coverage probability p is
obtained using a coverage factor kp, then

u1 =
δm
kpD

(E2.5.13)

and

u2 =
δm(1− 1/D)
p

3
. (E2.5.14)

Figure E2.5.2 shows how the standard uncertainty varies with factor D for a maximum permis-
sible error δm= 3 mg.

Note that as the standard uncertainty u1 decreases with increasing D, the overall uncertainty uc
increases (due to the proportionately greater contribution corresponding to a). In this situation
(where, in use, the value assigned to a weight will be the nominal value) we might perhaps
conclude that it is not in the interest of a purchaser for U to be low when the weight is classified,
whereas it is in the interest of a supplier of weights, as fewer potentially conforming products
will be rejected.

Note also that the PDF associated with uc is not normal since it results from the convolution of
normal and rectangular distributions. However, provided that u2 is not a dominant quantity in
the budget into which it is subsequently imported, the shape of the corresponding output PDF
would be approximately normal.

Comment on ISO/IEC 17025:2017 Annex A.2.3

Those readers familiar with ISO/IEC 17025:2017 [7] and in particular Annex A.2.3 might per-
haps interpret that (informative) Annex to suggest that metrological traceability can be obtained
from a rectangular PDF with limits corresponding to the tolerance interval C = [−c, c]. An-
nex A.2.3 cites “The use of OIML R 111 class weights to calibrate a balance”, which might be
interpreted as an example of that practice.
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Figure E2.5.2: Maximum permitted standard uncertainty u1 (E2.5.13), standard uncertainty u2 corre-
sponding to the acceptance interval (E2.5.14), and the combined standard uncertainty uc (E2.5.12) for a
range of values of U = δm/D

However, such an approach does not make best use of the information available: whereas the
approach described in this example correctly converges to the appropriate ‘combined’ PDF in the
limits of small and large u1/c, the A.2.3 interpretation as stated above employs a rectangular
PDF throughout, even though the normal distribution becomes proportionately more significant
as u1/c increases. As a consequence, that particular interpretation of A.2.3. can significantly
overstate the uncertainty. This overstatement is demonstrated in Table E2.5.1 where, for the
particular scenario given, we see that the difference between standard uncertainty evaluations
can exceed 50 %.

Table E2.5.1: Comparison between standard uncertainty evaluations obtained for the interpreta-
tion of ISO/IEC 17025 A.2.3 described above, identified as “ua”, and evaluations based upon the
two-PDF approach described in this example, identified as “ub”. PDFs are centred at zero. Esti-
mates are for model data over a range of tolerance intervals [−c, c] and corresponding acceptance
intervals [−a, a] with u1 = 1 and guard band w= c − a = 2u1.

c/mg a/mg ua/mg ub/mg

1000 998 577 576
10 8 5.8 4.7
9 7 5.2 4.2
8 6 4.6 3.6
7 5 4.0 3.1
6 4 3.5 2.5
5 3 2.9 2.0
4 2 2.3 1.5
3 1 1.7 1.2
2 0 1.2 1.0

For the OIML E2 – 2kg weight discussed in this example, c = δm = 3mg and w = U = 1mg;
hence u1 = 0.51 mg, yielding ua = 1.7mg and ub = 1.3mg, a difference of nearly 40 % (based
on unrounded data).

Examples of evaluating measurement uncertainty First edition



Example E2.5. Metrological traceability from a conformity statement 196

E2.5.3.7 Calibration and verification of a caliper according to Geometrical Prod-
uct Specification (GPS) standard ISO 13385-1:2019

In this example, we demonstrate how traceability can be obtained from a verification statement
for an instrument certified under a Geometrical Product Specifications (GPS) standard.

In general, laboratories accredited for the calibration of calipers adopt the GPS standard
ISO 13385-1 [196]. According to this standard — which includes requirements for test meth-
ods, default values for maximum permissible errors (maximum permissible errors (MPEs)) and
related decision rules — laboratories are variously required to provide two different uncertainty
evaluations: one for the measured calibration values of the instrument, ucal, and the other for its
verification ‘test uncertainty’ utest as defined in ISO 14253-5:2015) [197].

Certificates that meet the requirements of ISO/IEC 17025:2017 [7] concerning the reporting of
calibration results (variously described in clauses 7.8.4, 7.8.6 and A.2.3 of that standard) could
present the information in various forms, as considered in the following scenarios:

1. Calibration certificate containing indication errors with the associated calibration standard
uncertainty ucal,

2. Calibration certificate containing statement of conformity with a specification (MPE), as-
sociated test standard uncertainty utest and decision rule, without indication errors (con-
sistent with paragraph E2.5.3.3);

3. Calibration certificate containing only a statement of conformity with a specification (ex-
pressed in terms of MPE) with no reported indication errors, calibration measurement un-
certainty or test verification uncertainty, but with a GPS decision rule that has somehow
accounted for these quantities (consistent with paragraph E2.5.3.3).

Note that the purpose of calibration is to establish a traceable link to the SI, whereas the purpose
of verification is only to decide conformity with a specification. In the case of specifications such
as those represented by the GPS standards, the calibration standard measurement uncertainty
ucal (scenario 1) is therefore different from the test verification uncertainty utest.

In the case of GPS, a specification is defined in terms of limits (MPE) that somehow already ac-
count for various influence quantities such as repeatability and resolution that would normally
be incorporated into a calibration uncertainty evaluation. The evaluation of test verification un-
certainty therefore does not include these quantities and is therefore less than the calibration
measurement uncertainty (for further details see ISO 14978:2018 [198, Annex D]). In principle
however, all relevant influence quantities are present and, if combined correctly, the test verifi-
cation uncertainty and information represented by the specification can be used to provide an
evaluation of calibration measurement uncertainty required for dissemination of measurement
traceability.

Scenario 1

In this straightforward scenario, the calibration of the caliper produces indication errors with
associated calibration measurement uncertainty. Following best practice, the errors can be cor-
rected and the calibration measurement uncertainty can be propagated through the measurement
chain.

[167], the GUM suggests a method to achieve this [2, clause F.2.4.5].
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Scenario 2

In this case no quantitative information on the indication errors is available other than their values
being within specification limits. In the absence of any other information, the best estimate of
the error is therefore zero.

The uncertainty when in use by the customer, can be evaluated from the PDF resulting from
the convolution of a normal probability distribution N(0, utest) and a rectangular distribution
R(−a, a), where

a =MPE− kutest (E2.5.15)

and, for a two-sided specification, k can be calculated iteratively by applying equation (11) of
JCGM 106:2012 [6], given the values of pc and utest.

For example, figures E2.5.3 and E2.5.4 present the PDFs for conformance probability values pc
equal to 50 % and 95 % respectively, for a range of values for measurement capability index Cm,
where

Cm =
2×MPE

4utest
. (E2.5.16)

Figure E2.5.3: PDFs for pc = 50 %, MPE= 0.2 and various Cm values

Once the PDF is established, its standard deviation u can be determined, for example by combin-
ing variances:

u2 =
(MPE− kutest)2

3
+ u2

test. (E2.5.17)

Assuming that the specification limits and utest account correctly for all influence quantities that
contribute to the calibration of the caliper (as is the premise of the GPS standard), then u corre-
sponds to the calibration standard measurement uncertainty (that is, ucal = u).
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Figure E2.5.4: PDFs for pc = 95 %, MPE= 0.2 and various Cm values
Note that in general the standard uncertainty alone provides insufficient information for prop-
agation of measurement results; knowledge of the PDF is needed, for example, whether it can
be described by a known distribution such as a normal distribution. In cases where the shape
of the PDF is dominated by the specification it will be more ‘rectangular’ than normal. In that
case some other means of conveying information about the PDF is needed, such as in figures
E2.5.3 and E2.5.4 or as might be provided by using a numerical approach for evaluating the
uncertainty [3].

A standard uncertainty uMPE associated with the specification can also be established by taking
it to be the standard deviation of a rectangular PDF with limits ±MPE:

uMPE =
MPE
p

3
. (E2.5.18)

In some situations, uMPE is used as an estimate of the calibration standard measurement uncer-
tainty.

Figure E2.5.5 shows in the ordinate the standard deviation u of the PDF divided by uMPE and in
the abscissa Cm for various pc values.

Note that for pc values greater than 85 %, uMPE provides a conservative overestimate of ucal for
all Cm values considered.

It is also clear that it is not possible to ensure values of pc higher than 95 % for low values of
Cm. As an example, considering the curve corresponding to the probability of 99 %, the smallest
value of Cm that allows this probability is about 1.3.

For pc values lower than 85 %, the use of the uMPE can lead to an understatement of measurement
uncertainty for low Cm values, which happens for example in the case of pc equal to 70 % and
for Cm values lower than about 1.6.

For pc values of 50 %, in order not to understate uncertainty, it is possible to multiply uMPE by a
‘safety factor’ which can be determined by the graph for Cm less than 4. For higher Cm values the
underestimation of the uncertainty is less than 1 % and therefore may not be significant.
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Figure E2.5.5: u/uMPE as a function of Cm for various conformance probabilities pc.
Scenario 3

In this case, no quantitative information on the indication errors and test uncertainty is available.
The decision rule comes from ISO 13385-1:2019 [196]. However, the standard provides two
different rules depending on the agreement with the customer:

Decision rule A If no decision rule is stated with the specifications, and no special agree-
ment is made between supplier and customer, then the default rule of ISO 14253-1 [199] ap-
plies (ISO 13385-1 [196, clause 6.3]). In this case the default conformance probability limit is
pc = 95%, which corresponds to a false acceptance probability less than or equal to 5 %. This
information, combined with the MPE, can be used to evaluate the uncertainty to be attributed
to the instrument when used by the customer, ensuring traceability. From this information (MPE
and pc), assuming that the distribution associated with the test uncertainty is normal, it is possi-
ble to provide an upper limit of standard uncertainty umax. This value can be calculated from ISO
14253-1 [199, annex A, figure A.3], considering the most conservative condition with the ratio
of the specification and the test uncertainty equal to 3.92, which corresponds to Cm = 0.98:

2×MPE
umax

= 3.92. (E2.5.19)

This case is equivalent to scenario 2 with pc = 95 % and Cm = 0.98 (see figure E2.5.5).

Decision rule B If there is an agreement with the customer to verify the caliper with respect
to the MPE values reported in [196, table B.1], the decision rule that applies shall be simple
acceptance, with the measurement capability index Cm being four or larger (ref. annex B of
ISO 13385-1) [196]. Although the test uncertainty is not reported in the calibration certificate,
it is possible to calculate a limit value of uncertainty umax from the limit value of Cm = 4:

umax =
MPE
2Cm

=
MPE

8
. (E2.5.20)
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This case is equivalent to scenario 2 with pc = 95 % and Cm = 4 (see figure E2.5.5).

E2.5.4 Additional notes and comments

E2.5.4.1 Notes on risk in relation to uncertainty

The GUM is concerned with the propagation of PDFs (or in the case of the LPU their variances).

Estimates of risk are given by integrals over certain ranges of a PDF (or a joint PDF) as described
in [6]. They are not in a form that is directly propagated using GUM methodology.

Risk is usefully evaluated at times when a decision is needed concerning the acceptability of a
result, normally at the end of a measurement chain. It may be of passing interest at intermediate
points in the chain, but for propagation of traceability it is the underlying PDF that is of interest.

Therefore a statement of conformity and risk is generally not a useful alternative to a description
(or summary) of the PDF for the measurand. An accredited laboratory, for example, would be
expected to ensure that customers are aware of this lack of utility when their customers request
a statement of conformity.

E2.5.4.2 Notes on Simple Acceptance

It is worthwhile re-iterating the point that assertions of conformity based upon Simple Accep-
tance criteria on their own, with no account for measurement uncertainty whether it be direct or
indirect, are not sufficient to provide traceability (or to define a meaningful decision rule, as the
associated risk is undefinable).

Further, it is not possible to take indirect account of uncertainty by simply stating the value of the
uncertainty after the decision is made, which corresponds to a situation in which the decision is
made regardless of uncertainty or risk at the time the decision is being made.

E2.5.4.3 Single sided specifications

The examples presented here have all been presented in terms of two-sided specifications that
define an upper and a lower limit for the measurand. A key point is that such specifications
allow a rectangular PDF to be established to describe the location of the quantity of interest,
which would not be possible with a truly single-sided specification for which no such PDF can be
established, there being only one defined limit.

E2.5.5 Conclusions

The examples presented here have demonstrated various situations in which there is no explicit
statement of a measurement result (in terms of a specific value and associated uncertainty),
yet metrological traceability can be obtained from a statement of conformity together with a
suitable specification and decision rule. (Such a situation is anticipated in [7].) Making optimum
use of available information to establish metrological traceability is demonstrated for several
general scenarios and is illustrated with two extended examples. The process recommended
involves identifying two or more independent PDFs to represent the information that has been
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provided. Typically this approach results in a PDF that characterises the location of possible
quantity values for the measurand, and a PDF that characterises the dispersion of possible values
around any given value of the measurand. In practice, these PDFs are likely to have the well-
known rectangular and normal distributions respectively and can be individually ‘imported’ into
uncertainty evaluations based upon the LPU or Monte Carlo Simulation as independent input
quantities.
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Example E3.1

Evaluation of measurement uncertainty
in average areal rainfall – uncertainty
propagation for three methods
A. S. Ribeiro, M. G. Cox, M. C. Almeida, J. A. Sousa, L. L. Martins, C. Simões, R. Brito,
D. Loureiro, M. A. Silva, A. C. Soares

E3.1.1 Summary

Precipitation measurement has diverse applications in contexts such as hydrology, meteorology
and climatology, and is of increasing importance for the assessment of climate change, both as
an indicator and as a parameter applied in modelling aiming at the interpretation of climatolog-
ical phenomena and forecasting. To obtain the quantities of concern (precipitation and rainfall
intensity) there are several methods, for which it is relevant to determine the measurement un-
certainty associated with an estimate of the quantity as a comparative element in order to relate
its magnitude to the intended evaluation. For a long-term analysis, several methods are avail-
able for calculating the accumulated values of the precipitation quantity and the average values
observed in given catchment areas and in certain time intervals. However, it is not common
to promote information about the impact that the selection of method has on the results. This
selection is one of the main objectives of the comparative analysis proposed in this study, that
is, the difference that results from this selection regarding the estimate of the quantity and its
associated uncertainty. In addition, the examples given are used to illustrate the adequacy of the
approaches recommended by the Guide to the expression of Uncertainty in Measurement (GUM)
and GUM Supplement 1 (GUM-S1) .

E3.1.2 Introduction to the application

The growing awareness of the impact of climate change and the United Nations’ sustainable de-
velopment goals [200] show the need to have reliable measurements of quantities to support ur-
ban and water resources management. Precipitation and rate of rainfall (or rainfall intensity) are
quantities widely measured, being applied in hydrology, climatology and meteorology, namely,
in modelling, studying patterns and in forecasting. The definition of precipitation according to
the World Meteoroligical Organization (WMO) [201] is the following:
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Precipitation is a quantity defined as the liquid or solid products of the condensation
of water vapour falling from clouds, in the form of rain, drizzle, snow, snow grains,
snow pellets, hail and ice pellets; or falling from clear air in the form of diamond
dust.

From this definition (being the quantity interpreted as the mass or volume of the liquid or solid
products), precipitation intensity is a quantity defined as the amount of precipitation collected per
unit time interval. The unit of precipitation is linear depth in mm (corresponding to a volume per
area) and for liquid precipitation, kgm−2 (corresponding to a relation of mass per unit area). The
difference between rainfall and precipitation is that rainfall is related to water in its liquid state in
the form of precipitated condensed droplets from atmospheric water vapour, while precipitation
is related to the product of the condensation of atmospheric water vapour that falls under gravity.
The measurement unit of rainfall intensity is linear depth per hour (mm h−1). Rainfall intensity
is usually obtained at a time intervals of 1 min, being lower in case of extreme events or systems
with high variability or intensity.

In practice, rainfall and precipitation are measured in different geographical locations, in order
to model the behaviour of meteorological and climatic phenomena in a spatial and temporal
dynamic regime. Observation of these quantities can be strongly affected by influence conditions,
namely, exposure, wind and topography, thus limiting the accuracy of measurement. Wind effect
is critical for the performance of instrumentation, leading to different shapes of gauges as seen in
figure E3.1.1 [201], illustrating how streamlines of wind deformation are expected to affect the
trajectory of precipitation particles, promoting a relevant error contribution to the measurement.

Figure E3.1.1: Different shapes of gauges induce the way that streamlines of wind deformation
affect the trajectory of precipitation particles [201]

The recommended use of recording precipitation gauges is to have sufficient information related
to the time scale and time resolution to cater for the high variability of the precipitation intensity.
Such information is used in the technical process of reducing evaporation and wetting losses
as sources of error and uncertainty that can affect significantly non recording devices. Three
types of automatic precipitation recorders to measure rainfall are commonly used: weighing-
recording type; tipping-bucket type; and floating type. The study carried out considered the use
of the weighing and tipping-bucket types, for which data were available. There are many types of
instruments and methods to take observations of rainfall intensity [202]. The study carried out
considered the use of the weighing and tipping-bucket types, both of which collect precipitation
using an orifice and a funnel directed into receptacles allowing the volume to be weighed, in the
first case, or multiples of volumes collected in a pair of buckets each having a reference volume
quantity per second.
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The WMO establishes reference conditions for the installation and use of these gauges [203],
namely, the orifice height above the ground (commonly between 0.5 m and 1.5 m), the conditions
of the surrounding ground to avoid in-splashing from the ground and specific geometries adopted
for the orifice and the gauge. Wind field in the surroundings can be a major influence on the
measurement. Special care is highly recommended by including in the setup of windshields,
by establishing the type of surrounding surface (for example, short grass instead of hard and
flat surfaces to avoid in-splashing), by adopting the suggested relations with the vertical angle
obstacles in the surrounding of the site, and by choosing an appropriate gauge size and shape in
order to minimize the wind effect [201].

To obtain the data needed for meteorology, climatology and hydrology predictive models, net-
works of stations are distributed in areas of interest in a way that properly represents the dis-
tribution of rainfall, being required to obtain rainfall intensity measurements at single points
and combine them in order to calculate the volume of precipitation that falls over a given catch-
ment area [204]. To achieve this aim, there are several methods that use a set of single point
measurements to obtain the average areal rainfall.

For this study the following were considered: arithmetic mean method, Thiessen polygons’ method
and isohyetal method. These methods use distinctive interpretations of the physical quantity in
relation to the geometric context. For this reason, uncertainty in the common output plays a
relevant role, namely, because that allow the comparison of the accuracy of the methods. A brief
description of each method for estimating the average areal rainfall is presented:

a) Arithmetic mean method: evaluates the arithmetic mean of considered single point obser-
vations for a certain area;

b) Thiessen polygons’ method: applies a graphical approach that defines relative polygonal
areas related to each single station observations, providing a weighted sum of the obser-
vations;

c) Isohyetal method: applies a graphical approach based on the drawing of isohyet lines of
equal rainfall, combining the observations weighted by the coverage areas between these
isohyetal lines.

In this framework, two steps are required to obtain the average areal rainfall: first, the evalua-
tion of the measurand (rainfall intensity) at each single point (gauge station); and second, the
propagation of these uncertainties to the combined output (average areal rainfall).

(a) Elements of a weighing gauge (b) Weighing gauge installed in field

Figure E3.1.2: Weighing gauge
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Weighing-recording gauges effectively are balances that record the weight of accumulated pre-
cipitation volume over time. The container should have a large capacity considering that this
system does not empty itself. Solutions for its use in harsh climate conditions are also required
(for example, use of oil to avoid large evaporation effects and antifreeze solutions).

(a) Elements of a tipping-bucket gauge
(b) Tipping-bucket gauge installed in field

Figure E3.1.3: Tipping-bucket gauge

The operation of tipping-bucket gauges allows water collection and guidance to a twin bucket
balance with both parts having an equal weight and reference volume. Every time a bucket is
full the balance changes position within a pivot axis, and the other bucket moves into position to
collect water while the first one will empty the collected water. In this process, the time between
each change (tipping) can be measured, allowing the calculation of the rate of rainfall quantity.
Tipping-bucket gauges employ a contact closure (reed switch or relay contact), such that each tip
produces an electrical impulse as a signal output. This output must be recorded by a data logger
or an ADC (data acquisition system equipped with reed switch reading ports). This mechanism
provides a continuous measurement without manual interaction.

The rainfall intensity is an intermediate measurand that depends on the height, h in cm (the
observation is usually expressed in mm), being related with the volume, V in cm3. Although
not used explicitely in this work, the collected water volume V is given by expression (1) being
related with the ratio of the mass content, m in g, of the bucket by the density of water, ρ of
1 gcm−3, or by the ratio of the height, h, and the area of the surface of the collector, S in cm2.

E3.1.3 Specification of the measurands

This study employs a two-step approach. The first step is the observation of rainfall intensity, Pi ,
at several locations, i. The second step is the combination of observations from those locations
to obtain the average areal rainfall.

Considering the use of the weighing recording gauges (figures E3.1.2a and E3.1.2b) and tipping-
bucket gauges (figures E3.1.3a and E3.1.3b), two types of transduction of the quantity are ap-
plied. In the first case the collected amount of water generates weighing observations (m) over
time while, in the second case, impulses are generated for a fixed volume (V ).

V =
m
ρ
= h · S. (E3.1.1)
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The rainfall intensity for non-corrected tipping-bucket gauges is based on the number of tips, n
in a periodic sampling rate ∆t (typically 6 s or 10 s) and averaged over a chosen time interval
(for example, 1 min). The estimate of the rainfall intensity is

Pi =
(n · h)
∆t

. (E3.1.2)

The primary measurand, Pav, is the average areal rainfall as a function of the rainfall intensity
values or averages obtained at the k locations of measurement stations, being the function a
weighted linear combination of the Pi:

Pav = f (P1, . . . , Pk) =
m
∑

i=1

wi Pi . (E3.1.3)

This function is applied to all the methods studied, the arithmetic mean method, the Thiessen-
polygons’ method and the isohyetal method.

E3.1.4 Measurement models

The nature of the measurement of precipitation, being affected by many natural conditions,
implies the need to account for corrections and to evaluate the effect of errors in the meth-
ods [205,206]. Reports issued by WMO point out the need to use models to adjust the measured
precipitation [207], based on corrections obtained from statistical data. Regarding errors (sys-
tematic effects), WMO also collected information provided by research, being able to state [203]:
“The amount of precipitation measured by commonly used gauges may be less than the actual
precipitation reaching the ground by up to 30 % or more.”. Considering the interest of this study
in the rainfall intensity measurements obtained using tipping-bucket gauges and weighing gauges
(other types like floating gauges and optical gauges were not considered for this purpose), data
provided in the WMO reports [202,208] were taken into account.

The assessment of errors in precipitation measurement usually relates its origin to the effects
of wind, wetting and evaporation losses [207]. A general description of these sources is given
in [203], including estimates based on [207], is the following:

(a) Error due to systematic wind field deformation above the gauge orifice: typically 2 % to
10 % for rain and 10 % to 50 % for snow;

(b) Error due to the wetting loss on the internal walls of the collector;

(c) Error due to the wetting loss in the container when it is emptied: typically 2 % to 15 % in
summer and 1 % to 8 percent in winter, for (b) and (c) together;

(d) Error due to evaporation from the container (most important in hot climates): 0 % to 4 %;

(e) Error due to blowing and drifting snow;

(f) Error due to the in- and out-splashing of water: 1 % to 2 %;

(g) Systematic mechanical and sampling errors, and dynamic effects errors (i.e. systematic
delay due to instrument response time): typically 5 % to 15 % for rainfall intensity, or even
more in high-rate events (see [208]);

(h) Random observational and instrumental errors, including incorrect gauge reading times.
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Considering these sources of error and uncertainty, a functional relation for precipitation (rain
and snow contributions) was proposed by WMO [203], adapted in 1990 by Legates and Willmott
[209] as

Pk = krPcr + ksPcs,

where

Pcr = Pgr +∆P1r +∆P2r +∆P3r +∆P4r, (E3.1.4)

Pcs = Pgs +∆P1s +∆P2s +∆P3s +∆P4s.

The quantities in expression (E3.1.4) are as follows:

subscript r – relates to liquid precipitation “rain”;
subscript s – relates to “solid” precipitation;
Pk – adjusted precipitation;
k – adjustment factor for the effects of wind field deformation;
Pc – amount of precipitation caught by the gauge collector;
Pg – measured amount of precipitation in the gauge;
∆P1 – adjustment for the wetting loss on the internal walls of the collector;
∆P2 – adjustment for wetting loss in the container after emptying;
∆P3 – adjustment for evaporation from the container; and
∆P4 – adjustment for systematic mechanical errors.

The adjustment factor k is a variable obtained from studies developed by Nešpor and Sevruk
[210], in which the ratio of correct to measured precipitation or rain and snow was studied
using two unshielded gauges in different weather conditions of wind speed and intensity. The
measurement of rainfall intensity, in mmh−1 units, using weighing-recording gauges or tipping-
bucket gauges, starts respectively with the measurement of mass or volume in units of time. The
measurand is affected by sources of uncertainty according to the relational function presented in
equation (E3.1.4), considering only the liquid contributions,

Pk = krPcr = kr

�

Pgr +∆P1r +∆P2r +∆P3r +∆P4r

�

. (E3.1.5)

The measurement uncertainty related to the output quantity of this function can be evaluated
using the conventional LPU [2] or using a MCM as described in GUM-S1 [3].

As mentioned above, single location measurements are a first step to obtain information about
precipitation in a certain area, thus requiring the estimation of the average areal rainfall, calcu-
lated using the mentioned common methods to achieve this purpose.

The primary measurand, Pav, is the average areal rainfall as a function of the rainfall intensity
values or averages obtained at the m locations of measurement stations, being a function of a
weighted linear combination of the Pi:

Pav = f (P1, . . . , Pm) =
m
∑

i=1

wi Pi . (E3.1.6)

The function (E3.1.6) is considered generic, being applied to all three methods studied. In a
general approach the methods consider that there are m measurement stations able to obtain
rainfall values Pi(i = 1, . . . , m) distributed across a basin. To illustrate the approach adopted in
each method, as a starting point consider m = 4 measurements at rainfall stations located in a
basin, as in figure E3.1.4.
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Figure E3.1.4: Location of four rainfall stations in a basin
The arithmetic-mean method evaluates the average of the estimates obtained at each location
without establishing a relation between the position of the stations and the geometry of the area
of observation. The average areal rainfall (E3.1.6) considers that all weights are equal to 1/m

Pav =
m
∑

i=1

wi Pi =
1
m

m
∑

i=1

Pi =
1
m
(P1 + · · ·+ Pm) . (E3.1.7)

The second method studied is the method of Thiessen polygons, which uses a given set of loca-
tions in the plane to make a partition of the plane into convex polygons (Voronoi tessellation),
each of which comprises the points closest to one of the given locations. It uses a geometric
division of the space that can be explained in three steps: (1) connect the rainfall measurement
locations by straight line segments (figure E3.1.5a), (2) draw perpendicular bisectors to these
segments (figure E3.1.5b), and (3) divide the area using polygons (figure E3.1.5c).

(a) Step 1 (b) Step 2 (c) Step 3

Figure E3.1.5: Steps 1, 2 and 3 of the geometric approach in Thiessen polygons’ method

The average areal rainfall (equation (E3.1.8) (8)) using the Thiessen polygons’ method, Paxty is
given by a weighted approach to the arithmetic mean:

Pav,Tp =
m
∑

i=1

wi Pi =
m
∑

i=1

Ai

A
Pi , (E3.1.8)

where wi denotes the weights given by the relative areas of the polygons obtained, Ai is the area
of the polygon related to station i, and A is the total area of the basin. Any change of rainfall at
the stations does not affect the geometry of the polygons.

The third method studied uses weights proportional to contour map areas according to the lo-
cation of isohyets (lines on a map or chart connecting areas of equal rainfall). The isohyetal
method (figure E3.1.6) uses the single-point station information to establish contour map ar-
eas [211, 212], with weights obtained by multiplying each contour area by the average rainfall
in the area.
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In the example (where m = 4), using the same basin and considering locations, m+ 1 isohyets
(P1, . . . , Pm+1) are defined (Pa, Pb, Pc , Pd , Pe in figures E3.1.4–E3.1.6) dividing the basin into m
contour areas (A1, . . . , Am) , allowing the determination of the areal rainfall average, Pav,isoh, using

Pav,isoh =
m
∑

i=1

wi Pi =
m
∑

i=1

Ai P̄l =
1
A

m
∑

i=1

Ai

�

Pi + Pi+1

2

�

. (E3.1.9)

Figure E3.1.6: Defining isohyets and contour areas to apply the isohyetal method

E3.1.5 Uncertainty propagation

The propagation of uncertainty in this study of the average areal rainfall intensity has two stages.
The first stage requires the evaluation of the uncertainty related to the measurement of rainfall
intensity in the individual locations, using either weighing-recording gauges or tipping-bucket
gauges. The second stage requires the evaluation of the uncertainty of average areal rainfall
intensity using one of the three methods mentioned.

Given the nature of precipitation phenomena and the variability inherent in the main sources of
measurement error, the quantification of the resulting effects is usually difficult to establish. For
the purpose of obtaining estimates of these quantities, references [213–218] were consulted. In
the first stage, for both type of gauges, the input quantities are described in expression (E3.1.2).
A probability density function (PDF) was assigned to each quantity based on knowledge of that
quantity. The mean of that PDF was used as an estimate of the quantity and the standard deviation
as the associated standard uncertainty. The input quantities are shown in table E3.1.1 together
with the assigned PDFs and their relative standard uncertainties (in the table the index “r” was
suppressed).

Since the PDFs for wetting loss are not symmetrical about zero, a correction was made to the esti-
mate equivalent to the half width of the PDF and a zero-centred PDF was used in the uncertainty
evaluation.

The second stage accounts for the uncertainty associated with the measurement of rainfall inten-
sity at each location, for both types of gauges considered, having as input the combined average
areal rainfall uncertainty obtained in stage 1. In this case, the evaluation of measurement uncer-
tainty does not account for possible correlation between measurements at the different locations.
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Table E3.1.1: Input quantities, relative standard uncertainties and assigned PDFs related to rain-
fall intensity measurement using weighing gauges and tipping-bucket gauges

Quantity Description Standard uncertainty/% PDF

Weighing gauge Tipping-bucket gauge

k Error due to systematic wind field
deformation above the gauge ori-
fice

5 5 Gaussian

Pg1 Error due to the in- and out-
splashing of water

2 2 Uniform

Pg2 Random observational and instru-
mental errors

2 2 Uniform

∆P1 Error due to the wetting loss on
the internal walls of the collector

n/a 5 Uniform*

∆P2 Error due to the wetting loss in the
container when it is emptied

1 5 Uniform*

∆P3 Error due to evaporation from the
container

2 1 Uniform

∆P4 Systematic mechanical and sam-
pling errors, and dynamic effects
errors

5 10 Uniform

* The uniform PDFs adopted have intervals from 0 % to 5 % (asymmetric with respect to 0 %), consid-
ering that loss quantity would increase the estimate and negative values are not achievable.

E3.1.6 Reporting the results

The evaluation of the uncertainty for a measurement of rainfall precipitation of 10 mmh−1, was
made using R/RStudio programming [11,49], with 1×106 Monte Carlo trials for each calculation.
The evaluation allowed, for both gauges, the PDF for the output quantity, Pk, and the relative
expanded uncertainty, U0.95(Pk), for a confidence interval of 95 % by applying GUM [2] and
GUM-S1 [3], to be provided. The values obtained and the related PDFs are shown in table E3.1.2
and in figures E3.1.7 and E3.1.8 for the weighing gauge and tipping-bucket gauge, respectively.
These figures also show the scaled histograms produced using GUM-S1 and used as a basis for
the (continuous) PDFs shown in blue and obtained using the mean and standard deviation values
as parameters of the normal distributions.

The results show consistency with the normal distribution in the case of the weighing gauge
and a small deviation from normality in the case of tipping-bucket gauge, identified by skew-
ness and kurtosis parameter values that differ slightly from normal reference values of 0 and 3,
respectively.

For the second stage, a comparison of the measurement uncertainty of the average areal rainfall is
made for the three methods considering that local measurement was made using either weighing
gauges or tipping-bucket gauges.

For this study, figure E3.1.4 was adopted as being representative of a certain territory having
four measurement stations with the following daily average rainfall: P1 = 12mm, P2 = 18mm,
P3 = 36 mm and P4 = 28mm. The relative expanded measurement uncertainty considered for
each estimate was based in the evaluation obtained at stage 1, respectively, 12 % for weighing
gauges and 16 % for tipping-bucket gauges.

The first approach to calculate the daily average areal rainfall used the arithmetic mean method,
applying equation (E3.1.7). To evaluate the measurement uncertainty for this linear model, the
GUM approach gives an exact solution, making the assumptions that considering that measure-
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Table E3.1.2: Parameters and expanded measurement uncertainties obtained for the weighing
gauge and tipping-bucket gauge using GUM and GUM-S1

Weighing gauge / (mm h−1) Tipping-bucket gauge / (mmh−1)

GUM GUM-S1 GUM GUM-S1

Mean (P) U95(P) Mean (P) U95(P) Mean (P) U95(P) Mean (P) U95(P)

10.05 1.2 10.05 [8.9, 11.3] 10.5 1.6 10.5 [9.0, 12.1]

Skewness (GUM-S1) 0.08 Skewness (GUM-S1) 0.11
Kurtosis (GUM-S1) 2.96 Kurtosis (GUM-S1) 2.73
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Figure E3.1.7: Weighing gauge PDFs obtained using GUM (red line) and GUM-S1 (blue line) and
scaled histogram of output numerical sequence
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Figure E3.1.8: Tipping-bucket gauge PDFs obtained using GUM (red line) and GUM-S1 (blue
line) and scaled histogram of output numerical sequence
ments at the different stations are not correlated,

u2 (Pav) =
4
∑

i=1

�

∂ Pav

∂ Pi

�2

u2 (Pi) =
1
16

�

u2 (P1) + u2 (P2) + u2 (P3) + u2
�

P4

��

. (E3.1.10)

In the given catchment area, using the values given above for P1 to P4, the estimate of Pav (daily
average areal rainfall) is 23.5 mmh−1. Considering that u (Pi) = 0.06Pi for weighing gauges and
u (Pi) = 0.08Pi for tipping-bucket gauges, expression (E3.1.10) is used to obtain the standard
uncertainties for both types of gauges considered in stage 1:

u (Pav) = 0.76mm, using weighing gauges’ uncertainty

u (Pav) = 1.0mm, using tipping-bucket gauges’ uncertainty

The second method, the Thiessen polygons method, was applied using the same Pi values but
it requires to evaluate the areas of the polygons that gives the weights considered in expres-
sion (E3.1.8). The areas related to the polygons shown in figure (E3.1.7) were obtained using a
planimeter technique, giving approximate values of

A1

A
= 0.37;

A2

A
= 0.24;

A3

A
= 0.20;

A4

A
= 0.19.

To evaluate measurement uncertainty using the Thiessen polygons method, uncertainty contribu-
tions for daily average areal rainfall were the same as considered in the previous example, being
u (Pi) = 0.06Pi for weighing gauges and u (Pi) = 0.08Pi for tipping-bucket gauges. The combined
uncertainty also takes account of the uncertainty contributions related to the area weight of each
polygon, u (Ai/A) , estimated to be 0.01. In this case, the evaluation of the measurement uncer-
tainty associated with the annual average areal rainfall intensity used a MC approach according
to GUM-S1. The numerical evaluation was developed for both types of gauges, using RStudio
programming, with 1×106 MC trials. Using expression (E3.1.8) the daily average areal rainfall,
Pax.Tp is 21.3 mm and,

u
�

Pav.Tp

�

≈ 0.8 mm,using weighing gauges uncertainty,

u
�

Pav.Tp

�

≈ 1.0mm, using tipping-bucket gauges uncertainty.
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The third approach applies the isohyetal method to the same area, requiring to obtain the values
for the isohyets presented in figure E3.1.8 in order to make the computation of the annual average
areal rainfall intensity according with expression (E3.1.9). In this case, the values considered for
the isohyets, considering the average estimates of P1 to P4 were the following:

Pa = 6mm; Pb = 15mm; Pc = 24mm; Pd = 32mm; Pe = 44 mm.

Standard measurement uncertainties considered for the isohyets were taken as those used previ-
ously. As in the second method, the relative areas between adjacent isohyets need to be evaluated,
which allowed to obtain:

A1

A
= 0.31;

A2

A
= 0.28;

A3

A
= 0.23;

A4

A
= 0.18.

The standard uncertainty related to the area weight of each subarea, u (Ai/A) , were taken to be
0.01.

The evaluation of the measurement uncertainty associated with the daily average areal rainfall
intensity used again an MCM approach according to GUM-S1. The numerical evaluation was
developed for both types of gauges, using RStudio [49] programming, with 1 × 106 runs for
each calculation. Using expression (E3.1.9) the estimate of, Pav.Isoh, is 21.9 mm and the standard
uncertainties are

u (Pav.Isoh)≈ 1.9mm, using weighing gauges uncertainty,

u
�

Pav.Tp

�

≈ 2.4mm, using tipping-bucket gauges uncertainty.

A summary of the results is given in tables E3.1.3 and E3.1.4 and the output PDFs in figures E3.1.9
and E3.1.10, respectively, considering the use of weighing gauges and tipping-bucket gauges as
measurement instruments.

Table E3.1.3: Comparison results obtained using weighing gauge data input

Daily average areal rainfall Method/mm

Arithmetic mean Thiessen polygons Isohyetal

Estimate 23.5 21,3 21.9
95 % uncertainty (GUM) 1.5 1.6 —
95 % uncertainty (GUM-S1) — [ 19.7 , 22.9 ] [ 20.0 , 23.8 ]
95 % uncertainty half-width (GUM-S1) — 1.6 1.9

Table E3.1.4: Comparison results obtained using tipping-bucket gauge data input

Daily average areal rainfall Method/mm

Arithmetic mean Thiessen polygons Isohyetal

Estimate 23.5 21.3 21.9
95 % uncertainty (GUM) 2 2 —
95 % uncertainty (GUM-S1) — [ 19.3 , 23.3 ] [ 19.5 , 24.3 ]
95 % expanded uncertainty (GUM-S1) — 2 2.4
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Figure E3.1.9: Comparison of results and 95 % expanded uncertainty, using as input the uncer-
tainty rainfall intensity measurement of weighing gauges, for the arithmetic mean method (blue
line), Thiessen polygon method (red line) and isohyetal method (black line)
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Figure E3.1.10: As figure E3.1.9 but for tipping-bucket gauges

E3.1.7 Interpretation of results

The diversity of measurement instruments has impact on the estimates and the associated uncer-
tainties and the decisions taken should consider the effects due to the uncertainty contributions.
In this study, two different techniques (weighing and tipping-bucket) for the same measurements
(precipitation and rainfall) were adopted. In both cases the results obtained using GUF and MCM
were consistent. In the case of the tipping-bucket gauge, a higher degree of flatness of GUM-S1
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histogram was found showing a deviation from normality. In both cases, average estimates were
corrected, in order to consider the contribution of the wetting loss bias, being the correction to
add a positive quantity not measured in the process.

Regarding the three methods considered, commonly applied to evaluate daily, monthly or annual
average areal rainfall, the interest of the studies carried out were related to performing a compar-
ison of the results based on the measurement uncertainties. The results obtained and presented
in tables E3.1.3 and E3.1.4 and in figures E3.1.9 and E3.1.10 show differences in the estimates
of the average areal rainfall, from 21.3 mm to 23.5 mm. Regarding the 95 % expanded measure-
ment uncertainty obtained (tables E3.1.3 and E3.1.4), agreement was found between arithmetic
mean method and Thiessen polygons method being the measurement uncertainty around 20 %
higher for the isohyetal method. The comparison between weighing gauges and tipping-bucket
gauges showed a difference of 30 %, enhancing the conclusions that the impact of the type of
gauge used and the method adopted are high.

The studies carried out were able to show some interesting features of the models and the way
they affect the measurand of interest. Further studies should be made to include the effect of
correlation that was not considered in this simple analysis, and the effect of conditions related
with the dynamics of the measurement process and the use of corrective algorithms related to
post-processing of data [219–221].
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Example E3.2

Uncertainty evaluation for the
quantification of low masses of
benzo[a]pyrene

F. Pennecchi, F. Rolle, M. Sega, S.L.R. Ellison, A.M.H van der Veen

E3.2.1 Summary

The aim of the present example is to show the uncertainty evaluation for the quantification of
low masses of benzo[a]pyrene (BaP), which is an important Polycyclic Aromatic Hydrocarbon
(PAH) for ambient air monitoring. Comparison between the results obtained according to the
GUM uncertainty framework (GUF) [2] and the Monte Carlo method (MCM) for the propagation
of distributions [3,4], applied to both real and simulated data sets, are shown and discussed.

E3.2.2 Introduction of the application

The quantification of low masses of PAHs is an important issue as they are ubiquitous toxic con-
taminants which can be present in all the environmental compartments even at trace levels. The
evaluation of the uncertainty associated with the quantification of such micro pollutants plays an
important role for the reliability of their measurements. Among PAHs, BaP is classified as carcino-
genic agent and is listed in the current European legislation [222] as marker of the carcinogenic
risk for the whole class of PAHs in ambient air.

The present example aims at comparing the results obtained by application of the law of propa-
gation of uncertainty (LPU) [2] and the MCM for propagation of distributions [3] to real data sets
derived from the quantification of a low mass of BaP spiked on filters commonly used for airborne
particulate matter sampling. The comparison is performed also on simulated data corresponding
to a BaP mass at trace level.

The description of the analytical method to quantify BaP in ambient air can be found in [223],
whereas details on the uncertainty evaluation process, not explicitly reported in the present ex-
ample, can be found in [224].
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E3.2.3 Specification of the measurand

A glass fiber filter (Pall & Whatman) having diameter of 47 mm, a type of filter commonly used
for the sampling of airborne particulate matter, was spiked with the Certified Reference Material
(CRM) NIST SRM 2260a, containing 36 PAHs in an organic solution. The spiked filter was ex-
tracted by Soxhlet, following the extraction procedure described in [223]. The same filter was
subsequently extracted a second time thus obtaining a diluted sample. BaP masses in the two
extracts were quantified by means of a gas chromatograph coupled with a mass spectrometer
(GC-MS) Focus DSQ II (Thermo Fisher Scientific).

The measurand of interest in the present example is the mass of BaP contained in a nominal
volume of 1µL of the second extract. Moreover, in order to consider very low mass values of BaP,
a numerical simulation was carried out by decreasing the chromatographic areas corresponding
to the BaP in the sample of the second extraction by a common constant term, hence reaching
a (simulated) measurand value close to the minimum mass of BaP detectable with the method
described in [223], i.e., 2.5× 10−3 ng.

E3.2.4 Measurement model

Quantification of the mass of BaP contained in 1µL of the second extract was performed according
to the Internal Standard method described in EN 15549 [225]. An aliquot of the NIST SRM 2270,
containing perdeuterated benzo[a]pyrene (BaP-d12), was added to the solution in order to obtain
a concentration of BaP-d12 equal to 0.2455µgmL−1, to be used as the internal standard. Then,
an aliquot of 1µL of the solution was injected three times in the GC-MS. The ratio of peak areas
corresponding to the internal standard and those corresponding to the analyte was used to de-
termine the mass mE of BaP present in the injected volume of the extracted sample, according to
the following model:

mE =
�

f AE mISE

�

/
�

AISE

�

, (E3.2.1)

where f is the GC-MS calibration factor, AE is the mean area (a.u.) of the chromatographic
peak corresponding to BaP in the extract, and mISE and AISE are the mass (ng) and the mean
chromatographic area (a.u.) for the internal standard in the extract (ISE).

Calibration factor f was obtained as the arithmetic mean of three calibration factors correspond-
ing to three reference solutions at different BaP concentrations. Details on the calibration proce-
dure are reported in [224]. In the evaluation of the uncertainty associated with f (characterized
by 9 degrees of freedom), covariance terms between the three factors were taken into account:
they were due to the same mass of the internal standard used in the calibration model for each
of the factors and to the same certified reference material (CRM) used for preparing the three
necessary reference solutions. For the same reason, f and mISE, as input quantities of measure-
ment model (E3.2.1), were correlated because of the use of the same internal standard both in
the calibration and in the analysis process.

The value and uncertainty associated with the mass of the internal standard mISE were derived
from its calibration certificate (the uncertainty was considered as having a very high number of
degrees of freedom, so that it did not give contribution to the effective degrees of freedom for
the uncertainty of the measurand estimate).

AE and AISE were evaluated as the arithmetic means of three repetitions of the area measure-
ment of the relevant chromatographic peaks. Their uncertainty was calculated as the standard
deviation of such mean [2, Sec. 4.2.3] (hence, having two degrees of freedom). A strong lin-
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ear relationship was observed between the areas of the BaP and those of the ISE in the same
run, hence a corresponding covariance term for the two mean areas was calculated according
to [2, Sec. 5.2.3].

Estimates, uncertainties u(x) and covariances u(x , y) of the input quantities in model (E3.2.1)
are reported in table (E3.2.1), together with other parameters relevant to the uncertainty eval-
uation performed by MCM. The corresponding estimate for the measurand is mE = 0.014 ng.

Table E3.2.1: Estimate, uncertainty, covariance and distributional parameters of the input quan-
tities in model (E3.2.1).

Parameter Value
f 0.616
u( f ) 0.017
mISE 0.2455 ng
u(mISE) 0.0036 ng
u( f , mISE) −3.3 · 10−5 ng
AE 85114 a.u.
u(AE) 9564.35 a.u.
AISE 917545.67 a.u.
u(AISE) 44492.21 a.u.
u(AE, AISE) −203 436959.5 (a.u.)2

S11 548861 202 (a.u.)2

S12 = S21 −1 220621 757 (a.u.)2

S22 11877 338582 (a.u.)2

Note that, in order to simulate a smaller value of BaP mass, the experimental results obtained for
the sample of the second extraction were re-used as they were, but the areas corresponding to the
BaP were all decreased by a common constant term equal to 67000 a.u.. Therefore, all the values
in table (E3.2.1) are still valid for the simulated case1, except for the AE value which becomes
equal to 18114 au . The corresponding estimate for the (simulated) measurand is mE = 0.003
ng.

E3.2.5 Uncertainty propagation

For calculating the uncertainty associated with the estimates of the measurands (i.e.,
mE = 0.014ng and mE = 0.003 ng, respectively), both the LPU [2] and the MCM for the propa-
gation of probability distributions [3, 4] were applied and compared. Details of the calculation
(expressed to at least six significant figures to avoid rounding errors) are available in the data
elaboration file “A212_BaP_example.r” [20].

1The uncertainty assumed for the simulated arithmetic mean of the peak areas is probably larger than that expected
for a material actually close to the detection limit.

Examples of evaluating measurement uncertainty First edition



Example E3.2. Quantification of low masses of benzo[a]pyrene 222

E3.2.5.1 GUM uncertainty framework

Applying the LPU to model (E3.2.1), taking into account the uncertainty and covariance contri-
butions of the input quantities reported in table (E3.2.1), the resulting uncertainty u(mE) was
0.0020 ng and 0.0017 ng for the experimental and the simulated case, respectively. Table (E3.2.2)
reports the uncertainty budget for the mass mE = 0.014 ng of BaP of the sample obtained with
the second extraction (the first two columns repeat part of the information already available
in table (E3.2.1)). Effective degrees of freedom νeff were calculated, according to the Welch-

Table E3.2.2: Uncertainty budget for the mass of BaP (in 1 µL) of the sample obtained with the
second extraction: associated combined uncertainty was u(mE) = 0.002 ng.

Component u(x i)
∂mE
∂ x i

�

∂mE
∂ x i

u(x i)
�2

u( f ) 1.7 · 10−2 2.3 · 10−2 ng 1.4 · 10−7 ng2

u(mISE) 3.6 · 10−3 ng 5.7 · 10−1 4.3 · 10−8 ng2

u(AE) 9.6 · 103 a.u. 1.6 · 10−7 ng (a.u.)−1 2.5 · 10−6 ng2

u(AISE) 4.4 · 104 a.u. −1.5 · 10−8 ng (a.u.)−1 4.6 · 10−7 ng2

u(x i , x j)
∂mE
∂ x i

∂mE
∂ x j

2 ∂mE
∂ x i

∂mE
∂ x j

u(x i , x j)

u( f , mISE) −3.3 · 10−5 ng 1.3 · 10−3 ng −8.5 · 10−8 ng2

u(AE, AISE) −2.0 · 108 (a.u.)2 −2.5 · 10−15 ng2 (a.u.)−2 1.0 · 10−6 ng2

u2(mE) 4.1 · 10−6 ng2

Satterthwaite formula [2, eqn. (G2.b)] applied to the input uncertainties and the corresponding
degrees of freedom discussed in Sec. E3.2.4. They were equal to 3.07 and 2.05, giving cov-
erage factors k of 3.1 and 4.2, respectively, for the real and the simulated case, respectively.
Coverage factors of a Student t-distribution with an integer number ν of degrees of freedom
are given in [2, table G.2], otherwise, i.e. for a non-integer ν, they can be recovered by means
of common statistical software. For obtaining a 95 % coverage interval for the distribution, the
97.5th percentile of the distribution is used for calculating the expanded uncertainty accord-
ing to [2, eqn. (G.1d)]. In the present case, the expanded uncertainties U = k u(mE) at a 95 %
coverage probability were equal to 0.006 ng and 0.007 ng for the real and the simulated case,
respectively. Results of application of the LPU to both the experimental and the simulated case
are summarized in table (E3.2.3). Note that the expanded uncertainty at the lower level is larger
than that at the higher level because of the larger coverage factor multiplying the corresponding
standard uncertainty. Indeed, even if neither the number of measurement repetitions nor the
uncertainties involved in the application of the Welch-Satterthwaite formula change from one
model to the other, the different values of the sensitivity coefficients lead to different effective
degrees of freedom in the two cases.

Table E3.2.3: Estimate of the measurand, with associated standard and expanded uncertainty,
for the experimental and the simulated case.

mE/ng u(mE)/ng U(mE)/ng

Experimental case 0.014 0.0020 0.006
Simulated case 0.003 0.0017 0.007
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E3.2.5.2 Monte Carlo method

The MCM for propagation of probability distributions of the input quantities was applied in order
to obtain an approximated distribution for the measurand, i.e. the mass of BaP in the extract and
in the simulated case. For this purpose, suitable probability distributions were assigned to the
input quantities of model (E3.2.1), according to the criteria prescribed in [3,4].

Since the available information on f and mISE were their best estimates and their associated
covariance matrix, a bivariate Gaussian distribution was assigned to these quantities [3, Sec.
6.4.8]. Hence, the bivariate normal distribution had a (vector) expectation equal to [ f , mISE]
and a covariance matrix Σ equal to

Σ=

�

u2( f ) u( f , mISE)
u( f , mISE) u2(mISE)

�

,

whose components are available in table (E3.2.1).

Since the two (N = 2) quantities AE and AISE were considered as following a bivariate normal
distribution and, for each quantity, (n = 3) repeated measurements were available, a scaled and
shifted bivariate t-distribution with one degree of freedom (ν = n− N) was assigned to them,
according to [4, Sec. 5.3.2]. Hence, the bivariate t-distribution had a (vector) expectation equal
to [AE, AISE] and the scale matrix S/n with S defined by:

S=
1
ν

� ∑3
i=1(AEi

− AE)2
∑3

i=1(AEi
− AE)(AISEi

− AISE)
∑3

i=1(AEi
− AE)(AISEi

− AISE)
∑3

i=1(AISEi
− AISE)2

�

,

whose components Si j are available in table E3.2.1, for i, j = 1, 2. Note that for ν= 1, the mean
value and the covariance matrix of the t-distribution are not defined, anyway a coverage (hyper)
interval for the distribution can always be determined [4, Section 5.5.2, Note 1].

The numerical simulation of the input probability distributions and their propagation through
measurement model (E3.2.1) were implemented in R environment [11] by applying R func-
tions “rmvnorm” and “rmvt” available in the “mvtnorm” package [51]. For each input quantity,
M = 107 values were drawn. Since only positive values of measurand are feasible, the joint input
probability density functions were numerically truncated at zero by disregarding negative values
drawn during the MCM simulation [3, Sec. 9.4.2.1.1, Note], thus obtaining a number of corre-
sponding simulated BaP mass values smaller than M . The number of MCM replicates retained,
however, was about 9× 106 and 7× 106 for the real and the simulated case, respectively, hence
still providing a reliable numerical approximation for the measurand distribution.

From the MCM distribution, the shortest 95 % coverage interval was obtained, for both real and
simulated data, and reported in table E3.2.4.

E3.2.6 Reporting the result

Figures E3.2.1 and E3.2.2 show the approximate numerical representation of the pdf for the BaP
mass corresponding to the second extraction and to the simulated case, respectively, indicating
the 95 % coverage intervals for the measurand mE produced according to the MCM and to the
GUF. The relevant interval limits are also reported in table E3.2.4.

In the present example, the MCM involved an input bivariate distribution with 1 degree of free-
dom, leading to an output pdf with an extreme right tail. The standard deviations of the MC
output distribution were unreliable (6.8 ng and 5.8 ng for the experimental and the simulated
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Table E3.2.4: Measurand estimate, 95 % coverage interval according to the GUM uncertainty
framework and the MCM for propagation of distributions (ng).

mE GUM 95 % C.I. MCM 95 % C.I.
Second extraction 0.014 [0.008, 0.020] [8.3 · 10−7, 0.032]
Simulated very low extraction 0.003 [-0.004, 0.010] [5.9 · 10−10, 0.020]

case, respectively) and, because of the truncation effect, the corresponding sample means were
heavily biased (0.028 ng and 0.017 ng, respectively). Hence, this is a case in which neither the
MCM mean nor the standard deviation are reliable, but just the coverage interval at a desired
coverage level should be reported. Incidentally, both the MC medians (0.014 ng and 0.004 ng,
respectively) resulted very close to the measurand estimates in table E3.2.4, proving themselves
as robust and sensible estimates for the measurand.

E3.2.7 Interpretation of results

When applying MCM, the measurand estimate and the associated uncertainty are usually taken
as the mean and the standard deviation of the simulated output results, according to [3, eqs. (16)
and (17)]. Nonetheless, NOTE 2 in [3, Sec. 6] states that in some special circumstances, such as
when one of the input quantities has been assigned a PDF based on the t-distribution with fewer
than three degrees of freedom, the expectation and standard deviation of the output quantity
might not exist and the above-cited equations (16) and (17) in GUM-S1 might not then provide
meaningful results. A coverage interval for the measurand can, however, be formed, since the
simulated output distribution is meaningful. This is exactly the situation of the present example,
for which, in fact, plausible estimates and corresponding standard uncertainties are those ob-
tained within the GUF, as reported in table E3.2.3, whereas feasible coverage intervals are those
provided by MCM, as discussed shortly.

From both figures E3.2.1 and E3.2.2, it is evident that the two approaches give quite different
results in terms of coverage intervals. Although the assumed output distribution in the GUF is a
Student t-distribution with few degrees of freedom, hence leading to a large coverage factor for
the calculation of the corresponding expanded uncertainty, the MCM coverage interval is about
2.5 and 1.5 times larger than that obtained in the GUF, respectively. Moreover, it is asymmetric
with respect to the measurand estimate because of the left censoring of simulated results. Due to
the very few degrees of freedom of the input bivariate Student t-distribution of the mean areas
and due to the fact that both the bivariate Student t and the Gaussian input distributions were
feasibly truncated at zero, the MCM output distribution has in fact a very long right tail, resulting
in a net positive bias of the mean value and a considerable inflation of the standard deviation.
This is a clear example of those situations in which the conditions required by the Central Limit
Theorem are not met, since the pdf for the output quantity is not a Gaussian distribution nor a
scaled and shifted t-distribution.

Moreover, at the lower simulated mass value (figure E3.2.2), the GUF would lead to a coverage
interval stretching into a region of negative (unfeasible) values. The MCM, instead, can provide
a realistic asymmetric interval. It is worth mentioning that the EURACHEM/CITAC guidelines on
uncertainty evaluation for analytical measurements [42] recommend truncating the expanded
uncertainty interval at zero whenever a negative lower limit is found for a non-negative quantity.
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Figure E3.2.1: Numerical representation of the pdf associated with the mass of BaP in the nominal
volume of 1µL of the sample obtained with the second extraction (mE = 0.014 ng). Circle and
triangle symbols indicate the limits of the 95 % coverage interval obtained according to the GUM
uncertainty framework and by MCM, respectively. Symbol x indicates the minimum detectable
mass of the analytical method.
Summarizing, this example is a clear case in which blind adherence either to the approach in the
GUM [2] or to the MCM in [3,4] would be dangerous. Careful considerations on estimates, stan-
dard uncertainties and coverage intervals are always needed, according to the specific problem
under study.
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Figure E3.2.2: Numerical representation of the pdf associated with a simulated very small mass
value of BaP (mE = 0.003 ng). Circle and triangle symbols indicate the limits of the 95 % cov-
erage interval obtained according to the GUM uncertainty framework and by MCM, respectively.
Symbol x indicates the minimum detectable mass of the analytical method.
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Example E3.3

Calibration of an analyser for NOx
using gas mixtures prepared with mass
flow controllers
F. Pennecchi, F. Rolle, M. Sega, P.G. Spazzini, I. de Krom, A.M.H. van der Veen

E3.3.1 Summary

The present example shows the uncertainty evaluation of the calibration of a chemiluminescence
analyser for nitrogen oxides (NOx) using a multi-point calibration as described in ISO 6143 [226]
with dynamically prepared calibration gas mixtures obtained by dynamic dilution of standard gas
mixtures performed by means of calibrated mass flow controllers (MFCs) [227].

This example addresses the need for a more advanced treatment of correlations arising in such
measurements, especially those caused by the use of the same equipment for calibration gas
mixture preparation and the use of one calibration gas mixture from which the dilutions are
made.

E3.3.2 Introduction of the application

The European Directive on ambient air quality [228] prescribes the monitoring of NOx by means
of chemiluminescence as the reference method [229], which requires the use of proper calibration
gas mixtures for instrument calibration. To prepare such mixtures, dynamic dilution is a primary
method considered as a valid alternative to the static gravimetric method: it allows preparing
ready-to-use gas mixtures at low amount fractions by diluting a standard mixture (parent mix-
ture) with a proper diluent gas, thus avoiding stability problems related to diluted mixtures of
reactive gases in high-pressure cylinders.

The work consists in the following steps:

1. Use of two calibrated MFCs to dilute a static calibration gas mixture with a diluent gas
to obtain reference gas mixtures having the analyte amount fraction in the range of inter-
est (for environmental monitoring applications). The uncertainty associated with and the
covariance between the flow values generated by the MFCs are evaluated by taking into
account the calibration and the repeatability contributions.
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2. Employing the classic model equation of the dynamic dilution, the uncertainty associated
with and the covariance between the amount fractions of the analyte in the different mix-
tures are evaluated by taking into account contributions arising from i) the flow of the par-
ent mixture and that of the dilution gas, ii) the amount fraction of the analyte in the parent
mixture and iii) the (possible) impurities of the analyte in the diluent gas. Detailed calcula-
tion of the relevant results are shown in the Excel spreadsheet A213_data_elaboration.xls.

3. Use of the obtained NOx reference mixtures for calibration of a chemiluminescence anal-
yser in the desired range of amount fractions. Weighted Total Least-Squares (WTLS)
regression is applied, taking into account uncertainties associated with and covariances
among the values of both the dependent and independent variables.

In the following sections, each step will be addressed in detail.

E3.3.3 Specification of the measurand

E3.3.3.1 Use of two calibrated MFCs

In the present example, two MFCs from MKS with full scale range (FSR) of 500 cm3 min−1 and
2000 cm3 min−1 were employed, after calibration, for the parent mixture and the diluent gas,
respectively. The calibration of the MFCs was performed against the INRIM Microgas station, the
Italian primary flow standard for low flow rates. The MFCs were characterised in terms of their
calibration coefficient C = qV R/qV N, where qV R is the (reference) volume flow rate at standard
conditions (often expressed in “standard cubic centimetres per minute” (SCCM)) supplied by the
MFC under calibration as it is read by the Microgas, whereas qV N is the set (nominal) volume flow
rate of the MFC. For the MFC with FSR 500 cm3 min−1 the following model was found appropriate

C1 = α1/qV N + β1 + γ1 qV N +δ1 qV
2
N , (E3.3.1)

whereas for the MFC with FSR 2000 cm3 min−1, the appropriate model was

C2 = α2/qV N + β2/
p

qV N + γ2 +δ2
p

qV N + ε2 qV N , (E3.3.2)

where Ci , for i = 1, 2, indicates the calibration coefficient of MFC1 and MFC2, respectively.
Guidance on this kind of model selection is given in ISO/TS 28038 [110].

Weighted Least-Squares regression was employed for fitting eqs. (E3.3.1) and (E3.3.2) to exper-
imental data, considering qV N as not uncertain (being the flow rate set at the MFC), whereas
C was affected by several uncertainty contributions: that due to the measurement repeatability
(evaluated by the standard deviation of the repeated measurements of C) and that associated
with the reference Microgas (accounting for the uncertainty in the involved measurements of
temperature, pressure and volume). The curve parameter estimates are reported in table E3.3.1,
whereas associated (squared) uncertainties and covariances are shown in covariance matrices
(E3.3.3) and (E3.3.4), respectively.

VC1
=







9.2× 10−4 −1.84× 10−5 9.5× 10−8 −1.3× 10−10

−1.84× 10−5 4.4× 10−7 −2.4× 10−9 3.4× 10−12

9.5× 10−8 −2.4× 10−9 1.4× 10−10 −2.1× 10−14

−1.3× 10−10 3.4× 10−12 −2.1× 10−14 3.3× 10−17






(E3.3.3)
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Table E3.3.1: Calibration curve parameter estimates for the two MFCs according to eqs. (E3.3.1)
and (E3.3.2) (measurement units are such that each parameter times its unit is adimensional).

Parameter MFC1 MFC2

α −2.493 −39.967
β 1.021 5.306
γ −1.590× 10−4 6.104× 10−1

δ 1.975× 10−7 1.195× 10−2

ε −1.249× 10−4

VC2
=











18.60 −4.0 3.0× 10−1 −9.3× 10−3 9.9× 10−5

−4.0 8.9× 10−1 −6.7× 10−2 2.1× 10−3 −2.2× 10−5

3.0× 10−1 −6.7× 10−2 5.1× 10−3 −1.6× 10−4 1.7× 10−6

−9.3× 10−3 2.1× 10−3 −1.6× 10−4 4.9× 10−6 −5.3× 10−8

9.9× 10−5 −2.2× 10−5 1.7× 10−6 −5.3× 10−8 5.8× 10−10











(E3.3.4)

As an example, the calibration curve for the MFC1 with FSR of 500 cm3 min−1 is shown in fig-
ure E3.3.1 (all volumes here and in the following are referred to temperature and pressure stan-
dard conditions, i.e., 0 °C and 1013.25 mbar).

Figure E3.3.1: Calibration curve of the MFC1 with FSR of 500 cm3 min−1

The calibration coefficient, obtained after calibration of the MFCs, is used as correction factor for
the volume flow rate set at the MFCs to obtain the volume flow rate actually provided.
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E3.3.3.2 Dynamic dilution

In the present example, the preparation of reference gas mixtures of nitrogen dioxide (NO2) in
synthetic air (NO2/SA) by dynamic dilution is addressed. The measurand is the amount fraction
of NO2 in the prepared calibration gas mixture. This mixture is obtained by mixing the flow of
a parent mixture, containing a known amount fraction of NO2 supplied by MFC1, with a flow of
the dilution gas (SA), a high pure gas containing just impurities (possibly also NO2), supplied by
MFC2. The method is described in ISO 6145-7 [227].

E3.3.3.3 Calibration of a chemiluminescence analyser

A Thermo Fisher Scientific 42i chemiluminescence analyser is calibrated for NO2/SA, in the range
from 700 nmol mol−1 to 1300 nmol mol−1. To this aim, a parent mixture with an amount fraction
of NO2 of 10.252µmol mol−1 in SA is diluted with SA (grade 4.7) in order to dynamically prepare
three calibration gas mixtures with different amount fractions of NO2. At each amount fraction
level, three repeated readings from the analyser are collected: their mean and the corresponding
standard deviation are taken as the estimate provided by the analyzer and the associated uncer-
tainty, respectively. WTLS regression is performed [226] to fit a straight line to the calibration
data points. The measurand is the set of the parameters of the instrument analysis function.
The analysis function relates the amount fraction to the instrument response and can be used to
calculate the amount fraction, given an instrument response.

E3.3.4 Measurement model

E3.3.4.1 Use of two calibrated MFCs

After the MFCs are calibrated, the flow qV i they provide at a nominal flow qV iN is given by the
following model:

qV i = qV iN Ci , (E3.3.5)

where Ci is the calibration coefficient calculated according to eq. (E3.3.1) or (E3.3.2).

E3.3.4.2 Dynamic dilution

In the presented case of a binary mixture, the dynamic dilution involves two MFCs (MFC1 and
MFC2) which regulate two different gas flows, i.e. MFC1 is used for the parent mixture and
MFC2 for the diluent gas. The amount fraction xa of the analyte gas in the mixture prepared by
dynamic dilution is calculated according to the following model equation:

xa =
x1qV 1a + x2qV 2a

qV 1a + qV 2a
, (E3.3.6)

where x1 is the amount fraction (nmolmol−1) of the analyte in the parent mixture, x2 is the
amount fraction (nmol mol−1) of the analyte potentially present in the diluent gas (impurity),
qV 1a is the flow (cm3 min−1) of the parent mixture supplied by MFC1, qV 2a is the flow (cm3 min−1)
of the diluent gas supplied by MFC21. Assuming that the analyte is not present in the diluent gas

1Equation (E3.3.6) applies if the compressibility factors of the parent gases are equal. This condition is usually
met if (1) the matrix of the parent gases is the same and (2) the amount fraction of the other components is low, say
below 10µmolmol−1. The latter limit depends, among other, on the target measurement uncertainty.
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and that this is certified with zero uncertainty (as in the present case study), equation (E3.3.6)
can be simplified into the following:

xa =
x1qV 1a

qV 1a + qV 2a
. (E3.3.7)

Three different mixtures having amount fractions xa, xb and xc, respectively, are generated.

E3.3.4.3 Calibration of a chemiluminescence analyser

As the analysis curve of the instrument, a straight line

y = A+ Bw, (E3.3.8)

is fitted to the data, which are the three different amount fractions xa, xb, xc (the y values in
equation (E3.3.8)), and the sample mean of three repeated measurement at each amount fraction
level (w values). An analysis function (reference amount fractions on the ordinate axis and means
of the repeated readings on the abscissa axis), rather than a calibration curve, is determined,
since it allows to easily employ the calibration output when the analyser is subsequently used in
field: for each new reading, the instrument analysis curve provides a straightforward estimate
of the amount fraction of an unknown sample under analysis, with an associated uncertainty. In
order to fit the analysis curve, a WTLS regression was performed by means of the CCC software
[230], taking into account the covariance matrices associated with both w and y values. The
main advantage of the WTLS algorithm is indeed the possibility to deal with regression problems
involving uncertain and correlated variables.

In the present case, the y values are characterised by a covariance matrix whose terms are later
defined by eqs. (E3.3.14) and (E3.3.16), whereas the covariance matrix associated with the w
values is diagonal (instrumental readings at different NO2 amount fractions are not correlated)
with elements equal to the (square of the) standard deviation of the means of the three repeated
readings obtained at each amount fraction.

E3.3.5 Uncertainty propagation

E3.3.5.1 Use of two calibrated MFCs

Using to the law of propagation of uncertainty (LPU) from [2], the uncertainty associated with
a flow qV i (E3.3.5) produced by the i-th calibrated MFC is given by

u(qV i) = qV iN u(Ci). (E3.3.9)

Uncertainty u(Ci) can be expressed as the sum in quadrature of a systematic contribution, u(Ci)cal,
due to the MCF calibration (and calculated by applying the LPU to eq. (E3.3.1) or (E3.3.2),
respectively, taking into account uncertainties of and covariances between the curve parameters),
and a repeatability contribution, u(Ci)rep, of the MFC when it is used (in the specific case, the
repeatability experienced in the dynamic dilution was similar to that typically encountered within
the calibration process at approximately the same flow values). Therefore,

u(Ci) =
q

u2(Ci)cal + u2(Ci)rep . (E3.3.10)
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Concerning covariances, covariance term u(qV 1a, qV 2a) between flow rates provided by two MFCs
at the same nominal value qV Na is considered negligible, in this context, since the MFCs, even
if calibrated against the same reference standard, are different instruments, calibrated in differ-
ent moments, by means of different calibration functions. On the other hand, covariance terms
u(qV 1a, qV 1b) and u(qV 2a, qV 2b) between flows generated by the same MFC at two different nom-
inal values qV Na and qV Nb are not negligible since flow estimates by the same MFC are recovered
by the application of the very same calibration curve. By considering expression (E3.3.5), one
has

u(qV ia, qV ib) = u(qV iNaCia, qV iNbCib) = qV iNa qV iNb u(Cia, Cib) , (E3.3.11)

where, when i = 1, for example, and hence applying eq. (E3.3.1),

u(C1a, C1b) = u(α1/qV 1Na+β1+γ1 qV 1Na+δ1 qV
2
1Na, α1/qV 1Nb+β1+γ1 qV 1Nb+δ1 qV

2
1Nb).

(E3.3.12)

Employing the covariance property for linear combinations of variables, eq. (E3.3.12) becomes

u(C1a, C1b) = 1/(qV 1NaqV 1Nb)u
2(α1)+1/qV 1Na u(α1,β1)+. . .+(qV 1NaqV 1Nb)

2 u2(δ1). (E3.3.13)

Therefore, uncertainties associated with and covariances between parameters of calibration curve
(E3.3.1) influence the covariance between two different flows produced by the same MFC1.
Analogous expressions are derived for MFC2 as well.

E3.3.5.2 Dynamic dilution

Using the LPU, the (squared) uncertainty associated with the amount fraction xa of the analyte
(E3.3.7) is given by

u2(xa) =
�

∂ xa

∂ x1

�2

u2(x1) +

�

∂ xa

∂ qV 1a

�2

u2(qV 1a) +

�

∂ xa

∂ qV 2a

�2

u2(qV 2a) , (E3.3.14)

where u(x1) is provided by the certificate of the reference parent mixture, while u(qV 1a) and
u(qV 2a) are calculated according to expression (E3.3.9). Note that u(qV 1a, qV 2a) = 0. Analogous
expressions hold for xb and xc as well.

Covariances between two different amount fractions xa and xb are calculated as:

u(xa, xb) = u

�

x1qV 1a

qV 1a + qV 2a
,

x1qV 1b

qV 1b + qV 2b

�

≈

≈
∂ xa

∂ x1

∂ xb

∂ x1
u(x1, x1) +

∂ xa

∂ x1

∂ xb

∂ qV 1b
u(x1, qV 1b) +

+
∂ xa

∂ x1

∂ xb

∂ qV 2b
u(x1, qV 2b) + . . .+

∂ xa

∂ qV 2a

∂ xb

∂ qV 2b
u(qV 2a, qV 2b). (E3.3.15)

Recalling that u(qV 1a, qV 2b) = u(qV 2a, qV 1b) = 0, and considering that there is no covariance
between x1 and any of MFC flow values, eq. (E3.3.15) reduces to:

u(xa, xb) ≈
qV 1aqV 1b

(qV 1a + qV 2a)(qV 1b + qV 2b)
u2(x1) +

+
x2

1qV 2aqV 2b

(qV 1a + qV 2a)2(qV 1b + qV 2b)2
u(qV 1a, qV 1b) +

+
x2

1qV 1aqV 1b

(qV 1a + qV 2a)2(qV 1b + qV 2b)2
u(qV 2a, qV 2b) , (E3.3.16)
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where u(qV ia, qV ib) are calculated according to eq. (E3.3.11). Analogous expressions hold for
u(xa, xc) and u(xb, xc), as well.

E3.3.5.3 Calibration of a chemiluminescence analyser

Estimate of coefficients A and B of analysis curve (E3.3.8) and the associated covariance matrix
are the main output of the applied WTLS software. Details on such estimates and covariance
matrix are available in the User Manual of the CCC software [230].

E3.3.6 Reporting the result

Nominal and measured flow values of MFC1 and MFC2 are reported in table (E3.3.2) together
with associated uncertainties. These are calculated by eqs. (E3.3.9) and (E3.3.10), where con-
tribution u(Ci)rep is equal to 0.013 % and 0.037 % of the measured flow qV i value for MFC1 and
MFC2, respectively.

Table E3.3.2: Nominal and measured flow values of MFC1 and MFC2 with associated uncertain-
ties (cm3 min−1).

qV 1N qV 2N qV 1 u(qV 1) qV 2 u(qV 2)
a 84 1116 82.243 0.017 1108.49 0.54
b 115 1085 113.088 0.023 1077.17 0.53
c 152 1048 149.677 0.028 1039.78 0.57

Covariance terms between measured flow values of the same MFC are calculated according to
eqs. (E3.3.11) and (E3.3.12) (and corresponding ones for amount fraction values b and c, and
for MFC2), and reported in table (E3.3.3).

Table E3.3.3: Covariance terms between measured flow values of the same MFC (MFC1 and
MFC2) at different fraction levels a, b and c ( all expressed in (cm3 min−1)2).

MFC u(qV a, qV b) u(qV a, qV c) u(qV b, qV c)
1 2.31 · 10−4 2.54 · 10−4 3.58 · 10−4

2 1.26 · 10−1 1.22 · 10−1 1.20 · 10−1

The parent mixture of NO2 has an amount fraction x1 = 10.252µmolmol−1, with associated
uncertainty u(x1) = 0.016µmol mol−1 .

Applying eq. (E3.3.7), and corresponding ones for amount fractions b and c, the three reference
amount fractions are obtained as reported in table (E3.3.4).

Relevant squared uncertainties and covariances (in nmol2 mol−2), reported in the covariance
matrix E3.3.17, are calculated according to eqs. (E3.3.14) and (E3.3.16), exploiting uncertainty
and covariance values associated with qV i reported in tables E3.3.2 and E3.3.3.

Vxa,b,c
=





39.5 1.7 2.2
1.7 37.0 3.0
2.2 3.0 41.2



 . (E3.3.17)
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Table E3.3.4: Amount fractions of the three calibration mixtures obtained by dynamic dilution
and associated uncertainties (nmol mol−1).

amount fraction x u(x)
a 708.1 6.3
b 974.1 6.1
c 1290.1 6.4

Each calibration mixture is analyzed three times: the sample mean and the associated uncer-
tainty values are reported in table E3.3.5. A straight line is fitted to the data by means of WTLS

Table E3.3.5: Sample mean of repeated readings and associated uncertainties (a u).

Mean Reading u(Mean Reading)
146.6 0.75
213.7 0.67
285.0 1.53

regression. Parameter estimates of model (E3.3.8) are A= 88.94 nmol mol−1 and B = 4.19 nmol
mol−1 a.u.−1, respectively, and the associated covariance matrix VA,B is E3.3.18.

VA,B =

�

2.85 · 102 −1.30
−1.30 6.36 · 10−3

�

. (E3.3.18)

Validation of the obtained analysis curve is then performed by analysing a known gas mixture
with the calibrated instrument and comparing its output with this value: the validation is passed
if the two values are consistent within their expanded uncertainties. In the present case, an
independent gas mixture of NO2 at the amount fraction of 975.5 nmol mol−1 (with uncertainty
equal to 1.5 nmol mol−1) is used, obtained by dynamic dilution starting from a gas mixture of
NO2 at amount fraction of 5.113µmolmol−1 in SA diluted with SA 4.7. Applying model (E3.3.8)
to the mean of three repeated readings of the instrument (w= 213.33 a.u. and u(w) = 0.11 a.u.)
corresponding to the independent gas mixture, the estimate y = 982.0 nmol mol−1 is obtained
with associated uncertainty u(y) = 4.7 nmol mol−1. Such uncertainty is obtained by application
of the LPU to model (E3.3.8) propagating uncertainty u(w) and terms of the covariance matrix
E3.3.18 through the model, that is applying the following equation:

u2(y) = u2(A) + u2(B)w2 + u2(w)B2 + 2 u(A, B)w . (E3.3.19)

The validation result is reported in figure E3.3.2.

E3.3.7 Interpretation of results

Covariances in matrix (E3.3.17) between amount fractions of the three calibration mixtures are
mainly due to the term proportional to u(x1) (first term of eq. (E3.3.16)), the uncertainty of the
amount fraction of the common parent mixture used for obtaining all the calibration mixtures.
Such contribution is of practically the same order of magnitude of the resulting covariance term,
whereas contributions relevant to u(qV a, qV b), u(qV a, qV c) and u(qV b, qV c) in table E3.3.3 (second
and third terms of eq. (E3.3.16)) are smaller by one or two orders of magnitude.
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Figure E3.3.2: Validation of the analysis curve for the quantification of NO2 in SA. Estimate of a
gas mixture of 975.5 nmol mol−1 of NO2/SA as provided by the calibrated instrument (Estimated
value) in comparison with the actual value of the mixture as reported in its calibration certificate
(Reference value).
If covariances between the three amount fractions were ignored in the calibration of the chemilu-
minescence analyser, i.e., if a diagonal version of matrix E3.3.17 were used in the WTLS regres-
sion, slightly different estimates of A and B for the analysis curve (E3.3.8) would be obtained,
with a different associated covariance matrix. The corresponding results of the validation process
would be y = 982.0nmol mol−1 and u(y) = 4.5 nmolmol−1, showing an undervaluation of the
uncertainty up to 3.4 %.
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Example E3.4

Measurement uncertainty for routine
testing of metals in soil

S.L.R. Ellison, M. Singh, M.G. Cox

E3.4.1 Summary

The example describes the evaluation of measurement uncertainty for the routine determination
of acid-extractable toxic metals in soil using a combination of acid extraction and atomic emis-
sion spectrometry. The example illustrates the general approach to measurement uncertainty
evaluation taken by ISO 21748, which uses information on precision and trueness of a routine
test procedure to provide an indication of the measurement uncertainty to be expected from
the procedure. The example further illustrates the experimental determination of sensitivity co-
efficients that cannot readily be derived from a mathematical model, examines the evaluation
of uncertainties arising from calibration using straight-line regression with zero intercept, and
discusses the issues arising in the event of an appreciable bias which is not corrected for when
within permitted limits.

E3.4.2 Introduction to the application

The example describes the evaluation of measurement uncertainty for the routine determination
of acid-extractable toxic metals in soil using a combination of acid extraction and inductively
coupled plasma optical emission spectrometry (ICP-OES). The procedure is based on that of ISO
11466:1995 [231], a method for the extraction of trace elements from soils and similar materi-
als containing less than about 20 % (m/m) organic carbon. ISO 11466:1995 is widely used to
determine the levels of toxic metals in soil. This is, in turn, important for determining permit-
ted land use, the need for soil remediation, and in some cases for enforcing effluent or disposal
regulations.

The acid extraction step uses aqua regia, a mixture of concentrated hydrochloric and nitric acids
that takes its Latin name from its ability to dissolve the metals gold and platinum. The process
does not dissolve all metal; it does, however, solubilise a large proportion of many metals present
in soil as contaminants. Use of a standard method is required to harmonise extraction conditions,
which include, for example, reagent concentrations and times.
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Following extraction, the extract is made up to a known volume and the dissolved metal content
determined by spectrometry. In this example, the spectrometric method is ICP-OES, used for
speed, acceptable detection capability and for its ability to determine many elements at the same
time. Accurate determination relies on calibration of the instrument using standard solutions; in
this example, the calibration procedure uses a simple zero-intercept linear model after correcting
instrument response for baseline offset.

The available data in this application are from method validation experiments, which provide in-
formation on overall performance of a procedure rather than on individual uncertainty sources.
The overall approach to measurement uncertainty evaluation accordingly follows the principles
of ISO 21748 [232]. The example illustrates the use of analysis of variance applied to validation
data, together with summary information on bias derived from available reference materials, in
order to determine major contributions to measurement uncertainty. The example also includes
consideration of the uncertainties associated with the use of a zero-intercept model for calibra-
tion, and provides an example of experimental determination of sensitivity coefficients for effects
for which no useful predictive model exists.

NOTE: While this example of measurement uncertainty evaluation does not discuss
safety aspects, aqua regia and its components are highly corrosive and the procedure
uses a number of other corrosive or toxic reagents. Attention to safety is accordingly
the first priority in practical application of the measurement method.

The data for this example is available elsewhere [22].

E3.4.3 Scope

This example considers the determination of aqua regia extractable metals from a test sample
prepared according to ISO 11464 [233]. Uncertainties arising from sampling prior to sample
preparation and from the sample preparation steps are not considered.

E3.4.4 Specification of the measurand(s)

The measurand for this example is the mass fraction of aqua regia extractable metals in soil ac-
cording to ISO 11466:1995. This is an operationally defined measurand; use of different extrac-
tion or sample preparation conditions would not generally be expected to return the same mass
fractions for all metals. For operational reasons, the laboratory in this example uses a variant of
ISO 11466:1995, after verification of equivalence.

Current soil testing guidelines in the UK provide performance requirements for soil testing; for
metals, procedures should provide within-laboratory reproducibility not greater than 5% and
bias (measured against suitable reference materials) that is not significantly greater than 10%,
after allowing for uncertainties in bias assessment. No correction to results is required for pro-
cedures meeting the bias criteria.
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E3.4.5 Measurement model

E3.4.5.1 Measurement principle and basic model

An outline of the measurement procedure is shown in figure E3.4.1, which also includes the
principal parameters of interest for THE uncertainty evaluation. An accurately weighed mass
(nominally 3 g) of the prepared test material is placed in a suitable container, moistened with
water ((2.0 ± 0.1) ml, not shown in figure E3.4.1) and known volumes ((21.0 ± 0.5) ml and
(7.0 ± 0.5) ml respectively) of concentrated hydrochloric and nitric acid are added. (In this
section, the ranges indicated by “±” are as stated in the documented procedure and indicate a
permitted range). After standing at ambient temperature overnight, the mixture is heated for
2 h ± 5 min, then allowed to cool. For the standard method, the heating is at gentle reflux,
that is, the boiling point of the liquid; for the present laboratory implementation, the mixture
is held at a nominal 65 °C. The extract is then filtered, any solid residue is washed with dilute
nitric acid to remove associated liquid, and the filtered extract, with washings, is standardised
by transferring to a 100 ml volumetric flask (class A) and making up to 100 ml.

Weigh subsample

(ms)

Add HCl (vHCl,CHCl)

and 

HN03 (vHNO3
,CHNO3

)

Stand overnight (tst)
at ambient 

temperature (Tst)

Heat 

(text, Text)

Make extract up to

std. volume (vext)

Determine metal 

concentration in 

extract (ext)

Calculate metal 

mass fraction in 

sample (ws)

Prepare calibration 

standards 

(0, di)

Perform instrument 

calibration

(i, yi)

Dry and grind to 

pass 150 m sieve
Sample preparation

Extraction

Calibration

Figure E3.4.1: Overview of aqua regia extraction and analysis procedure

The dissolved metal content of the resulting extract is then determined by ICP-OES. The ICP-OES
instrument is calibrated by use of a series of solutions containing a mixture of dissolved metals at
known concentrations, prepared (in this case) from certified single-element stock solutions. The
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instrument calibration and the associated uncertainties are discussed further in section E3.4.6.4.
Given a measured concentration γext, expressed in mg l−1, for the standardised extract, the mass
fraction ws of metal in the original test sample is given by

ws =
γextvext

ms
, (E3.4.1)

where vext is the standardised volume of the extract (nominally 100 ml) and ms the mass of the
test portion. The result, ws, is conventionally expressed in mgkg−1).

E3.4.5.2 The ISO 21748 model

Comparison of figure E3.4.1 with equation (E3.4.1) shows that the equation omits many of quan-
tities that might reasonably affect the measured value. The most important systematic effects are
those associated with the extraction conditions, in particular the initial acid concentrations and
volumes (CHCl, CHNO3

, vHCl and vHNO3
) and the time text and temperature Text for the heating

phase. In addition, equation (E3.4.1) does not make explicit the dependence of measured value
on the values associated with calibration standards, the corresponding observed signals yi and
the line fitting method.

For the purpose of uncertainty evaluation, the influence of the calibration step is most simply
considered in terms of uncertainty associated with the intermediate measured value γext. This is
considered further in section E3.4.6.4.

Effects of extraction conditions are much more difficult to include in a measurement model. First,
the precise form of the dependence is not usually known. Extraction can in principle be expected
to follow a diffusion model. However, diffusion models depend on particle size distribution and
shape, neither of which is known here. While semi-empirical diffusion models have given useful
results when measured values are monitored over time [234], routine soil extraction methods
use a single fixed extraction time, and no generally applicable diffusion model is available for
aqua regia extraction. Most of the effects also depend on the particular test material and element,
making it impractical to develop a quantitative model that applies to every test material.

NOTE: Sample preparation effects – particularly where they affect particle size –
could also have important effects on measured values. These effects are outside the
scope of the present example.

For these reasons, routine test procedures usually provide for sufficiently close control of such
conditions to make sure that the effects on measured value are negligible compared to other,
less controllable, effects. This is the reason for the comparative simplicity of equation (E3.4.1).
In addition, routine test procedures are typically characterised by precision and trueness studies
of the procedure as a whole. ISO 21748, which provides guidance on the use of precision and
trueness data for uncertainty evaluation, accordingly offers a simplified model, equation (E3.4.2),
that uses the data from such studies.

y = µ+δ+ B +
∑

ci x
′
i + e, (E3.4.2)

where

y is the measurement result, assumed to be calculated from an appropriate function;
µ is the (unknown) expectation of ideal results;
δ is a term representing bias intrinsic to the measurement method;
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B is the laboratory (or, for intermediate precision, run) component of bias;
x ′i is the deviation from the nominal value of x i;
ci is the sensitivity coefficient, equal to ∂ y/∂ x i;
e is the random error term under repeatability conditions.

B and e are usually assumed to be normally distributed, with variances of σ2
L and σ2

r .

ISO 21748 additionally explains that, since the estimate observed standard deviations for B, and
e are measures of dispersion under the conditions of the study, the summation

∑

ci x
′
i is over

those effects subject to deviations other than those incorporated in B, and e. The summation
term accordingly represents the effects of quantities that do not vary appreciably during the
corresponding precision or trueness studies. Annex A of ISO 21748 provides further details of
the rationale for the model [232].

NOTE: When precision is expressed in relative terms, it can be important to distin-
guish between models that relate precision, or other uncertainties, to the unknown
true value of the measurand from those that relate effects to the observed value. For
small uncertainties there is no practical difference, but as relative standard uncer-
tainties increase beyond approximately 0.2, the different models have appreciably
different implications for calculated uncertainty intervals and hence for conformity
assessment [235].

E3.4.6 Uncertainty evaluation

E3.4.6.1 Model for uncertainty evaluation

Application of the LPU to equation (E3.4.2), and noting that the theoretical true value µ does
not have associated uncertainty, leads to equation (E3.4.3)

u2(y) = u2(δ̂) + s2
L +

∑

c2
i u2(x i) + s2

r

= u2(δ̂) + s2
I +

∑

c2
i u2(x i),

(E3.4.3)

where u(•) denotes the standard uncertainty of the term in parentheses, δ̂ is an estimate of bias
δ from a trueness study, s2

L and s2
r are estimates of the variances σ2

L and σ2
r , and s2

I = s2
L + s2

r is
the intermediate (within-laboratory) precision standard deviation estimated from the precision
study.

Uncertainty evaluation then proceeds by, first, obtaining data from a suitable precision and true-
ness study to obtain u(δ̂) and sI, and then identifying effects that are insufficiently represented
in the precision study and quantifying their uncertainties.

E3.4.6.2 Random variation – evaluation of sI

Estimates of within-laboratory reproducibility over time (sometimes called intermediate preci-
sion) were obtained from a validation study following the general principles of the MCERTS
performance standard for laboratories undertaking chemical analysis of soil [236]. This requires
a minimum of 10 degrees of freedom for the intermediate precision standard deviation; the
simplest guarantee of this is to run 11 analytical batches including duplicate extraction and mea-
surement – a so-called “11× 2” design. Four different test materials were included in the study;
data are provided in the file Soil_metals_v1.txt in the compilation [22].
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Repeatability and intermediate precision RSD were estimated for this example using classical
analysis of variance, setting the between-run term to zero when the difference in mean squares
was negative as in, for example, ISO 5725-2 [237]. The results are summarised in table E3.4.1.

Table E3.4.1: Within-laboratory reproducibility data for aqua regia extractable metals in soil

Material Metal Mean sw DF (w) sb DF (b) sI RSD (I) (%) DF (I)

Cr 875.80 21.57 11 25.22 10 33.18 3.8 10
Cu 123.77 4.01 11 4.08 10 5.72 4.6 10
Ni 16.28 0.34 11 0.00 10 0.34 2.1 11
Pb 27.29 0.41 11 0.19 10 0.45 1.7 10

C279a

Zn 58.70 8.19 11 0.00 10 8.19 13.9 11

Cr 304.53 7.85 11 5.98 10 9.87 3.2 10
Cu 46.80 1.53 11 0.68 10 1.67 3.6 10
Ni 35.79 0.97 11 0.52 10 1.10 3.1 10
Pb 124.56 6.78 11 2.44 10 7.21 5.8 10

C282a

Zn 107.02 1.82 11 2.77 10 3.32 3.1 10

Cr 41.50 0.80 11 0.91 10 1.22 2.9 10
Cu 49.83 2.04 11 0.00 10 2.04 4.1 11
Ni 20.24 1.36 11 0.44 10 1.43 7.1 10
Pb 37.55 0.88 11 0.00 10 0.88 2.3 11

LGC6145

Zn 136.00 3.74 11 3.36 10 5.03 3.7 10

Cr 75.66 1.45 11 2.53 10 2.92 3.9 10
Cu 73.08 1.46 11 1.94 10 2.43 3.3 10
Ni 30.21 0.44 11 0.37 10 0.57 1.9 10
Pb 67.14 0.65 11 0.73 10 0.98 1.5 10

LGC6187

Zn 402.62 6.47 11 5.46 10 8.46 2.1 10

A common feature of random variation in chemical measurement is a strong dependence on
level; for many routine measurements, the relative standard deviation is almost constant above
detection limits. This is the case here: Figure E3.4.2, which plots the intermediate reproducibility
standard deviation sI against mean measured mass fraction for all four materials and six metals,
shows a clear and approximately linear dependence (though note the log scales). Regression on
log-transformed data confirms that a linear dependence is both strongly significant (p = 7.8 ×
10−8) and sufficient, returning p = 0.47 for an added curvature term. The relative standard
deviation is fairly constant between 30 mg kg−1 and 1000 mg kg−1 with the exception of an
unusually high value for zinc in material C279a. The high value arises from an unusual and
apparently material-specific systematic effect on replicate measurements during the experiment;
excluding the anomalous value for zinc in C279a, the median intermediate precision RSD is
3.2 %.

Note: The median is cited here as a summary as it is not generally safe to average
standard deviations or relative standard deviations. For standard deviations, the root
mean square is more appropriate. With this in mind, a plausible and somewhat more
conservative alternative is the root mean square RSD, 3.6 %.
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Figure E3.4.2: Dependence of reproducibility SD on mean mass fraction
E3.4.6.3 Measurement bias – evaluation of δ̂ and u(δ̂)

Bias and uncertainty associated with bias can be assessed from the precision experiment, given
reference values for the materials studied. Two of the materials studied (LGC6145 and LGC6187)
were certified reference materials; C279a and C282a were proficiency test (PT) materials and the
reports provide assigned values with uncertainties based on the interlaboratory consensus value.
In all four cases, the reference values are values obtained by laboratories applying ISO 11466 or
demonstrably equivalent procedures, allowing an estimate of the present procedure’s bias against
reference values for the correct measurand. Bias estimates δ̂ are just the difference x̄obs − xref
between the reference and observed values xref and x̄obs respectively.

The uncertainty for the bias estimates is a combination of uncertainties for the observed and
reference values. The statistical uncertainty for the observed mean value in a nested design
needs to take account of the fact that replicates within a group are not independent. This can
be done in a number of ways. ISO 5725-4 [238] and ISO 21748 [232] give formula (E3.4.4) for
the standard error of the mean, sδ̂, in such a design:

sδ̂ =

√

√

√ s2
I − (1− 1/n) s2

r

p
, (E3.4.4)

where p and n and are the number of groups and the number of replicates per group, respectively,
and sr and sI are the repeatability and intermediate precision standard deviations in table E3.4.1.
In equation (E3.4.4), sI has been substituted for the reproducibility standard deviation sR used
in ISO 21748.

The standard error from the precision study can be combined with the standard uncertainty uref
for the reference value using

u2(δ̂) = s2
δ̂
+ u2

ref, (E3.4.5)
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to give the standard uncertainty u(δ̂) for the estimated bias. Application of equations (E3.4.4)
and (E3.4.5) gives the results in table E3.4.2. A pictorial representation is also given in figure
E3.4.3.

Inspection of the bias estimates shows immediately that, with the exception of LGC6145, which
appears to need separate consideration, the modified procedure shows a consistent low bias
near 10 % in this experiment. (An analytical chemist might consider this in terms of “recovery”
of the analyte; a negative bias of 10 % measured on reference materials could be reported as
an apparent recovery of 90 %). Although the bias estimates meet the regulatory performance
requirements and therefore would not normally give rise to an applied correction, this presents
a problem for uncertainty evaluation; the GUM offers no consistent approach to the treatment of
a known but uncorrected bias. This is considered further in sections E3.4.6.5 and E3.4.7.

LGC6145 is a contaminated clay loam soil. Clays can show poor analyte recovery in extraction
procedures; given the poorer recovery obtained for this material in this study, the laboratory
may choose to use the more aggressive extraction conditions of the standard test method for
regulatory samples with higher clay content. Alternatively, the modified procedure – which shows
excellent precision – may be reserved for applications which prioritise precision over bias, such
as homogeneity testing.

For the purpose of equation (E3.4.3) applied to future test materials, it is useful to retain a single
summary estimate for u(δ̂). Inspection of table E3.4.2 shows that individual uncertainties again
depend strongly on mean mass fraction, whereas the relative standard uncertainties u(δ̂)/xref are
much more consistent. A reasonable summary is, again, the root mean square relative standard
uncertainty, 3.3 %; for comparison the median and mean are 2.9% and 3.3 %.

Table E3.4.2: Bias estimates and uncertainties for aqua regia extractable metals in soil. All values
in mg kg−1, unless stated otherwise

Material Metal xref uref xobs uobs Bias δ̂ u(δ̂) δ̂/xref (%) u(δ̂)/xref (%)

Cr 1007.50 14.55 875.80 8.89 –131.7 17.0 –13.1 1.7
Cu 136.69 2.87 123.77 1.50 –12.9 3.2 –9.5 2.4
Ni 18.16 0.51 16.28 0.07 –1.9 0.5 –10.3 2.8
Pb 30.00 0.83 27.29 0.10 –2.7 0.8 –9.0 2.8

C279a

Zn 64.40 1.63 58.70 1.75 –5.7 2.4 –8.8 3.7

Cr 321.00 13.88 304.53 2.46 –16.5 14.1 –5.1 4.4
Cu 55.30 1.84 46.80 0.39 –8.5 1.9 –15.4 3.4
Ni 38.60 2.17 35.79 0.26 –2.8 2.2 –7.3 5.7
Pb 136.91 8.27 124.56 1.62 –12.4 8.4 –9.0 6.2

C282a

Zn 115.90 2.75 107.02 0.92 –8.9 2.9 –7.7 2.5

Cr 47.60 0.90 41.50 0.32 –6.1 1.0 –12.8 2.0
Cu 62.20 1.80 49.83 0.44 –12.4 1.9 –19.9 3.0
Ni 39.00 1.25 20.24 0.32 –18.8 1.3 –48.1 3.3
Pb 45.10 1.15 37.55 0.19 –7.6 1.2 –16.8 2.6

LGC6145

Zn 137.00 3.00 136.00 1.29 –1.0 3.3 –0.7 2.4

Cr 84.00 4.70 75.66 0.82 –8.3 4.8 –9.9 5.7
Cu 83.60 2.05 73.08 0.66 –10.5 2.2 –12.6 2.6
Ni 34.70 0.85 30.21 0.15 –4.5 0.9 –12.9 2.5
Pb 77.20 2.25 67.14 0.26 –10.1 2.3 –13.0 2.9

LGC6187

Zn 439.00 13.00 402.62 2.15 –36.4 13.2 –8.3 3.0
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Figure E3.4.3: Relative bias for aqua regia extractable metals in soil. The vertical red line is at
zero bias. Error bars show expanded uncertainty with k = 2.
E3.4.6.4 Identification and evaluation of additional uncertainty sources

Identifying additional contributions

Most of the steps in figure E3.4.1 are repeated independently in the different measurement runs
contributing to the precision and bias assessment. Reagents were made up with different volu-
metric glassware; the ICP-OES instrument calibration is repeated for each run, and each replicate
uses a different subsample of the test materials. Two potentially important features did, how-
ever, remain constant throughout the exercise. First, the extraction temperature for the high-
temperature portion of the extraction was largely constant owing to the adoption of a consistent
heat setting within a potentially wider range. Second, the calibration standards used to pre-
pare stock solutions were constant for the complete exercise. Uncertainties arising from these
two sources therefore merit further attention and, possibly, inclusion in equation (E3.4.3). The
following subsections accordingly consider these two sources.

Extraction condition effects

As noted above, there are no simple, general models that can predict the effect of changes in
extraction conditions such as times, temperatures and reagent concentrations on measured mass
fraction. In the absence of applicable theoretical models, the most useful way to evaluate uncer-
tainties in the output quantity (measured mass fraction, in this case) that arise from uncertainties
in the specified extraction conditions is to estimate sensitivity coefficients empirically, by experi-
ment. This is illustrated here using a short experimental study.

The most important factors in this extraction process are expected to be the time text and tem-
perature Text for the period of heating. The nominal time is two hours (120 min); the nominal
temperature, following the laboratory’s standard operating procedure, is 65 °C. The operating
tolerance for the extraction time, given in the laboratory operating procedure, is 5 min; this is
a permitted range rather than a measurement uncertainty, as the time is measured by standard
laboratory times with uncertainty of a second or better. No exact tolerance is given for tempera-
ture as it is the liquid temperature that is specified; however, checks on extraction temperatures
at stable settings indicate that the liquid temperature is maintained well within 5 °C of the nom-
inal temperature in normal use. To estimate the sensitivity of measured values to change in the

Examples of evaluating measurement uncertainty First edition



Example E3.4. Measurement uncertainty for routine testing of metals in soil 246

extraction conditions, the laboratory accordingly performed a short study in which the relevant
time and temperature were varied by, respectively, ±15 min and approximately ±10 °C from their
nominal values. The study was conducted as a two-factor, two-level full factorial in duplicate,
giving two observations for all four combinations of time and temperature, and the different
treatments were applied to two test materials. All the extractions were run in parallel using two
separate heating blocks for the different temperatures. After the extraction, solutions were di-
luted to the requisite standardised volume and run in randomised order in a single run to give
the measured mass fraction of aqua regia extractable metal. The results (omitting those for a
blank control material) are shown in figure E3.4.4, in which the panel headings identify the test
material and metal of interest, and observations are colour coded to indicate the extraction time.
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Figure E3.4.4: Results from an experimental study of time and temperature effects on aqua regia
extraction. See the text for details.

There are, as might be expected in soil analysis, some possible anomalies. The higher tempera-
ture results for lead in material C282a appear unusually imprecise. Reference to the laboratory
indicated that the highest value for lead for C282a was considered invalid for technical reasons
and the observation was accordingly omitted from further analysis. Observations at 105 min
for lead in material LGC 6187 also appear comparatively imprecise; in the absence of specific
reasons to remove any, however, these were retained for further analysis.

All of the sets of results, however, appear to show a clear increase in measured mass fraction over
the 20 °C change in temperature, with little evidence of a consistent change with time.

Using such information to support measurement uncertainty evaluation requires some further
analysis. In principle, the results in each panel in figure E3.4.4 provide an approximate individual
rate of change of measured mass fraction by time and temperature; these are the sensitivity
coefficients needed for a basic uncertainty evaluation following the GUM. The data also provide
information about interactions between the two conditions. The coefficients and any interactions
might be specific to each material and to each element, or might be sufficiently consistent to
generalise over modest ranges.

One simple way of proceeding, which requires only basic statistical tools, is to examine each
metal/material subset individually, checking for any strong time/temperature interactions before
estimating rates of change, and for this illustration we adopt this approach.
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A two-way ANOVA (not shown here) for each of the subsets in figure E3.4.4 indicates that the
effect of temperature change is significant (p < 0.05) for all but zinc in material C282a and lead
in both materials, while the time/temperature interaction is statistically significant (p = 0.013)
only for copper in C282a. Considered as one of ten hypothesis tests, and after reviewing the plot
for this case, this is not strong evidence for an important interaction term. Similar conclusions
are drawn by comparison of alternative linear models using the small-sample corrected Akaike’s
information criterion (AICc) [239,240], which give a consistently lower AICc for models without
a time/temperature interaction term, indicating that the interaction term is not needed.

Most of the data sets also showed no significant effect for change in extraction time. There is,
however, reason to expect a modest effect of time on extraction, and an estimated gradient –
even one that is small compared to residual variation - is of interest in evaluating the uncertainty
in measured mass fraction that arises from uncertainties in extraction time. Table E3.4.3 ac-
cordingly provides estimated coefficients for both temperature and time, together with standard
errors, derived from a simple linear model including both time and temperature.

Table E3.4.3: Time and temperature effects on aqua regia extractable metals in soil. Means are in
mg kg−1, sensitivity coefficients and their standard deviation in mg kg−1 °C−1 and mg kg−1 min−1

for temperature and time effects respectively, and relative sensitivity coefficients in °C−1 and
min−1

Material Metal Mean ȳ ∂ y
∂ Text

s
�

∂ y
∂ Text

�

∂ y
∂ text

s
�

∂ y
∂ text

�

∂ y
∂ Text

�

ȳ ∂ y
∂ text

�

ȳ

Cr 293.5 1.040 0.222 -0.034 0.163 0.0035 -0.0001
Cu 46.5 0.191 0.044 -0.072 0.032 0.0041 -0.0016
Ni 35.3 0.098 0.023 -0.038 0.017 0.0028 -0.0011
Pb 128.9 0.191 0.096 0.117 0.070 0.0015 0.0009

C282a

Zn 106.8 0.191 0.078 -0.069 0.057 0.0018 -0.0006

Cr 73.2 0.291 0.028 0.023 0.020 0.0040 0.0003
Cu 73.1 0.105 0.030 0.020 0.022 0.0014 0.0003
Ni 30.2 0.110 0.019 0.026 0.014 0.0036 0.0008
Pb 70.5 0.079 0.051 0.024 0.038 0.0011 0.0003

LGC 6187

Zn 405.9 0.677 0.162 0.369 0.119 0.0017 0.0009

The coefficients (denoted ∂ y
�

∂ Text and ∂ y
�

∂ text in the table) could, in principle, be used di-
rectly as estimates of coefficients ci for Text and text in equation (E3.4.3). In practice, these
coefficients are specific to the test materials in the study, and for routine application of the pro-
cedure they are best used to give a reasonable estimate of the typical size of uncertainties arising
from the extraction time and temperature. Inspection suggests that, as is often the case, the
effects increase with measured value; for generalisation, relative rates of change are useful; the
relative rates of change in the final two columns of table E3.4.3 show that the temperature ef-
fect is in the range (0.001 − 0.004) °C−1, while the (unsigned) effects of time are in the range
(10−4 − 0.002) min−1. A reasonably conservative estimate of the typical relative effect for rou-
tine estimation (rounded to one significant figure) might be 0.004 °C−1 and 9× 10−4 min−1 for
temperature and time respectively, or approximately 0.4 %°C−1 and 0.09% min−1.

Use of the coefficients above also requires standard uncertainties for the time and temperature.
The extraction time is controlled to within ±5 min by the procedure; this can be treated as a
rectangular distribution and a standard uncertainty obtained by division of the half-range by

p
3.

The temperature range is less clearly defined; the standard operating procedure instructs the
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user to maintain the temperature at “about 65 °C”. In practice, laboratory checks show that the
temperature is maintained to within 5 °C. This can also be treated as a rectangular distribution,
giving a standard uncertainty of 2.89 °C.

ICP-OES Instrument calibration

Uncertainties from zero-intercept regression The instrument calibration step is simplified in
figure E3.4.1. Calibration involves observation of the emission signal from a number of working
standards of known concentration, which are prepared in the laboratory from a stock solution,
followed by regression to determine a calibration line. Uncertainties include those for the concen-
tration of the stock solution, uncertainties in dilution to the working standards, and uncertainties
arising from the regression (which include the random variations in observed signal). Because
uncertainty evaluation for zero-intercept calibration is rarely treated in the general literature,
the complete process is considered before returning to the sources needed in applying equation
(E3.4.3).

In this case, calibration used four standard solutions including one at zero concentration (that is,
a blank solution) and three prepared from a certified stock solution of concentration γ0, diluted
by mass. For simplicity the degree of dilution is denoted by a dilution factor di , as in figure E3.4.1;
a given working standard concentration γi is just diγ0. In practice, dilution is stepwise so that
the di are in turn products of two or more larger dilution factors, calculated as mass ratios when
diluting by mass. Uncertainties for typical working standard solutions, as used in this example,
are given in are given in the file Soil_cal_stds_v1.txt in [22]. Dilution by mass, rather than
using volumetric equipment, leads to relatively small dilution uncertainties. However, because
the two intermediate concentration solutions were prepared by dilution from the highest con-
centration working solution (in turn prepared direct from certified stock), uncertainties in the
concentrations are highly correlated (r > 0.99), calculated as in [241]). Combined uncertain-
ties are small; the largest relative standard uncertainty for a calibration solution concentration
(for Ni) is approximately 0.0025 and most are below 0.0013. Since the uncertainty for dilution
stages is small and uncertainty evaluation can be intricate, detailed discussion of the uncertainty
evaluation for the dilutions is omitted here. A detailed presentation of uncertainties arising in
the preparation of calibration solutions by dilution is provided in a Eurachem guide [42].

Uncertainties associated with the regression are determined by the ordinary statistical methods.
In this instance, rather than a four-point linear regression with slope and intercept, the labo-
ratory uses a still simpler model, setting the intercept to zero after subtracting the mean blank
value. This partially offsets the effect of heteroscedasticity, which (because the higher observa-
tions are more variable) would lead to large relative variation for low interpolated observations.
(Weighted regression would also be effective in avoiding this, but calibration points are not repli-
cated in routine use and there is then insufficient information to generate reliable weights). Two
typical calibrations are shown in figure E3.4.5.

NOTE: In practice, the laboratory collects emission intensities for two separate emis-
sion lines for each element to provide spectral interference checks or an alternative
calibration in case of interference. Both signals are included in the data set associ-
ated with this example. The analysis here assumes the higher intensity emission line
is used for reported results.
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Figure E3.4.5: ICP-OES calibration examples. a) chromium; b) nickel. The upper panel shows
the fitted line; the lower panel shows the residuals. The intensity is corrected for the blank signal,
omitted from the fit but included in the plot at [0,0]. Correlation coefficients r2 were 0.99993
and 0.999 97, respectively.
Estimation of an extract concentration γext from the fitted slope b1 and an observed intensity yobs
uses equation (E3.4.6):

γext =
yobs − y0

b1
, (E3.4.6)

where y0 is the intensity for a blank sample. Usually, this will be the same blank signal as that sub-
tracted prior to fitting the calibration line. Unfortunately, this complicates an otherwise simple
uncertainty evaluation, as changes in blank reading will affect the estimated slope, generating a
non-zero covariance between the estimated slope and the blank sample intensity. Further, the re-
sulting covariance is not available from the fitted regression model because the blank subtraction
step is applied before the regression fitting.

There are two ways of handling this covariance problem. The first is a simple approximation
that relies on the fact that the standard deviation of emission near zero is typically much smaller
than that of the signals for other working standards. Where this is the case, the covariance can
be taken as negligible and the standard error for the slope is (together with a standard deviation
for yobs) sufficient for uncertainty evaluation.

Where the blank signal y0 has a non-negligible standard deviation, it is possible to estimate the
covariance using the fact that the slope b1 for a zero-intercept model (without variance weight-
ing) is given by

b1 =

∑n
i=1 (yi − y0)γi
∑n

i=1 γ
2
i

, (E3.4.7)

in which yi is the observed intensity for a working standard with concentration γi and n is the
number of observations in the regression. The covariance s2(b1, y0) is then given by

s2(b1, y0) =
∂ b1

∂ y0
s2(y0)

= −

∑n
i=1 γi

∑n
i=1 γ

2
i

s2(y0),
(E3.4.8)
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where s(y0) is the standard deviation (or, if y0 is an average, standard error) for y0.

Either approach needs an estimate of the standard deviation for blank samples. Fortunately,
while the calibration standards are not replicated in routine application of the measurement pro-
cedure, a separate reagent blank is measured at intervals in each measurement run to provide QC
information. For the present example, eight such blank observations are available. Omitting one
blank sample with anomalous readings, which followed the observation of the highest working
calibration standard, blank standard deviations for each element are given in table E3.4.4, for
the emission line with highest intensity in each case. The table also gives the residual standard
deviation for the corresponding calibrations. In all cases, the blank sample standard deviation is
at least an order of magnitude less than the residual standard deviation for the calibration. With
such a large difference, it is clearly safe to omit the contribution of the variability of the blank
signal, and the small covariance between the blank sample value y0 and the estimated gradient
b1, in estimating the uncertainty of a predicted value γext.

Table E3.4.4: Blank and calibration residual standard deviations (SD) for soil analysis elements

Element Lambda Blank SD Residual SD

Cr 283.563 188.1 67788
Cu 324.752 135.8 14021
Ni 231.604 29.1 647
Pb 220.353 24.3 413
Zn 202.548 137.1 13736

Omitting the small blank value uncertainty leads to a relatively simple uncertainty evaluation for
γext (equation (E3.4.6)). The statistical uncertainty in the gradient b1 is taken as the standard
error of the slope coefficient in the relevant model. The uncertainty associated with yobs is taken
as the residual standard deviation for the calibration (unless otherwise available). Dilution un-
certainties are considered negligible (see above). The uncertainty associated with the certified
stock solution concentration γ0 does, however, need to be considered.

Since the working standard solution concentrations are simple multiples of the stock solution
concentration, which in turn directly affect the gradient estimate, one simple way of incorpo-
rating the uncertainty in γ0 is to include the relative standard uncertainty for the stock solution
concentration as an additional term in a simple combination of relative standard uncertainties
associated with b1 and yobs − y0 [42]. This gives

ucal(γext)
γext

=

√

√

√

�

u(yobs)
yobs − y0

�2

+
�

u(b1)
b1

�2

+
�

u(γ0)
γ0

�2

≈

√

√

√

�

u(yobs)
yobs

�2

+
�

u(b1)
b1

�2

+
�

u(γ0)
γ0

�2

,

(E3.4.9)

where ucal(γext) is the standard uncertainty arising from instrument calibration and determina-
tion of the signal intensity for an extract solution. The approximation in the second line holds
when the blank correction y0 is small compared to yext (for example, y0 < 0.1yext would not
materially affect the uncertainty).

As an example, consider the calibration for chromium in figure E3.4.5 a), and assume an observed
signal intensity at 3.7× 106, close to the median of the calibration range. Table E3.4.5 gives the
relevant values and standard uncertainties.
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Table E3.4.5: Values and uncertainties for simplified calibration uncertainty. Observed values are
given as recorded instrument intensity (arbitrary units).

x u u
�

x Remarks

yobs 3700000.0 68000.0 0.0180 From residual SD.
y0 888.7 190.0 0.2100 From QC blanks.
b1 251100.0 1500.0 0.0060 From fitted calibration model.
γ0 /(mgkg−1) 980.4 1.2 0.0012 From certificate.

Equation (E3.4.6) gives a value for γext of 14.7 mg l−1. Applying the approximate form of equa-
tion (E3.4.9) then gives

ucal(γext)
γext

=

√

√

√

�

6.8× 104

3.7× 106

�2

+
�

1500
2.511× 105

�2

+
�

1.2
980.4

�2

=
p

0.0182 + 0.0062 + 0.00122

= 0.019,

(E3.4.10)

that is, a relative standard uncertainty of about 2%, largely driven by the uncertainty associated
with yobs, in turn from the residual standard deviation in the calibration. If required, multiplying
by γext gives a standard uncertainty for γext of 0.3 mg l−1, to one significant digit.

Equation (E3.4.9) is often sufficient in a chemical testing environment. It gives a relatively simple
indication of the uncertainty associated with use of a zero-intercept calibration with prior blank
correction, and can be implemented easily in spreadsheet software. It can provide a relative
standard uncertainty for γext without the need for an estimated value of γext, using only relative
uncertainties as input; this is often sufficient when the majority of measurement results fall in
a region in which the relative standard uncertainty is approximately constant. Finally, noting
the simple multiplicative form of equation (E3.4.1), the relative standard uncertainty can be
compared directly with other relative uncertainties to determine whether it is important.

For an explicit model-based evaluation of uncertainty, the stock solution concentration γ0 must
appear explicitly in a calculation for γext. This could be, for example, in a prior stage of a multi-
stage model, contributing to the uncertainty in b0; in an extension of equation (E3.4.6); or
in a software function whose output can be used to derive numerical sensitivity coefficients or
generate a Monte Carlo simulation. One possible approach, which uses the fact that all of the
working standard concentrations γi are just multiples of the stock solution concentration by a
dilution factor di , is shown below.

Writing γi as diγ0 in equation (E3.4.7) gives

b1 =

∑n
i=1 (yi − y0) diγ0
∑n

i=1 (diγ0)
2

=

∑n
i=1 (yi − y0) di

γ0
∑n

i=1 (di)
2 .

(E3.4.11)

Substituting in (E3.4.6) in turn gives

γext =
yobs − y0

∑n
i=1(yi−y0)di

γ0
∑n

i=1(di)
2

= γ0
yobs − y0

∑n
i=1(yi−y0)di
∑n

i=1(di)
2

.
(E3.4.12)
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Differentiating:

∂ γext

∂ γ0
=

yobs − y0
∑n

i=1(yi−y0)di
∑n

i=1(di)
2

=
γext

γ0
, (E3.4.13)

so that a model for γext that includes the effect of deviations δγ0
= γ0 − γ̂0 from the nominal

stock concentration γ̂0 can be written

γext =
yobs − y0

b1
+
γ̂ext

γ̂0
δγ0

, (E3.4.14)

where γ̂ext is the point estimate of γext.

A rather simpler model, noting that γext is directly proportional to γ0, is simply

γext =
γ̂0

γ0

yobs − y0

b1
, (E3.4.15)

which is a proportional correction for deviations from the nominal stock concentration γ̂0.

Contribution to combined uncertainty Section E3.4.6.4 evaluates uncertainties arising from
zero-intercept regression, including random variation. However, equation (E3.4.3) requires only
those contributions which do not already contribute to the precision estimates and bias uncer-
tainty. The intermediate precision standard deviations in section E3.4.6.2 were obtained from
multiple independent measurement runs, each with its own set of dilutions and its own cali-
bration run. The random variation in (for example) yobs that dominates equation (E3.4.9) has
therefore already contributed to the intermediate precision estimates in table E3.4.1. It follows
that, useful as equation (E3.4.9) is for evaluating the uncertainty sources in this part of the
procedure, using the resulting uncertainty in γext in equation (E3.4.3) would have the effect of
“double-counting” the contribution of random variation in the calibration step. Since the mass
calibration uncertainties in the dilutions are negligible (see above), the only uncertainty source
that needs to be considered in the summation term of equation (E3.4.3) is the uncertainty as-
sociated with γ0, the calibration standard value. Equation (E3.4.15) demonstrates that this can
be treated as a simple proportional effect on the measured value ws; it follows that the coeffi-
cient cγ0

will just be ws/γ0. Where uncertainties are combined in the form of relative standard
uncertainties, the relative standard uncertainty u(γ0)/γ0 can be used directly. The relevant stock
concentration values (coverted to a mass fraction basis as the laboratory dilutes by mass) and
the associated uncertainties are summarised in table E3.4.6.

Table E3.4.6: Calibration standards – Concentration x and standard uncertainty u

Element x/(mg kg−1) u/(mg kg−1) u/x

Cr 980.40 1.18 0.0012
Cu 983.80 1.03 0.0010
Ni 983.60 1.08 0.0011
Pb 984.74 0.98 0.0010
Zn 983.86 0.98 0.0010
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E3.4.6.5 Combined uncertainty

Following ISO 21748, the combined uncertainty for a measured value ws is obtained by ap-
plying equation (E3.4.3), with relevant coefficients ci and uncertainties u(x i) for the important
additional contributions identified in section E3.4.6.4. Writing this explicitly for the particular
quantities involved:

u2(ws) =u2(δ̂) + s2
I + c2

Text
u2(Text)

+ c2
text

u2(text) + c2
γ0

u2(γ0).
(E3.4.16)

Since so many of the estimated effects in this example are approximately proportional to mea-
sured value and have been estimated as relative effects, it is useful to recast equation (E3.4.16)
in terms of an estimated relative standard uncertainty u(ws)/ws, giving

�

u(ws)
ws

�2

=

�

u(δ̂)
ws

�2

+
�

sI

ws

�2

+
� cText

ws
u(Text)

�2

+
� ctext

ws
u(text)

�2

+
� cγ0

ws
u(γ0)

�2

,

(E3.4.17)

which is just a combination of relative uncertainties in measured value.

The object of the uncertainty evaluation exercise is to obtain a reasonable indication of the mea-
surement uncertainty that can be expected from future application of the measurement procedure
to typical test materials. For this purpose, the individual estimates in tables E3.4.1–E3.4.3 are
not used directly; rather, the approximate summary figures given in the relevant sections are
used. The relevant information is collected in table E3.4.7. Information for the calibration stock
solutions is specific to each element and is given in table E3.4.6; for illustration, the values for
lead (Pb) are included in table E3.4.7.

Table E3.4.7: Uncertainty information for aqua regia extraction of soils

Term Value Unit Remarks

u(δ̂)/ws 0.033 – Estimated as relative standard
uncertainty

sI/ws 0.036 – Estimated as relative standard
deviation

cText
/ws 0.004 °C−1 Relative effect on ws

u(Text) 2.89 °C Rectangular, with limits ±5
ctext
/ws 9× 10−4 min−1 Relative effect on ws

u(text) 2.89 min Rectangular, with limits ±5
cγ0
(Pb)/ws 1/984.74 – See section E3.4.6.4

u(γ0(Pb)) 0.985 mg kg−1
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Using equation (E3.4.17) and the values in table E3.4.7, the relative standard uncertainty u′(Pb)
for aqua regia extractable lead in the range studied is given by

�

u′(Pb)
�2
= 0.0332 + 0.0362 + (0.004× 2.89)2

+ (0.0009× 2.89)2 +
�

1
984.74

× 0.985
�2

= 0.0332 + 0.0362 + 0.011562

+ 0.0026012 + 0.00100032

=0.002526,

(E3.4.18)

giving a relative standard uncertainty u′(Pb) of
p

0.002 526= 0.05, or about 5%. Noting the very
small contribution of the calibration standard uncertainty u(γ0) and the similarity in calibration
solution relative uncertainties (all near 0.001), this would serve sufficiently well for all of the
elements in the present study.

E3.4.7 Reporting the result

Given a measurement result such as that for lead in C279a, the measurement result with ex-
panded uncertainty could be reported as

“(27.8 ± 2.8) mg kg−1, where the uncertainty is an expanded uncertainty using a
coverage factor k = 2, giving a level of confidence of approximately 95%.”

In addition, it is important to consider the presence of an appreciable bias, of the order of 10%,
in the measured values. Neither the GUM nor ISO 21748 give guidance on treatment of this
issue. Eurachem, however, recommend that, where a known significant bias is not corrected
or eliminated by improvements to the procedure, the bias should be reported along with the
measurement result and its uncertainty [42]. This is the approach taken here. In the absence of
established reporting arrangements, the above report of the measured concentration should be
accompanied by an advisory statement along the lines of

“The procedure in use shows apparent recovery of approximately 90%. Since the
recovery is within permitted limits, no correction for recovery has been applied.”

E3.4.8 Conclusion

Use of ISO 21748 provides a indication of measurement uncertainty based on the results of pre-
cision and trueness studies, supplemented by further contributions that are not adequately rep-
resented in a given precision study. The present example has applied this approach, using data
acquired during within-laboratory validation of a modified test procedure. The data included
measurements of five elements in four different reference materials, allowing simultaneous as-
sessment of precision and bias.

Some important features of the approach have been explored. First, the raw data generate a
range of individual precision and bias estimates from each material/element pair. These cannot
be applied directly to future materials; rather, it is important to extract a representative estimate
from the collected data. This requires some judgement as to the most appropriate estimate.
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Second, the measurement procedure involves a number of important steps which have consider-
able influence on the measured value, but are hard to model mathematically. This made it im-
possible to obtain suitable sensitivity coefficients by analytical differentiation or computational
methods. Experimental studies were accordingly used to determine the applicable coefficients
for the most important step in the procedure.

Finally, the procedure in use showed a significant bias which was, nonetheless, within permitted
performance limits for the intended use. This presents problems for measurement uncertainty
evaluation, as there is no straightforward method for incorporating a bias in a measurement
uncertainty statement. In this example, Eurachem guidance [42] was followed and the bias is
reported as additional information with the measurement result and uncertainty.
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Example E3.5

Comparison of methods for flow
measurement in closed conduits based
on measurement uncertainty

A. S. Ribeiro, M. G. Cox, M. C. Almeida, J. A. Sousa, L. L. Martins, C. Simões, R. Brito,
D. Loureiro, M. A. Silva, A. C. Soares

E3.5.1 Summary

In some fields of science, there is a wide diversity of technical principles and methods that can be
used to obtain measurands. This is the case in the measurement of flow rate, in closed conduits in
water supply facilities. Measurement of flow related to water supply infrastructures has become
in recent years a major topic for research for several reasons:

1. the growing impact of climate change;
2. the need to develop sustainable management of resources;
3. the need for robust management of networks of increasing complexity;
4. the criticality of these infrastructures for urban management with high social and economic

impact; and
5. the increasing perception of the need for measurement accuracy and consistency in devel-

oping modelling for interpretation and forecasting in distinct fields, namely, climatology,
hydrology and urban hydraulics.

Flow rate is a quantity often measured to evaluate instantaneous values and to obtain cumu-
lative values of volume by integration, usually measured by a diversity of instruments using
distinct principles of operation and techniques able to provide an indirect measurement of the
quantity. Instruments most used for flow rate measurement are based either on the relation be-
tween the electromagnetic field and flow velocity or on the relation between the propagation of
the velocity of sound in a fluid and the flow velocity. In these cases, the comparison of methods
for the selection of the measuring system should consider the advantages and disadvantages of
each solution, considering the nature and specific characteristics of the fluid, the behaviour of
the flow, and the performance of the instrumentation under those circumstances. For the last-
mentioned, measurement uncertainty and sensitivity analysis should be considered as a major
source of information for decision making, this being the main motivation for this example of
method comparison.
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E3.5.2 Introduction of the application

Measurement of flow rate and total flow of fluids are the two commonest approaches found
in flow measurement instrumentation. For this purpose, different methods and measurement
principles are applied, with their own characteristics and specific requirements for installation
and operation. These instruments are distinguishable at a first level considering the application
to closed pipes with fluid under pressure or to open channels and free surface pipelines (see
figure E3.5.1). In the case of flow measurements in closed pipes, the second level of classification
is usually made considering the measurand output, namely, total flow (totalizers) or flow rate.

Figure E3.5.1: The different types of instruments for the measurement of total flow and flow rate
used in closed pipes, open channels, and free surface pipes (redrawn from [242])

Total flowmeters, also called volume totalizers, are devices with two distinct approaches to the
measurement:

1. direct volume totalizers, usually devices having a chamber with a defined volume and a
system able to transfer the amount of fluid from the inlet to the outlet of the measuring in-
strument and being able to integrate the measured volumes to obtain the total flow volume;
and

2. indirect volume totalizers, without chambers, employing mechanical or electromechanical
systems usually using rotary vanes, being able to transport specific volumes and to count
electrical pulses generated by the rotary angular displacement.

The selection of measuring instruments is made considering the quantity to be measured and the
nature of the installation where measurement is intended to take place. In the context of water
service providers, the volume of water is one of the most common, the accuracy requirements
often being obtained using electromagnetic flowmeters and ultrasonic flowmeters. However,
these two types of measuring instruments have significant differences of operation due to the
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choice of measurands and measurement principles, with an impact on the sources of uncertainty
that are required to be considered to make robust decisions. For this reason, a brief description
of the quantities involved in both methods is given below.

E3.5.3 Specification of the measurand(s)

The measurands are the volumetric flow rate QV passing through a conduit at a given instant, the
velocity v of the fluid at a specific instant and the volume V of fluid collected during a specified
time interval.

E3.5.4 Measurement models

A measurement model in the case of electromagnetic flowmeters installed in pipes, the volumetric
flow rate QV at a specific instant is obtained as the product of the cross-sectional area A of the
pipe and the velocity v of the fluid:

QV = Av. (E3.5.1)

Expression (E3.5.1) is regarded as a basic model describing the measurement principle that holds
in ideal conditions. Effects arising in the practical implementation of the measurement are incor-
porated to obtain a measurement model adequate for the purpose [5]. Accordingly, an extended
measurement model for the application is

QV = Av + ϵQV
+

NQ
∑

i=1

δQVi , (E3.5.2)

where ϵQV
is a calibration correction, and the δQVi are NQ other influence quantities that affect

the measurement.

Ultrasonic flowmeters use the same expression (E3.5.1) but measure the average flow velocity of
fluids. In this case, to calculate the flow rate, the diameter of the pipe at the measurement location
is used. Like the approach used for electromagnetic flowmeters, an extended measurement model
for the flow velocity v at a specific instant is

v = v0 + ϵv +
Nv
∑

i=1

δvi , (E3.5.3)

where v0 is the uncorrected flow velocity at that instant, ϵv an error correction due to calibration,
and the δvi are Nv influence quantities that affect the measurement.

Electromagnetic flowmeters are widely disseminated as a common solution for measuring flow
rate, using Faraday’s Law of Induction, which relates the voltage induced across an electrical
conductor to the velocity of a conductive fluid moving orthogonally to a magnetic field [243].
This principle is particularly applied to conductive fluids in motion in pipes.

The common technical approach (figure E3.5.2) applies a magnetic field B using magnetic coils
and measures the output electrical voltage Uo using a pair of electrodes at a distance D (in the
case of cylindrical pipes, equal to the diameter of a cross-section), in a plane orthogonal to the
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magnetic field plane. The electrical output voltage Uo is proportional to the velocity of the fluid
(in the axis direction). In these conditions, Uo is related to the input quantities by

Uo = BvD. (E3.5.4)

Figure E3.5.2: Electromagnetic flowmeter principle of operation and related quantities

The volumetric flow rate QV crossing a section of the pipe with area A is

QV = Av =
πD2

4
v. (E3.5.5)

Combining equations (E3.5.4) and (E3.5.5),

Uo =
4BQV

πD
, (E3.5.6)

showing that, assuming good measurement and influence conditions, the induced output voltage
has a linear proportional relation with the volumetric flow rate crossing the section of the pipe:

Uo∝QV . (E3.5.7)

The proportional relation (E3.5.7) can be expressed in terms of a constant calibration parameter
K allowing the measurand QV to be obtained from the induced electrical voltage:

Qv =
πD
4B

Uo = KUo. (E3.5.8)

The volume V of fluid collected during a time interval ∆ttotal is usually obtained as the sum of n
measured volumetric flow rates Q i at a set of consecutive fixed time intervals ∆t i:

∆ttotal =
n
∑

i=1

∆t i , (E3.5.9)
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whence

V =
n
∑

i=1

QVi∆t i . (E3.5.10)

Ultrasonic flowmeters are also widely used to measure volumetric flow rate and volume of fluids.
For this study, the type of ultrasonic flowmeter considered is that based on the transit time, with
a single path and direct transmission of the signal. Other common systems make use of doppler
methods [242].

The operation of the ultrasonic flowmeter is based on the principle that the sound velocity c in a
fluid in motion results from the combination of the velocity of sound in the fluid at rest combined
with the velocity of the fluid itself. This type of device measures the time taken for an ultrasonic
pulse to travel in a pipe section both with and against the flow (see Figure 3) to calculate the
flow velocity and, knowing the diameter of the pipe, to obtain the volumetric flow rate.

Regarding the principle of operation, it should be mentioned that c depends on the character-
istics of the fluid, namely, the propagation velocity of a sound wave affected by conditions like
temperature and pressure [244,245].

Figure E3.5.3: Transit time ultrasonic flowmeter (single path)

In figure E3.5.3, v is the average flow velocity, L is the acoustic path length in the fluid (travelled
by the pulse between the two transducers), and θ the angle of the path to the pipe axis. The
acoustic path length is given by

L =
D

sinθ
. (E3.5.11)

Referring to figure E3.5.3 and letting c1 denote the velocity of propagation of the pulse waves
from transducer 1 to transducer 2, and c2 that in the reverse direction, the combined effects of
the sound velocity and the average flow velocity are

c1 = c + v cosθ , (E3.5.12)

c2 = c − v cosθ . (E3.5.13)

The corresponding times of transit are, respectively, expressed by

t1 =
L

c + v cosθ
, (E3.5.14)

t2 =
L

c − v cosθ
. (E3.5.15)
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Combining these two equations, using ∆t = t2 − t1, the average flow velocity becomes

v =
L

2 cosθ

�

1
t1
−

1
t2

�

=
L

2cosθ
∆t
t1 t2

, (E3.5.16)

allowing the volumetric flow rate Q crossing the section of the pipe with area A as presented in
equation (E3.5.2) to be expressed in terms not involving v.

The description of the two methods above is useful for the identification of the sources of error
that affect both instruments.

E3.5.5 Uncertainty propagation

E3.5.5.1 General

The generic measurement model y = f (x1, . . . , xn) is considered, where y represents the output
quantity obtained from n input quantities x i .

For an input quantity x i for which a sample of observations is made, the sample average is taken
as the estimate of the quantity, the standard deviation of the mean as the associated standard
uncertainty u (x i) and the sample size minus one as the degrees of freedom vi . A t distribution
would be assigned to the quantity for which the mean is an estimate. For a quantity for which
non-statistical information is available, that information would be used to assign an appropriate
distribution (for example, strict limits would yield a rectangular distribution).

To evaluate the measurement uncertainty u(y) associated with an estimate of y , the law of prop-
agation of uncertainty (LPU) [2] is used, assuming a linearization of the measurement model
about the estimates of the input quantities gives sufficient validity to the results. Further assum-
ing independence of the x i , the application of LPU gives

u2(y) =
n
∑

i=1

c2
i u2 (x i) , (E3.5.17)

the ci being the sensitivity coefficients (first-order partial derivatives of f with respect to the
input quantities evaluated at the x i . The expanded measurement uncertainty for a confidence
level of 95 % is

U95(y) = ku(y). (E3.5.18)

In turn, a 95 % confidence interval y±U0.95(y) is provided for the measurand. In equation (E3.5.18), k
denotes a coverage factor [2] that converts a standard uncertainty to an expanded uncertainty.
Under the assumption of normality for the measurand,

k = t0.95 (νeff) ,

where tp(v) denotes the value for the t distribution for 100p % confidence (two-sided) with
v degrees of freedom and the “effective degrees of freedom” veff is provided by the Welch-
Satterthwaite formula [2]:

veff =
u4(y)

∑n
i=1

u4(x i)
vi

. (E3.5.19)
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The evaluation of the standard measurement uncertainty u(y) can be developed in terms of
an uncertainty budget [42,246]. A two-step approach to the information required for the uncer-
tainty budget is (i) identify the sources of uncertainty and (ii) assign PDFs to the input quantities.

A typical approach for the identification of sources of uncertainty accounts for the contributions
related to the phenomena that generate the conditions for the observation of the quantity, namely,
the measurement method, the measuring instrument’s metrological characteristics, the user in-
fluence (if applicable) and the data processing. Regarding the quantification of the contributions,
Type A (statistical) and Type B (non-statistical) evaluations are considered as in the GUM [2].

E3.5.5.2 Electromagnetic flow meters

For the electromagnetic flowmeter, the volumetric flow rate QV is the measurand. Applying
LPU, the standard measurement uncertainty u(QV ) associated with an estimate of QV [equa-
tion (E3.5.2)] is obtained from

u2(QV ) = u2(Av) + u2(ϵQ) +
NQ
∑

i=1

u2(δQ i). (E3.5.20)

A possible set of uncertainty sources [247–251] is given in table E3.5.1.

An instance of an uncertainty budget for a specific measurement location, considering only non-
negligible uncertainty contributions identified in table E3.5.1 is given in table E3.5.2. The contri-
butions |ci|u (x i) are those for a linearized version of the measurement model y = f (x1, . . . , xn).
In this table, the degrees of freedom used in many of the Type B evaluations considered is 50,
which is obtained using GUM clause G.4.2, being the relative uncertainty in u (x i), in square
brackets below, considered reliable to 90 %:

vi =
1
2

�

∆u (x i)
u (x i)

�−2

. (E3.5.21)

E3.5.5.3 Ultrasonic flow meters

Applying the LPU [2] to the ultrasonic flowmeter model (E3.5.3), again assuming independent
input quantities, the standard uncertainty u(v) is given by

u2(v) = u2 (v0) + u2 (ϵv) +
Nv
∑

i=1

u2 (δvi) . (E3.5.22)

Again, the evaluation of the measurement uncertainty can be facilitated by an uncertainty budget
table, using the above two-step approach. A set of uncertainty sources [244, 252–254] is given
in Table 3. Having evaluated the flow velocity measurement uncertainty u(v) in a similar way to
that given in table E3.5.2, the next step is to evaluate the standard uncertainty u (QV ) associated
with the flow rate QV .

Applying the LPU to the model (E3.5.5),

u2 (QV ) = v2u2(A) + A2u2(v). (E3.5.23)
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Table E3.5.1: Identification of sources of uncertainty and data sources related to flow rate mea-
surements using electromagnetic flowmeters

Uncertainty contribution Data source

Calibration measurement Calibration certificate
Calibration curve Calibration correction model
Correction residual errors Calibration correction model
Repeatability Calibration certificate
Flow regime (laminar, turbulent, other) Assembly and installation
Equipotential of pipes Assembly and installation
Flow velocity range Assembly and installation
Power supply influence Assembly and installation
Straight pipe levelling Assembly and installation
Grounding and shielding Assembly and installation
Wiring, cables, and connectors Assembly and installation
Resolution Equipment metrological characteristic
Linearity Equipment metrological characteristic
Pipe diameter Equipment metrological characteristic
Long term stability Equipment metrological characteristic
Reproducibility Equipment metrological characteristic
Symmetry of the magnetic excitation coil Equipment metrological characteristic
Ageing Equipment metrological characteristic
Vibration Flow conditions
Electrode coating (deposits) Flow conditions
Fouling (crystallization, deposition, chemical reac-
tions, corrosion, biofilms)

Flow conditions

Air pockets and bubbles Flow conditions
Fluid compressibility and pulsation Flow conditions
Density of the fluid Liquid properties
Conductivity Liquid properties
Viscosity Liquid properties
Current interference Performance with influence quantities
Electromagnetic interference Performance with influence quantities
Temperature Performance with influence quantities
Pressure Performance with influence quantities
Sampling rate Signal and data processing
Time resolution Signal and data processing
ADC resolution Signal and data processing
Zero offset Signal and data processing
Signal gain Signal and data processing
Signal filtering Signal and data processing
Signal noise Signal and data processing
Statistical calculations Signal and data processing
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Table E3.5.2: Example of an uncertainty budget related to the measurement of flow rate using
an electromagnetic flowmeter (DoF = degrees of freedom; N = normal, R = rectangular, T =
triangular distribution)

Quantity Parameters
or limits

PDF Sensitivity
coefficient

Uncertainty
contribution

x i/% ci u(x i)/% DoF νi

Calibration measurement 0.05 R 1 0.029 200
Calibration curve 0.01 N 1 0.01 6
Correction residual errors 0.01 N 1 0.01 6
Repeatability 0.01 N 1 0.01 4
Flow regime (e.g., laminar, turbu-
lent)

0.005 R 1 0.0029 50

Straight pipe levelling 0.002 R 1 0.0012 50
Grounding and shielding 0.002 R 1 0.0012 50
Resolution 0.05 R 1 0.029 50
Linearity 0.002 T 1 0.00082 50
Long term stability 0.002 R 1 0.0012 50
Vibration 0.002 R 1 0.0012 50
Electrodes coating (deposits) 0.005 R 1 0.0029 50
Fouling (crystallization, deposi-
tion, chemical reactions, corro-
sion, biofilms)

0.01 R 1 0.0058 50

Air pockets and bubbles 0.005 R 1 0.0029 50
Density of the fluid 0.01 R 1 0.0058 50
Conductivity 0.01 R 1 0.0058 50
Viscosity 0.005 R 1 0.0029 50
Temperature 0.01 R 1 0.0058 50
Pressure 0.001 R 1 0.00058 50
ADC resolution 0.05 R 1 0.029 50
Signal gain 0.01 R 1 0.0058 50
Signal filtering 0.01 R 1 0.0058 50
Statistical calculations 0.02 R 1 0.012 50

Standard-uncertainty u(Qv)/%: 0.056
Effective degrees of freedom νeff: 272

Coverage factor k: 2.01
Relative expanded uncertainty U0.95(Qv)/%: 0.11
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Figure E3.5.4: PDF for the area of a cross-section of a pipe
A typical experimental approach to estimate A is to estimate the internal diameter D, which is
itself an indirect measurement involving the external perimeter p∅ of the pipe (used to calculate
the external diameter D0) and the pipe thickness lt. Thus,

A=
π

4
D2 =

π

4
(Do − 2lt)

2 =
π

4

� p∅
π
− 2lt

�2
=

1
4π

�

p∅ − 2ltπ
�2

. (E3.5.24)

The evaluation of the standard uncertainty u(A) associated with A was made, in a first approach,
using the LPU, taking experimental results for a flowmeter installed in a water facility pipe of
nominal diameter 100 mm. Data used was, for the external perimeter p∅, 439.8 mm, with a
standard uncertainty of 1.0 mm, and an average thickness It of the pipe of 19.8 mm with a stan-
dard uncertainty of 0.5 mm. A normal PDF was assumed for both. The estimated value of A
was 7.916× 103 mm2 (leading to an estimate of D of 100.4 mm), with an expanded uncertainty
(95 %) of 0.330× 103 mm2.

Usually for this type of analysis and despite some non-linearity in the model, the use of LPU
suffices to provide acceptable results. In this case, however, the imbalance of the terms in equa-
tion (E3.5.24) was considered a reason to apply a MCM [3] to provide a more robust uncertainty
evaluation. The evaluation used RStudio [49] programming to generate 1× 106 samples from
the PDFs for A and v and, for each sample of this pair of quantities, QV was evaluated from equa-
tion (E3.5.5). By ordering the values of QV so determined, the 2.5 % and the 97.5 % quantiles
were used as the endpoints of a 95 % coverage interval for QV .

The MCM-estimated value of A was 7.916×103 mm2, identical, to the number of digits quoted, to
that provided by the LPU (leading to an estimate of D of 100.4 mm), with a 95 % coverage interval
of [7.595,8.243]× 103 mm2. An expanded uncertainty for 95 % confidence of 0.324× 103 mm2

can be taken as the half-width of this confidence interval. In comparison, the LPU approach
gives an expanded uncertainty for 95 % confidence of 0.330× 103 mm2, almost identical to the
MC value. Figure E3.5.4 presents a scaled histogram approximating the PDF for A obtained by
the MCM and the normal PDF obtained using LPU. The process to obtain the volumetric flow rate
is given in figure E3.5.5.
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Table E3.5.3: Identification of common sources of uncertainty and data sources that can be re-
lated to flow rate measurements using transit time ultrasonic flow meters

Uncertainty contribution Data source

Calibration measurement uncertainty Calibration certificate
Calibration curve Calibration correction model
Correction residual errors Calibration correction model
Repeatability Calibration certificate
Pipe diameter accuracy Measurement certificate
Flow regime (laminar, turbulent, other) Assembly and installation
Flow velocity range Assembly and installation
Distance between the electrodes Assembly and installation
Power supply influence Assembly and installation
Straight pipe levelling Assembly and installation
Grounding and shielding Assembly and installation
Wiring, cables, and connectors Assembly and installation
Resolution Equipment metrological characteristic
Linearity Equipment metrological characteristic
Velocity profile Equipment metrological characteristic
Pipe diameter Equipment metrological characteristic
Long term stability Equipment metrological characteristic
Reproducibility Equipment metrological characteristic
Aging Equipment metrological characteristic
Vibration Flow conditions
Equipotential of pipes Assembly and installation
Fouling (crystallization, deposition, chemical reac-
tions, corrosion, biofilms)

Flow conditions

Air pockets and bubbles Flow conditions
Fluid compressibility and pulsation Flow conditions
Density of the fluid Liquid properties
Conductivity Liquid properties
Viscosity Liquid properties
Current interference Performance with influence quantities
Temperature Performance with influence quantities
Pressure Performance with influence quantities
Sampling rate Signal and data processing
Time resolution Signal and data processing
ADC resolution Signal and data processing
Integration of time of transit Signal and data processing
Remote access to signals and cables Signal and data processing
Zero offset Signal and data processing
Signal gain Signal and data processing
Signal filtering Signal and data processing
Signal noise Signal and data processing
Statistical calculations Signal and data processing
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Figure E3.5.5: Process for the measurement of volumetric flow rate using ultrasonic flowmeters
The Monte Carlo method has validated the use of LPU in this case. However, considering the
larger magnitude of the term involving the cross sectional area, if the PDF for A obtained by MC
were different, for example, rectangular, a different output PDF and related parameters would
be obtained, with the result that the difference between the LPU and MC results would be likely
to be greater.

E3.5.6 Interpretation of results

The flow engineer faces the difficult task of selecting the technically best and most cost effective
measuring device for his application. For this purpose, account should be taken of the required
accuracy related to the management process including the target uncertainty, the uncertainty
of the measuring instruments, the characteristics of the fluid and the conditions of the flow,
the installation set up, the metrological management needs, and the data management. In this
analysis, a comparison of the uncertainty achieved by each method can play a major role in the
decision making.

The identification of the sources of uncertainty and its impact by applying a sensitivity analysis
can be very important to control the impact of errors that, in this field, can be of high magnitude,
to develop best practices at the operational level and to achieve the growing demands of accuracy
from clients and regulatory and normative requirements.

The uncertainty related to the area of the cross-section of pipes is a major difference between
both the use of electromagnetic flowmeters and ultrasonic flowmeters. In the former case, its
accuracy is highly controlled by the manufacturing process. In the latter, the accuracy can be
highly variable because of the need to perform measurements locally, with different pipe mate-
rials and coatings (sometimes painted), using different instrumentation to obtain the length of
the perimeter and thickness through sampling, promulgating an increase in uncertainty.

Finally, the growing concern with climate change leading to the need for improvement of water
resources management makes the quality of measurement of water service providers a key is-
sue, uncertainty being a major parameter that allows comparisons to be made and to show the
competence of measurement activities.
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Greenhouse gas emission inventories

M.G. Cox, T. Gardiner, R. Robinson, T. Smith, S.L.R. Ellison, A.M.H. van der Veen

E3.6.1 Summary

The compilation of country-scale greenhouse gas emissions inventories involves combining stan-
dard emissions’ factors and activity data to provide sector emissions’ estimates. This work con-
stitutes a small study of this huge, impactful topic, concentrating on agriculture, where large
uncertainties arise, and the effect of correlation on the results. It also gives a brief comparison of
the attitudes taken to uncertainty evaluation by the Intergovernmental Panel on Climate Change
(IPCC) and the Joint Committee on Guides in Metrology (JCGM).

E3.6.2 Introduction of the application

Greenhouse gas (GHG) emissions inventories are usually obtained by combining standard emis-
sions’ factors and activity data to provide sub-sector emissions’ estimates. These sub-sectors are
then combined to give sector estimates and further combined to estimate total emissions.

A specific example is given relating to part of the inventory in the agriculture, land use and waste
sector to provide an estimate of total emissions and the associated uncertainty.

Current practice provided by the Intergovernmental Panel on Climate Change (IPCC) regarding
uncertainty propagation in the area is considered in the context of IPCC Guidelines for National
Greenhouse Gas Inventories [255]. The IPCC practice is contrasted with that in the Guide to the
expression of Uncertainty in Measurement (GUM) [2] and other related JCGM guides. In partic-
ular, the possible effects of correlation, often ignored in practice, on the estimate are considered.

269
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E3.6.3 Background

E3.6.3.1 Greenhouse gas inventories

Calculation of GHG inventories

The UK’s and other countries’ GHG inventories are compiled according to IPCC 2006 Guide-
lines [255]. Each year the inventory is updated to include the latest data available. The UK
submits a report to the UNFCCC annually via a consolidated report which contains all EU coun-
tries.

The inventory includes the seven direct GHGs under the Kyoto Protocol:

– Carbon dioxide (CO2)
– Methane (CH4)
– Nitrous oxide (N2O)
– Hydrofluorocarbons (HFCs)
– Perfluorocarbons (PFCs)
– Sulfur hexafluoride (SF6)
– Nitrogen trifluoride (NF3)

A bottom-up calculation of emissions is based on contributions of the form

Emissions = (Activity data) × (Emission factor). (E3.6.1)

In all there are 743 emission factors and more than 1700 sources of emissions. There are 17 key
data sources together with involvement from industry, government and academics.

In terms of emissions from the three largest GHG contributors (i.e., CO2, CH4 and N2O), the
majority of the uncertainty in the GHG inventory comes from the Agriculture, Land Use and
Waste sectors [256], with these three sectors contributing 86 % of the uncertainty in the total
inventory emissions.

European countries, especially the UK, are moving towards metrological assessment of current
uncertainty quantification including accounting for the effect of correlated quantities. They also
want to extend the current top-down validation activity E3.7 to cover the complete GHG inven-
tory.

Figure E3.6.1 shows the breakdown of the inventory contributions across sectors. The fifth
biggest contribution is agriculture. As reductions in other contributions are made, somewhat
more readily, agriculture will in future make a larger contribution.

An emission inventory can be expressed as a linear combination of terms of the form (E3.6.1):

E =
∑

i

FiAi , (E3.6.2)

where
E total GHG emission for a given sector, geographic area and time period,
Fi emissions factor for the emissions of a given pollutant from source category i, and
Ai activity for source category i.

In practice, the model (E3.6.2) is often enlarged to incorporate scaling factors to allow total GHG
emission to be given in terms of CO2e or ‘CO2 equivalent’. That is, each GHG in the table has a
conversion or scaling factor associated with it, giving

E =
∑

i

si FiAi , (E3.6.3)
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Figure E3.6.1: Inventory contributions across sectors

An example incorporating such scaling factors is given in section E3.6.6.

Combination and correlation

Inventory uncertainties are generally combined in quadrature (root-sum-squares), assuming no
correlation between the input quantities involved, using the variant of the law of propagation
of uncertainty (LPU) applicable to such cases [2, clause 5.1.2, formula (10)]. The implication is
that the influence of larger uncertainties is magnified, more so than when cases of full or partial
correlation, which would apply to the variant of LPU that applies in that case [2, clause 5.2.2,
formula (13)], are considered. Ways of assessing the validity of this assumption both within and
across sectors are required.

Figure E3.6.2 shows the expanded uncertainty contributions across sectors. The biggest contribu-
tion is agriculture. Figure E3.6.3 shows the squares of these expanded uncertainty contributions.
It emphasizes the greater influence of the dominant uncertainty contributions to the combined
uncertainty.

Figure E3.6.2: Expanded uncertainty contributions (at the 95 % level) across sectors

According to [257], emissions inventories are critical to many environmental decision-making
processes. Typical questions that decision makers may ask that motivate the need to deal with
uncertainties in emissions’ inventories relate to precision and bias in the estimates, whether the
estimates are based upon measurements, modelling or expert judgment, the main sources of
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Figure E3.6.3: Squared expanded uncertainty contributions across sectors

uncertainty in these estimates, and how uncertainty can be reduced. To answer such questions,
a reasonable indication of the uncertainty associated with the estimates of the quantities Fi , Ai
and E in expression (E3.6.3) that comprise an emission inventory is needed.

E3.6.3.2 IPCC

The United Kingdom in 2018 submitted its National Inventory Report [258] to the United Na-
tions’ Framework Convention on Climate Change (UNFCCC). It contains national greenhouse gas
emission estimates for the period 1990–2016, and descriptions of the methods used to produce
the estimates. The report was prepared in accordance with “UNFCCC reporting guidelines on
annual greenhouse gas inventories” (decision 24/CP.19) and includes elements required under
the Kyoto Protocol.

The reporting guidelines refer to the ‘error propagation approach’ and the ‘Monte Carlo approach’
for uncertainty propagation. An extract from [258], which uses these approaches, is:

‘Comparing the results of the error propagation approach, and the Monte Carlo esti-
mation of uncertainty by simulation, is a useful quality control check on the behaviour
of the Monte Carlo model.

‘The reason that the error propagation approach is used as a reference is because the
approach to the error propagation approach has been defined and checked by the
IPCC, and is clearly set out in the IPCC 2000 Good Practice Guidance and the 2006
Guidelines. The UK has implemented the IPCC error propagation approach as set
out in this guidance. The implementation of an uncertainty estimation by simulation
cannot be prescriptive, and will depend on how the country constructs its model, and
the correlations included within that model. Therefore, there is a greater likelihood
of errors being introduced in the model used to estimate uncertainty by Monte Carlo
simulation.’

We return to this extract in section E3.6.8.
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E3.6.3.3 JCGM

JCGM 100:2008, the GUM [2], has for a long time been the authoritative document concerned
with the evaluation and expression of measurement uncertainty that attempts to meet this ob-
jective:

‘This Guide establishes general rules for evaluating and expressing uncertainty in
measurement that can be followed at various levels of accuracy and in many fields
— from the shop floor to fundamental research. Therefore, the principles of this
Guide are intended to be applicable to a broad spectrum of measurements . . . ’

The JCGM is responsible for maintaining and promoting the use of the GUM and the International
vocabulary of basic and general terms in metrology (VIM) [89]. Starting with the 2008 publication
of GUM Supplement 1 (GUM-S1) about the Monte Carlo method (MCM) for the propagation of
probability distributions [3], several documents [1,4–6] have been made available by the JCGM
that describe methods for evaluating measurement uncertainty for various classes of problems
and the manner in which the measurement model, employed as the basis for the evaluation, is
established and used.

All eight JCGM member (international) organizations and many national metrology institutes
(including the major ones) review and approve JCGM documents before publication.

E3.6.3.4 This document

In this document we consider the IPCC approach to uncertainty evaluation in the context of
greenhouse gas emissions. We make statements concerning the extent of alignment with guid-
ance provided by the JCGM.

Wherever measurement uncertainty is used, it is important that it is evaluated consistently by
different practitioners so that users’ interpretation is consistent and reliable. Universally agreed
methods for uncertainty evaluation are hence required.

E3.6.4 Specification of the measurand(s)

‘Measurand’ is a term little used in IPCC documents. A meaningful interpretation, used here, is
‘total emissions for a given pollutant, geographic area and time period’ (see section E3.6.2).

E3.6.5 Measurement model

The IPCC does not seem explicitly to use the concept of ‘measurement model’ in their documents.
However, expression (E3.6.3) can be regarded as a basic measurement model central to IPCC
considerations.

E3.6.6 Uncertainty propagation

We consider the use of the model specified as expression (E3.6.3), in which we take the sector as
mobile machinery in agriculture (IPCC category A4ci), the region as the UK and the time period
as 2018.
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Uncertainties are propagated using the law of propagation of uncertainty in the GUM [2], com-
parable to the IPCC ‘error propagation’ method.

First, the quantities concerned are considered as independent. Then, perceived correlation is
taken into account.

Data for this sector from the UK National Atmospheric Emissions Inventory site (2018) is given
as table E3.6.1 where the number of significant decimal digits is stated as reported. This total
comprises contributions from the use of two fuels, ‘Gas Oil’ and Petrol, reported in terms of
the 2018 Activity Data (AD) for those fuels. The table also specifies the Emissions’ Factors (EF) for
each of the key GHGs (CO2, CH4 and N2O) for those fuels. The reported expanded uncertainties
(at the 95 % confidence level) on the individual activity data and emission factors are given.

This table incorporates the scaling mentioned in section E3.6.3.1. The scaling factors to give
‘CO2 equivalent’ equivalent emissions are 11/3= 3.667 for CO2 as C, 25 for methane (CH4) and
298 for nitrous oxide (N2O).

Table E3.6.1: Reported activity data and emission factors with associated expanded uncertain-
ties U (for 95 % confidence)

Fuel Gas AD/(TJ) U(AD)/% EF/(ktTJ−1) U(EF)/%

Gas oil CO2 0.020438 38.6 2.0438× 10−2 2.7
Gas oil CH4 0.020438 1.6 3.5368× 10−6 80.0
Gas oil N2O 0.020 438 1.6 3.0984× 10−6 216.3
Petrol CO2 67.19 50.7 1.9127× 10−2 4.8654× 10−5

Petrol CH4 67.19 1.6 4.8654× 10−5 80.0
Petrol N2O 67.19 1.6 3.3578× 10−7 216.3

Let A1, . . . , A6 denote the activity data values AD and F1, . . . , F6 the corresponding emissions’
factors EF in table E3.6.1 in the order given there. Then, comparing with expression (E3.6.3),
we write

E =
6
∑

i=1

Ei , Ei = siAi Fi , (E3.6.4)

where the si are the scaling factors, assumed to have no associated uncertainty.

Total emissions for this sector were reported to be 4282 kt CO2e. The reported expanded un-
certainty (at the 95 % level of confidence) associated with this total was 1635 kt CO2e (relative
expanded uncertainty of 38 %).

Table E3.6.2 summarizes the emissions’ calculations for this sub-sector, namely, the emissions as
CO2 equivalent for each contribution and the total CO2 equivalent, obtained from the
UK National Atmospheric Emissions Inventory site (2018).

E3.6.6.1 Assuming independence

The application of the law of propagation of uncertainty (LPU) [2, eqn. (10)] for independent
quantities gives the associated standard uncertainty uind(E):

u2
ind(E) =

6
∑

i=1

s2
i

�

A2
i u

2(Fi) + F2
i u2(Ai)

�

. (E3.6.5)
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Table E3.6.2: Emissions as CO2 equivalent for each contribution and the total CO2 equivalent

GHG Fuel AD/ EF/ Reported Scaling CO2e/
TJ (kt/TJ) emissions/kt factor kt

CO2 as C Gas oil 56 317.0920 2.0438× 10−2 1150.9806 3.667 4220.2623
CH4 Gas oil 56317.0920 3.5368× 10−6 0.1992 25 4.9795
N2O Gas oil 56 317.0920 3.0984× 10−6 0.1745 298 51.9987

CO2 as C Petrol 67.1856 1.9127× 10−2 1.2851 3.667 4.7120
CH4 Petrol 67.1856 4.8654× 10−5 0.0033 25 0.0817
N2O Petrol 67.1856 3.3578× 10−7 0.0000 298 0.0067

Total 4282.0409

The use of the data in tables E3.6.1 and E3.6.2 gives E, as already reported, and by applying the
LPU [2, formula (10)] for independent quantities:

E = 4282.04kt, uind(E) = 835.16kt. (E3.6.6)

An uncertainty budget is given in table E3.6.3.

Table E3.6.3: Uncertainty budget

GHG Fuel AD/TJ EF/(kt/TJ) CO2e std. unc./kt

CO2 as C Gas oil 56 317.0920 2.0438× 10−2 833.1844
CH4 Gas oil 56317.0920 3.5368× 10−6 2.0329
N2O Gas oil 56 317.0920 3.0984× 10−6 57.3860

CO2 as C Petrol 67.1856 1.9127× 10−2 1.2198
CH4 Petrol 67.1856 4.8654× 10−5 0.0334
N2O Petrol 67.1856 3.3578× 10−7 0.0074

Total CO2e std. unc./kt = 835.16

E3.6.6.2 Accounting for perceived correlation

We now consider perceived correlations associated with the various quantities, which seems not
to be strongly considered in the IPCC documents. It appears that correlation is not entertained
with the ‘error propagation’ approach (broadly equivalent to LPU in the GUM), although it is
stated, without giving detail, that the Monte Carlo method may be used for this purpose [259,
section 6.3].

Examining the activity contributions Ai , we see that A1, A2 and A3 are identical numerically as
are A4, A5 and A6. This observation raises the possibility that A1, A2 and A3 have a common
origin and might even be the same quantity, and similarly for A4, A5 and A6.

This perception is considered by the authors to be more than reasonable. Moreover, there may
even be a more subtle correlation between the emission factors if similar methods were used to
derived these for the different fuels, but that consideration goes beyond the scope of this study.
Assuming this perception to be correct, some adjustment to the above uncertainty calculation is
needed. When several input quantities are associated via a common origin or effect, the resulting
correlation can typically be handled either by constructing and using an appropriate covariance

Examples of evaluating measurement uncertainty First edition



Example E3.6. Greenhouse gas emission inventories 276

matrix, or by re-parametrizing to isolate the common effect. In this case, if the (numerically
identical) activities A1 to A3 and A4 to A6 are either very highly correlated or are simply repeated
use of the same information, it is simplest to re-parametrize by replacing the nominally separate
instances by a single term.

Following this approach implies that in expression (E3.6.4), A1, A2 and A3 can be replaced by
AGO (GO = Gas Oil), say, and A4, A5 and A6 by AP (P = Petrol), say. As a result, this expression
becomes

E = AGOFGO + APFP, (E3.6.7)

where

FGO =
3
∑

i=1

si Fi , FP =
6
∑

i=4

si Fi ,

yielding ucor(E), signifying the standard uncertainty associated with E obtained by taking per-
ceived correlations into consideration:

u2
cor(E) = A2

GOu2(FGO) + F2
GOu2(AGO)

︸ ︷︷ ︸

Term A

+A2
Pu2(FP) + F2

P u2(AP)
︸ ︷︷ ︸

Term B

, (E3.6.8)

where

u2(FGO) =
3
∑

i=1

s2
i u2(Fi), u2(AP) =

6
∑

i=4

s2
i u2(Fi).

For the current data, E is identical to the previously calculated value and

ucor(E) = 846.33 kt, (E3.6.9)

an increase of 1.3 % over the standard uncertainty assuming independence.

The reason for the increase in the standard uncertainty associated with total emissions being
so small is that one particular contribution to the budget, CO2 as C for Gas oil, the first in ta-
ble E3.6.2, is by far the dominant.

In terms of the results, although the 1.3 % difference in the standard uncertainties is small, it is
considered more than negligible. Also note that if a simple scaling factor of 2 were used between
standard and expanded uncertainties, as would be the case if normality were assumed for the
quantities involved, then the reported expanded uncertainty of 1635 kt would indicate a standard
uncertainty of 818 kt, which is smaller than that of either of our correlated or uncorrelated results.

The principle stands that such correlations should generally be taken into account since they
might make a significant difference where one uncertainty contribution is less dominant. It would
be good to identify an instance where the contribution of the different sub-sectors is more even
and the effect of correlation therefore more pronounced. Such activity will take place following
the conclusion of this project EMUE (see the last paragraph of section E3.6.8.1).

E3.6.6.3 Insight into the degree of dependence

It would be possible to handle the uncertainty propagation using [2, formula (13)] taking full cor-
relation into account for the quantities concerned, which would yield the same expression (E3.6.8).
The use of variable substitution as above reparametrizes the problem in such a way that the need
to take correlation into account is avoided. The assumption is made that the remaining quantities
are independent, which should be verified in practice to the extent possible.
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Insight into the difference in the standard uncertainty in the measurand under the assumptions
of independence and dependence (in the above respect) is given by taking an extreme case.

Consider the following idealized scenario. For all i, take Ai = A, Fi = F , u(Ai) = uA, u(Fi) = uF
and si = s. Then, expression (E3.6.5) becomes

u2
ind(E) = 6s2A2u2

F + 6F2s2u2
A = s2A2F2

�

6u2
rel(F) + 6u2

rel(A)
�

(E3.6.10)

with relative standard uncertainties

urel(F) =
uF

F
, urel(A) =

uF

A
.

On the other hand, from expression (E3.6.8),

u2
cor(E) = 6s2A2u2

F + 18F2s2u2
A = s2A2F2

�

6u2
rel(F) + 18u2

rel(A)
�

. (E3.6.11)

The ratio of the terms in square brackets in expressions (E3.6.10) and (E3.6.11), namely,
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u2

cor(E)

u2
ind(E)
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6u2

rel(F) + 18u2
rel(A)

6u2
rel(F) + 6u2

rel(A)
=

u2
rel(F) + 3u2

rel(A)

u2
rel(F) + u2

rel(A)
, (E3.6.12)

is informative regarding the respective contributions from the emissions factor and the activ-
ity data under the above correlation and independence assumptions. Examining expression
(E3.6.12), for an activity data relative uncertainty that is small compared with that for the emis-
sions factor, it is seen that λ is close to unity and in that case the assumption of independence is
reasonable. For the converse, λ is close to 3 with the consequence that accounting for correlation,
ucor(E) is

p
3≈ 1.7 times uind(E), a 70 % increase.

E3.6.7 Reporting the result

The reporting of results has been integrated into section E3.6.6 dealing with uncertainty propa-
gation.

E3.6.8 Interpretation of results

E3.6.8.1 Sources having large uncertainty

Relative expanded uncertainties of 100 % or more are not uncommon in emissions’ inventories,
which is why it is important these large uncertainty sources are carefully taken into consider-
ation. The UK introduction to GHG inventories [260], shows a highly asymmetric interval for
inventory NO2 figures, in that emissions’ estimates for N2O are far from the centre of their 95 %
confidence intervals, in its figure 5.2. The implication is that the probability distributions for
N2O are strongly asymmetric, but in the previous section (5.1) of that document uncertainties
are expressed as 95 % confidence intervals (for example, table 5.1), with no indication that they
may be asymmetric.

Some areas within emissions’ inventories are so uncertain that it is not known with confidence
whether they are sources or sinks. However, the referenced figure implies that N2O from agri-
culture is definitely a source so the probability distribution must be asymmetric. However, the
report does not provide an explanation for the figure.
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After some investigation, these aspects seem to be based on methodology described in Milne et
al. [261]. Figure 2 in that paper shows the distribution given by Monte Carlo modelling and the
asymmetry is attributed to skew in the emissions factors. Log-normal probability distributions
are used to represent knowledge of such quantities.

However, reference [261] is focused on agricultural emissions (that is, manure, enteric fermenta-
tion and field burning), but table E3.6.1 in this document is based on non-road vehicle emissions
(that is, from tractors, combine harvesters, etc.), which burn gas-oil and diesel. No evidence has
been found by the authors of this document on the probability distributions for the quantities
under consideration here.

In this work, we focused on an agricultural sub-sector where there was sufficient data publicly
available to carry out this type of assessment. We are confident that the correlation issue is more
significant within other agricultural sub-sectors but the raw data needed to test this seemed not to
be available. We understand that such data and more extensive information concerning the num-
bers appearing in the UK inventory, from which correlations can be quantified, will subsequently
be made available, but not before the completion of the EMUE project.

E3.6.8.2 Uncertainty guidance promoted by the IPCC and the JCGM

Aspects of the methods used by IPCC and in the UK and some comments on them where appro-
priate are as follows:

1. In terms of regarding expression (E3.6.3) as the measurement model, the GUM [2] refers
to the quantities Fi and Ai as ‘input quantities’ and E as the ‘output quantity’ or ‘measurand’.

2. IPCC documents seem not to emphasize that propagation of uncertainty should be carried
out in the context of a measurement model. In the model (E3.6.3), the expression on the
right-hand side constitutes the measurement function, with sensitivity coefficients given by
the first-order partial derivatives of that function.

3. It is said in section E3.6.2 that the reason the error propagation approach is used as a
reference is that it has been defined and checked by the IPCC and is clearly set out in
the IPCC 2000 Good Practice Guidance [262] and the 2006 Guidelines [255]. The ‘error
propagation approach’ referred to is the LPU in the GUM [2] and occurs specifically as [259,
section 6.3, formula (6.3)].

Comment 1: That it is ‘clearly set out’ in [262] and [255] is not in itself a sufficient reason
for using the error propagation approach. That it has been defined and checked by the IPCC
also seems to be not a good reason unless the definition and checking comprises some high
degree of validation. If that is the case, it is unclear what evidence has been used to support
the statement.

Comment 2: The statement should be compared with the attitude of the JCGM. The MCM
as prescribed by the GUM-S1 [3,4] can handle situations where the uncertainties are large
or the measurement model is (perhaps highly) non-linear, whereas the error propagation
approach (the LPU in the GUM [2] can produce invalid uncertainty statements. Thus,
MCM can be used as a reference against which other methods such as LPU, which require
linearization of the model, can be compared. This way of thinking is very different from
that of the IPCC, which regards the error approach as a reference. MCMs are seen, at
least by Bayesian statisticians, as a ‘gold standard’ for uncertainty propagation: Huggins et
al. [263] state:

Examples of evaluating measurement uncertainty First edition



Example E3.6. Greenhouse gas emission inventories 279

‘Classical Monte Carlo methods . . . remain the gold standard for approximate
Bayesian inference because they have a robust finite-sample theory and reliable
convergence diagnostics.’

There are many other references (such as [96,263–266]) to the Monte Carlo method as a
‘gold standard’ for uncertainty propagation.

Non-pathological examples exist quantifying the disagreement of results produced by the
two approaches for various case studies. One instance arose in mass calibration [3] where
the law of propagation of uncertainty gave a standard uncertainty for the measurand
of 0.054 mg whereas that produced by the Monte Carlo method was 0.075 mg, some 40 %
larger. There was good agreement (to the two significant decimals reported) between the
standard uncertainty determined by Monte Carlo and that (0.075 mg) provided by the law
of propagation based on higher-order terms, that is, employing a better approximation to
the non-linear measurement function than that given by linearisation as in the basic GUM
approach.

4. Within the context of its GHG emissions’ inventory, the UK has implemented the error
propagation approach as set out in its guidance. It is stated:

‘Uncertainty estimation by simulation (MCM) cannot be prescriptive, and will
depend on how the country constructs its model and the correlations considered.
Therefore, ‘there is a greater likelihood of errors being introduced in the model
used to estimate uncertainty by Monte Carlo simulation’. It is further said that
‘if all the distributions in the Monte Carlo model were normal, and the assumed
correlations were identical, the estimated errors on the trend from the Monte
Carlo model should approach those estimated by the error propagation approach
if enough iterations are done’.

Comment: We disagree that ‘uncertainty estimation by simulation (MCM)’ cannot be pre-
scriptive. It is said in [3]:

‘Whereas there are some limitations to the GUM uncertainty framework, the
propagation of distributions [implemented by Monte Carlo] will always provide
a PDF for the output quantity that is consistent with the model of the measure-
ment and the PDFs for the input quantities.’

Comment: A comparison of MCM and LPU is possible if the means and standard deviations
of the probability distributions used by MCM are taken as the estimates and associated
standard uncertainties used by LPU. There is no choice in the model itself. Both approaches
use exactly the same model but, as stated, LPU linearizes it. Rather than errors being
introduced by MCM, they will always be introduced by LPU unless the model is linear.
Importantly, the main model used in GHG inventory work is (E3.6.3), which is non-linear.
The statement about the conditions for the two methods to converge is sound.

5. Comment: It would seem that in discussing correlations, the IPCC mainly considers ‘perfect
correlations’, that is, a variable is totally dependent on other variables and hence can be
eliminated from the analysis [5,267].

6. The IPCC states [268, page 36]:

Examples of evaluating measurement uncertainty First edition



Example E3.6. Greenhouse gas emission inventories 280

‘Based on the Guidance Note for Lead Authors of the IPCC Fifth Assessment Re-
port [AR5] on Consistent Treatment of Uncertainties, this WGI Technical Sum-
mary and the WGI Summary for Policymakers rely on two metrics for commu-
nicating the degree of certainty in key findings, which is based on author teams’
evaluations of underlying scientific understanding:

• Confidence in the validity of a finding, based on the type, amount, quality
and consistency of evidence (e.g., mechanistic understanding, theory, data,
models, expert judgement) and the degree of agreement. Confidence is
expressed qualitatively.

• Quantified measures of uncertainty in a finding expressed probabilistically
(based on statistical analysis of observations or model results, or expert
judgement).’

Comment:

• The use of qualitative statements of uncertainty is reasonable, particularly where such
statements correspond to clearly stated probability ‘bands’. The fact that almost any
model used as a basis of calculation and the expression of uncertainty is not unique
is recognized by the IPCC. The JCGM also recognizes the importance of this point. It
released in 2020 a guide on modelling that embodies this principle [5].

• The JCGM is very much concerned with deriving and expressing uncertainties proba-
bilistically. Three of its guides [3,4,6] (with more under development) use probabilis-
tic considerations in the use of Monte Carlo methods for uncertainty propagation and
for conformance assessment. The JCGM promotes the use of a probability distribution
as the primary measurement result, certainly for the higher end of the measurement
hierarchy. It recognizes the relevance of summary location and scale statistics, partic-
ularly for the lower end of the measurement hierarchy. The international vocabulary
of basic and general terms in metrology [89] also recognizes that a measurement re-
sult may usefully be specified as a probability distribution but also that summaries of
the distribution are often useful in practice.

7. IPCC states [268, page 121]:

‘Treatment of Uncertainties
For AR5, the three IPCC Working Groups use two metrics to communicate
the degree of certainty in key findings: (1) Confidence is a qualitative measure
of the validity of a finding, based on the type, amount, quality and consistency
of evidence (e.g., data, mechanistic understanding, theory, models, expert judg-
ment) and the degree of agreement; and (2) Likelihood provides a quantified
measure of uncertainty in a finding expressed probabilistically (e.g., based on
statistical analysis of observations or model results, or both, and expert judge-
ment).
‘Advances in Measurement and Modelling Capabilities
Over the last few decades, new observational systems, especially satellite-
based systems, have increased the number of observations of the Earth’s
climate by orders of magnitude. Tools to analyse and process these data have
been developed or enhanced to cope with this large increase in information, and
more climate proxy data have been acquired to improve our knowledge of past
changes in climate. Because the Earth’s climate system is characterized on mul-
tiple spatial and temporal scales, new observations may reduce the uncertainties
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surrounding the understanding of short timescale processes quite rapidly. How-
ever, processes that occur over longer timescales may require very long observa-
tional baselines before much progress can be made.’

Comment: The attitude here is consistent with that of the JCGM. There are two forms of
uncertainty evaluation prescribed in the GUM and related JCGM documents: Type A (sta-
tistical) and Type B (non-statistical including expert judgement). An uncertainty evaluation
almost always involves a combination of Type A and Type B evaluations. In [2], frequency-
based statistics are used for the former and Bayesian statistics for the latter, whereas, in
later documents [3,4], they are both put on a Bayesian footing.
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Example E3.7

Greenhouse gas emission inventories
— emission estimates calculated by
measurement of ambient mixing ratios
combined with inverse modelling
T. Arnold, M.G. Cox

E3.7.1 Summary

A top-down Bayesian method using a weakly-informative prior for assessing emission estimates
is presented. It is based on the paper ‘Inverse modelling of CF4 and NF3 emissions in East Asia’
by Arnold et al. published in Atmospheric Chemistry and Physics in 2017. The method hinges on
the calculation of ambient mixing ratios combined with inverse modelling. It is compared with
bottom-up methods used for compiling country-scale greenhouse gas emission inventories.

E3.7.2 Introduction of the application

The example described here is predominantly based on material given in detail in [269] from
which major extracts have been made consistent with the provisions of open-access publications.
Also see [270].

The major greenhouse gases (GHGs) — carbon dioxide, methane, and nitrous oxide — have natu-
ral and anthropogenic sources. The synthetic fluorinated species — chlorofluorocarbons (CFCs),
hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), and perfluorocarbons (PFCs),
sulfur hexafluoride (SF6) and nitrogen trifluoride (NF3) — are almost or entirely anthropogenic
and are released from industrial and domestic appliances and applications. Of the synthetic
species, tetrafluoromethane (CF4) and NF3 are emitted nearly exclusively from point sources of
specialised industries [271–273]. Although these species currently make up only a small per-
centage of current emissions contributing to global radiative forcing, they have potential to form
large portions of specific company, sector, state, province, or even country-level GHG budgets.

Although decadal trends in the atmospheric abundances of CF4 and NF3 have been well char-
acterized and have provided a time series of global total emissions, information on locations of
emissions contributing to the global total is currently poor. Observations made between 2008
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and 2015 from Gosan station (hereafter referred to as GSN), Jeju Island, South Korea (part of
the Advanced Global Atmospheric Gases Experiment network), together with an atmospheric
transport model, were used to make spatially disaggregated emission estimates of these gases in
East Asia (disaggregation: separation into component parts). An informative Bayesian prior was
used in [269]. Due to its weakness, the resulting emission estimates are mostly influenced by the
atmospheric observations, but the prior has a key stabilizing influence.

Within a quantification of emissions determination, top-down studies of CF4 and NF3 emis-
sions have shown bottom-up inventories can be inaccurate. Kim et al. [274] showed that global
bottom-up estimates for CF4 are as much as 50 % lower than top-down estimates. Arnold et al. [271]
showed that the best estimates of global NF3 emissions calculated from industry information and
statistical data total only about 35 % of those estimated from atmospheric observations.

Accurate emission estimates of NF3 and CF4 are difficult to make based on simple parameters
such as integrated country-level uptake rates and leakage rates, which, for example, underpin
calculations of HFC emissions. Active or passive activities to reduce emissions vary between
countries, and between industries and companies within countries. The impetus to have an ac-
curate understanding of emissions is also lacking in regions that have not been required to report
emissions under the United Nations Framework Convention on Climate Change (UNFCCC).

This problem is compounded by the difficulty in making observations of these gases. After
methane, CF4 and NF3 are the two most volatile GHGs. They have very low atmospheric abun-
dances, making routine observations in the field to the required accuracy difficult. The Advanced
Global Atmospheric Gases Experiment (AGAGE) has been monitoring the global atmospheric
trace gas budget for decades [275]. Most recently, AGAGE’s ‘Medusa’ pre-concentration GC-MS
(gas chromatography–mass spectrometry) system has been able to measure a full suite of the
long-lived halogenated GHGs [276, 277]. The Medusa is the only instrument demonstrated to
measure NF3 in ambient air samples and the only field-deployable instrument capable of mea-
suring CF4. The utility of the Medusa on Jeju Island has already been demonstrated in numerous
previous studies to understand emissions of many GHGs from East Asia [278–280].

Observations of CF4 from 2008 and NF3 from 2013 were used in an inversion framework — cou-
pling each observation with an air history map computed using a particle dispersion model [281].
These observations were used to find emission hot-spots in this unique region with weak prior
information, showing that East Asia is a major source of these species. Focused mitigation efforts,
based on these results, could have a significant impact on reducing GHG emissions from specific
areas.

Air reaches GSN from the most heavily developed areas of East Asia, making the observations
and their interpretation an informative source for top-down emission estimates in the region.
Ambient air observations are made every 130 min and are bracketed with measurement of a
standard before and after the air sample to correct for instrumental drift in calibration. Further
details on the methodology for the calibration of these gases are given in [272,275,276,282].

E3.7.3 Specification of the measurand(s)

The measurands are the spatially disaggregated gas emissions in East Asia, especially NF3 and
CF4 in South Korea.
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E3.7.4 Measurement model

The measurement model is described by the process used to obtain, ultimately, the required
measurands, given in the following subsections.

E3.7.4.1 Atmospheric model

Lagrangian particle dispersion models [283] are well suited to determine emissions of trace gases
on this spatial scale as they can be run backwards, allowing for the source–receptor relationship
to be calculated efficiently. A transport model, the Numerical Atmospheric dispersion Modelling
Environment (NAME III), henceforth called NAME, developed by the UK Met Office [284, 285],
was used. A grid is laid down over the region of interest and inert particles are advected back-
wards in time with a mass associated with each trajectory. Hence, output is provided as the
time-integrated near-surface (0 m to 40 m) air concentration (g s m−3) in each grid cell — the
surface influence resulting from a conceptual release at a specific rate (g s−1) from the site. ‘Of-
fline’, this surface influence is divided by the total mass emitted during the 1 h release time and
multiplied by the geographical area of each grid cell to form a new array with each component
representative of how 1 g m−2 s−1 of continuous emissions from a grid cell would result in a mea-
sured concentration at the model’s release point (the measurement site). Multiplication of each
grid component by an emission rate then results in a contribution to the concentration.

The meteorological parameter inputs to NAME are from the Met Office’s operational global Nu-
merical Weather Prediction (NWP) model, the Unified Model (UM) [286]. The number of vertical
levels in the UM has increased over this period, with NAME using the lowest 31 levels in 2009
and the lowest 59 levels in 2015. The NAME model was run to estimate the 30 d history of the
air on the route to GSN. The time-integrated air concentration (dosage) was calculated in each
grid cell.

The computational domain covers 391 grid cells east to west and 340 grid cells south to north
and extends to more than 19 km vertically. Despite the improvement in the resolution of the UM
from some 40 km to 17 km over the time period covered, the resolution of the NAME output was
kept constant throughout. For each 1 h period, 5000 inert model particles were used to describe
the dispersion of air. By dividing the dosage in g s m−3 by the total mass emitted (3600 sh−1 ×
1 h× 1 gs−1) and multiplying by the geographical area of each grid cell (m2), the model output
was converted into a dilution matrix H , each element (sm−1) of which dilutes a continuous
emission of 1 gm−2 s−1 from a given grid cell over the previous 30 d to simulate an average
concentration (g m−3) at the receptor (measurement point) during a 1 h period. H contains
additional contributions based on the sensitivity of changes in domain boundary conditions on
measured mixing ratio.

E3.7.4.2 Inversion framework

Let y denote the observed concentrations, which comprise two distinct components: (a) the
Northern Hemisphere (NH) background concentration, referred to as the baseline, which changes
slowly over time, and (b) rapidly varying perturbations above the baseline. These deviations
above background are assumed to be caused by emissions on a regional scale that have yet to be
fully mixed on the hemisphere scale. The magnitude of these deviations and, crucially, how they
change as the air arriving at the stations travels over different areas, is the key to understanding
where the emissions have occurred.

Examples of evaluating measurement uncertainty First edition



Example E3.7. Greenhouse gas emission inventories —- inverse modelling 286

For most long-lived trace gases (lifetimes of years or longer), the assumption that atmospheric
mole fractions respond linearly to changes in emissions holds well, that is,

y = Hx + e,

where x is a vector of emissions and domain boundary conditions, y is a vector of observations
and e is a vector of residuals. A Bayesian framework is typically used in trace gas inversions and
thus, incorporating a priori information, gives rise to the cost function

C ≡ (y −Hx )⊤R−1(y −Hx ) + (x − x p)
⊤B−1(x − x p), (E3.7.1)

where R is a diagonal covariance matrix of combined model and observation squared standard
uncertainties, x p is a vector of prior estimates of emissions and domain boundary conditions,
and B is a diagonal covariance matrix associated with x p.

The first term on the right side of expression (E3.7.1) is a measure of the mismatch between
the modelled and observed time series at the observation stations. The second term describes
the mismatch between the emissions and domain boundary conditions x and prior estimated
emissions and domain boundary conditions x p considering the uncertainties embodied in B (see
section E3.7.5.1).

The basis for expression (E3.7.1) is as follows. For an arbitrary prior probability distribution
for x , there is in general no analytical solution for the posterior distribution. However, assuming
underlying normality, independence and homogeneity for the elements of x , by using a so-called
conjugate prior the posterior distribution for x can be derived analytically [65]. Under such an
assumption, the formulation (E3.7.1) is obtained.

The cost function is minimized with respect to x using a high-quality non-negative least squares
algorithm (NNLS) [287], which determines the least-squares solution under the condition that
the emissions are non-negative.

The aim of the inversion is to estimate the spatial distribution of emissions across a defined
geographical area. The emissions are assumed to be constant over the inversion time period
(in this case, one calendar year, as is typically reported in inventories). Assuming the emissions
are invariant over such periods is a simplification deemed necessary given the limited number
of observations. In order to compare the observations and the model time series, the latter are
converted from air concentration in g m−3 to mole fraction, for instance, in parts per trillion,
using the modelled temperature and pressure at the observation point.

E3.7.4.3 Baseline calculation and domain boundary conditions

For each observation at GSN, it is valuable to have an accurate understanding of the portion of
the total mixing ratio arriving from outside the inversion domain and the portion from emission
sources within the domain; otherwise, emissions from specific areas could be biased (over- or
under-estimated). GSN is uniquely situated, receiving air masses from all directions over the
course of the year, which can have distinct compositions of trace gases, driven mainly by the
different emission rates between the two hemispheres and slow inter-hemispheric mixing.

In addition to the time-integrated air concentration produced by NAME (section E3.7.4.1), the
3-D coordinate where each particle left the computational domain was also recorded. This in-
formation was then post-processed to produce the percentage contributions from the boundaries
of the 3-D domain. Thus, the influence of air arriving at GSN from outside the domain was
simplified as a combination of air masses arriving from discrete directions.
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Observations from the Mace Head observatory (hereafter termed MHD) on the west coast of
Ireland — a key AGAGE site providing long-term in situ atmospheric observations — were used
to act as a starting point for an estimate of the composition of air from northern hemisphere (NH)
mid-latitudes entering the East Asian domain.

The composition of air arriving from any of the discrete directions was calculated using corre-
sponding multiplying factors applied to the MHD baseline, which were included as part of the
state vector x and taken as constant factors for a given inversion year. The prior baseline was
therefore perturbed as part of the inversion based on the relative contribution of air arriving from
different boundaries of the 3-D domain and the multiplying factors that are included within the
cost function (E3.7.1).

E3.7.4.4 Domains and inversion grids

The domain used in the inversion is smaller than the computational NAME transport model do-
main. GSN is situated within a region surrounded by countries with major developed industries,
and therefore the site is relatively insensitive to emissions from further away that are diluted en
route to the site. NAME is run on a larger domain to ensure that on the occasion when air circu-
lates out of the inversion domain and then back, its full 30-day history in the inversion domain
is included.

An initial computational inversion grid (termed here the ‘coarse grid’) was created based on (a)
aggregated information from the NAME footprints over the period of the inversion (in this case,
1 year), aggregating fewer grid cells in areas that are ‘seen’ the most by GSN, and (b) the prior
emissions flux, that is, areas known to have low emissions (for example, ocean), with higher
aggregation. Coarse grid cells were not aggregated over countries or regions, a total of n ≈ 100
coarse grid cells being created. After the initial inversion, an individual coarse grid cell was
chosen to divide in two by area. The decision on which single coarse grid cell was split was
based on the posterior emission density (g a−1 m−2)1 of the coarse grids and the ability of the
posterior emissions to have an impact on the observations at GSN (using information from the
NAME output). A new inversion was run using identical inputs except the number of grid cells
was increased by one by the above process. This exercise of adding one new grid cell was repeated
50 times, creating ≈ 150 coarse grid cells within the inversion domain for the final inversion.
The results from the inversions with the maximum disaggregation are presented in [269].

E3.7.5 Uncertainty propagation

E3.7.5.1 Prior emission information

Global emission estimates of CF4 and NF3 using atmospheric observations have demonstrated
that bottom-up accounting methods for one or more sectors, or one or more regions, are highly
inaccurate [271,272]. This study makes no effort to improve such inventory methods but instead
focuses on minimizing the reliance of prior information on the adopted Bayesian-based posterior
emission estimates.

Data sets from the Emissions Database for Global Atmospheric Research (EDGAR) v4.2 emission
grid maps [288] were used as the basis of the prior information used. Since these data sets
cover the years 2000 to 2010, the prior based on 2010, the latest available year, was applied

1The unit a (annum) is used for ‘year’. Note that ‘year’ is not an SI unit or derived SI unit, but is used here for
consistency with the source material [269].
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for each year from 2011 to 2015. The EDGAR emission maps were first re-gridded based on the
lower resolution of the inversion grid. In order to remove the influence of the within-country
prior spatial emission distribution, each country’s emissions were averaged across their entire
landmass.

Five inversion experiments having increasingly weaker prior information were carried out. The
first experiment involved using B based directly on the information provided by the EDGAR
emission maps. The following four experiments involved making B successively larger by a factor
of 10. The sensitivity of the solution to the prior emission uncertainty was then tested and thus
evidence provided for the low influence of prior information on the emission estimates in the
posterior.

E3.7.5.2 Input (prior) uncertainties

In addition to questionable prior information, another appreciable source of uncertainty in esti-
mating emissions stems from the model, from both the input meteorology and the atmospheric
transport model itself. The covariance matrix R is a crucial part of expression (E3.7.1) that allows
uncertainties assigned to the observations to be adjusted depending on how well it is thought the
model is performing at that time. It describes, per hour period, a combined uncertainty of the
model and the observation at each time. (The method of assigning model uncertainties remains
under development.) One method that has been applied to the modelling of GSN observations
is as follows. All elements of the modelled meteorology (wind speed and direction, boundary
layer height (BLH), temperature, pressure, etc.) are important in understanding the dilution
and uncertainty in modelling from source to receptor. However, quantifying the impact of each
element that each model particle experiences in order to quantify fully the model uncertainty at
each measurement time is beyond what is available from numerical weather prediction models.
So in order to attempt to quantify a model or observation uncertainty a pragmatic approach was
taken and BLH modelled at the receptor as a proxy.

Emissions are primarily diluted by transport and mixing within the planetary boundary layer
(PBL), and hence modelling of the PBL height (BLH) is crucial for accurate modelling of the
mixing ratios. Changes in BLH at or surrounding the measurement location can cause appreciable
changes to the measured mixing ratio. A low BLH (causing a larger model uncertainty) has two
implications for observations at the Gosan site. The first implication is a greater possibility of air
from above the PBL being sampled in reality but not in the model. Subtle changes in the BLH
at the exact measurement location are not well modelled and the difference between sampling
above or within the PBL can have considerable influence on the amount of pollutant assigned to
a back trajectory. The second implication is the greater influence of emissions from sources very
near GSN. A lower BLH means that a lower rate of dilution of local emissions will occur, in turn
increasing the signal of the local pollutant above the baseline. A relatively small change in a low
BLH will have considerable influence on this dilution compared to the same change on a high
BLH. Thus, any error in the BLH at low levels can considerably amplify the uncertainty in the
pollutant dilution. This effect is coupled with the fact that the modelled BLH has considerable
uncertainty especially when BLH is low. To assign empirically a model standard uncertainty
umodel to each hourly window of observations, BLH model information is used:

umodel = ubaseline × fBLH,

where ubaseline is the variability (standard deviation) associated with the baseline calculation
(see section E3.7.4.3), and fBLH is a multiplying factor that increases or decreases the relative
uncertainty assigned to each model time period. fBLH is based on modelled BLH magnitude and
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variability over a 3 h period and is calculated thus:

fBLH =
max(BL-inlet)
min(BL-inlet)

×
Threshold
min(BLH)

.

Here max(BL-inlet) is the larger of 100 m and the maximum distance, calculated hourly, be-
tween the inlet and the modelled BLH within a period of 3 h around the measurement time,
min(BL-inlet) is the smallest of the distances calculated between the inlet and the BLH over the
same 3 h period, ‘Threshold’ is an arbitrary value set at 500 m, and min(BLH) is the smallest BLH
recorded over the 3 h period. Thus, the relative assigned uncertainty considers the proximity of
the varying BLH to the inlet height and a recognition that observations taken when the BLH is
varying at higher altitudes (more than 500 m above ground level) is likely to have less impact
and therefore have lower uncertainty compared to those taken when the BLH is varying at lower
altitudes.

E3.7.5.3 Propagating uncertainties through the cost function

The method used for propagating uncertainties through the cost function was closely based on
the treatment [289] and is not repeated here.

E3.7.6 Reporting the result

E3.7.6.1 Country total emission estimates

Table 1 in the open-access publication [269] provides a summary of emission estimates from the
five major emitting countries or regions within the East Asian domain. These posterior emis-
sion estimates use a prior emission uncertainty in each fine grid cell of 100 times the emission
magnitude (see section E3.7.5.1).

E3.7.6.2 HFC-23

Fang et al. [278] conducted a very thorough bottom-up study within their work on HFC-23, con-
straining an inversion model using both prior information and atmospheric observations. They
employed an inverse method based on the FLEXible PARTicle dispersion model (FLEXPART) us-
ing observations from three sites in East Asia, one of which was GSN. The estimation process uses
a completely independent inverse method and only data from GSN, yet the results are very close
to those of [278], being about 10 % different in 2008 and 20 % different in 2012, and to [290].
The posterior uncertainties in these two studies mainly reflect the difference in the uncertainty
assumed for the prior information. Because a very high level of uncertainty is assumed for the
prior emissions, the posterior uncertainties are significantly higher. However, these inversion re-
sult estimates are lower than estimates based on inter-species correlation analysis [280] where
calculated emissions of HFC-23 from China in 2008 in the range 7.2 Gg year−1 to 13 Ggyear−1

are reported. Using a CO tracer-ratio method, Yao et al. [291] estimated particularly low emis-
sions of 2.1 Gga−1 ± 4.6 Gga−1 for 2011-2012. (The use of ‘±’ as here is not recommended in the
GUM [2]; we nevertheless retain it in this context since the numbers given are to be interpreted
in spirit.) The estimates derived from atmospheric inversions do not rely on any correlations with
other species or known emissions for certain species and, given two separate inversion studies,
have produced very similar results. These results suggest a more reliable top-down emission
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estimate of HFC-23 is provided. As well as providing an independent validation of the previous
work on HFC-23 [278,290], the alignment of the obtained HFC-23 emission estimates with those
previous studies provides confidence in the inversion methodology adopted for the CF4 and NF3
emission estimates.

E3.7.6.3 CF4

Generally, the understanding of emissions of CF4 and NF3 is very poor, which is highlighted in
global studies based on atmospheric observations that show bottom-up estimates of emissions are
significantly underestimated [271,272]. With such a poor prior understanding of emissions, the
effect of prior uncertainty on the posterior emissions is assessed. With assignment of uncertainty
on the prior of each fine grid cell at 10 times the prior emission value, the posterior is still
significantly constrained by the prior for both China and South Korea. When larger uncertainties
are applied to the prior (100 times to 10 000 times), the posterior estimates are very consistent,
indicating that when greater than 100 × standard uncertainty is applied, emission estimates are
most significantly constrained by the atmospheric observations.

The estimates obtained in this work are significantly higher than those provided by inter-species
correlation: [279] Kim et al. estimated CF4 emissions in the range of only 1.7 Gg a−1 to 3.1 Gga−1

in 2008 and Li et al. [280] only 1.4 Gg a−1 to 2.9 Gg a−1 over the same period. The inter-species
correlation approach inherently requires that the sources of the different gases that are compared
are coincident in time and space. HCFC-22 was used as the tracer compound for China in [279,
280] with a calculated emission field from an inverse model. Most emissions of this gas originate
from fugitive release from air conditioners and refrigerators. However, CF4 is emitted mostly from
point sources in the semiconductor and aluminium production industries with different spatial
emission distribution within countries, and likely different temporal characteristics compared to
HCFC-22.

Emission estimates from South Korea and Japan are an order of magnitude lower than those
from China. For 2008, Li et al. [280] estimate emissions of CF4 from the combination of South
and North Korea of 0.19 Gga−1 to 0.26 Gga−1 and from Japan of 0.2 Gg a−1 to 0.3 Gga−1, which
although mutually consistent are on the low end of the range of the estimates obtained in the
current study for that year: see table 1 in [269] As one of the largest, if not the largest, countries
for semiconductor wafer production, Taiwan is also an emitter of CF4. However, observations at
GSN provide only poor sensitivity to detection of emissions from Taiwan, and the results obtained
can only suggest that emissions are likely to be less than 0.5 Gg a−1. North Korean emissions were
small and no annual estimate was above 0.1 Gga−1.

E3.7.6.4 NF3

The general understanding of NF3 emissions from inventory and industry data is even poorer than
for CF4. On a global scale, the emission estimates from industry are underestimated [271]. This
study suggests that at least some emissions of NF3 stem from China; however, gaining meaningful
quantitative estimates has been difficult due to large uncertainties. In contrast, the posterior es-
timates of emissions from South Korea have relatively small uncertainties. Emissions from China
travel a greater distance to the measurement site compared to emissions from South Korea. Thus,
the magnitudes of NF3 pollution events from China, in terms of the mixing ratio detected at GSN,
are smaller than for pollution arriving from neighbouring South Korea. Also, the poorer mea-
surement precision for NF3 compared to CF4 leads to a larger baseline uncertainty, which in turn
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affects the uncertainty on the pollution episode, especially for more dilute signals. Emission esti-
mates for Japan are difficult to make without improved prior information and more atmospheric
observations in other locations. Other large changes in the obtained emission estimates from
2014 to 2015 could arguably be real. For example, Japan’s National Inventory Report for NF3
shows a reduction in emissions of 63 % between 2013 and 2015 (Ministry of the Environment
Japan et al., 2018), which is within the uncertainty of the observed relative rate of decrease.

As for CF4, emission estimates of NF3 from Taiwan and North Korea are highly uncertain. How-
ever, results from this study indicate that emissions of NF3 from Taiwan might be lower than
from South Korea despite very similar-sized semiconductor production industries. Focusing on
the more meaningful estimates from South Korea, emissions of NF3 in 2015 are estimated to be
(0.60±0.07)Gg a−1, which equates to (9660±1127)Gga−1 CO2-equivalent emissions based on
a GWP100 of 16100. GWP100 is an important policy metric. It means Global Warming Potential
and GWP100 is specific for a 100 a time horizon. It is defined as the global warming impact over
100 years for a unit mass of emissions relative to the same unit mass of emissions of CO2, that
is, 1 g of NF3 emitted has 16100 times the impact on global warming as 1 g of CO2. In this way,
emissions are weighted in trading schemes, etc..

These NF3 emissions constitute some 1.6 % of the country’s CO2 emissions [292], thus making an
appreciable impact on its total GHG budget. Further, given that the sources of NF3 are relatively
few, these emissions can be assigned to a small number of industries, potentially making NF3
an easy target for focused mitigation policy. Rigby et al. [293] updated the global emission
estimates from Arnold et al. [271], and calculated an annual emission estimate of 1.61 Gga−1

for 2012, with an average annual growth rate over the previous 5 years of 0.18 Gg a−1. Linearly
extrapolating this growth to 2014 and 2015 leads to projected global emissions of 1.97 Gga−1

and 2.15 Gg a−1 for 2014 and 2015, respectively. Thus, South Korean emissions as a percentage
of these global totals equate to 20 % for 2014 and 28 % for 2015, which is around the proportion
of semiconductor wafer fabrication capacity in South Korea relative to global totals (20 %) [294].

E3.7.7 Interpretation of results

The first Bayesian-based inversion estimates of CF4 and NF3 from the East Asian region were pre-
sented in [269]. In doing so, a class of successively weaker informative priors, largely removing
the influence of available bottom-up information, were used. As a consequence, the results of
the study are predominantly driven by the data for the period covered. However, the use of a
weak prior has a stabilizing influence on the results.

The largest CF4 emissions are from China, estimated at 4 Gg a−1 to 6 Gga−1 for six of the eight
years studied, appreciably larger than previous estimates. Despite significantly smaller emissions
from South Korea, the spatial disaggregation of CF4 emissions was consistent between indepen-
dent inversions based on annual measurement data sets, indicating the north-west of South Korea
is a hot spot for significant CF4 release, presumably from the semiconductor industry. Emissions
of NF3 from South Korea were quantifiable with small uncertainty, and represent large emissions
on a CO2-equivalent basis (some 1.6 % of South Korea’s CO2 emissions in 2015). HFC-23 emis-
sions were also calculated using the same inversion methodology with large uncertainty on prior
information. Good agreement was found with other studies in terms of aggregated country totals
and spatial emissions’ patterns, providing confidence that the adopted methodology is suitable
and the conclusions are justified for estimates of CF4 and NF3.
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The results highlight an inadequacy in both the bottom-up reported estimates for CF4 and NF3
and the limitations of the current measurement infrastructure for top-down estimates for these
gases. Adequate bottom-up estimates have been lacking due to the absence of reporting require-
ments for these gases from China and South Korea, and top-down estimates have been hampered
by poor measurement coverage due to the technical complexities required to measure accurately
these volatile, low-abundance gases. Improvements in both bottom-up information and mea-
surement coverage, alongside refinements in transport modelling and developments in inversion
methodologies, will lead to improved emissions estimates of these gases in future studies.

HFC-23 emissions were also calculated, not to add to current knowledge, but provided greater
confidence in the adopted methodology.

The method of calculating emissions of CHF3 (HFC-23) was also applied to data for the period
between 2008 and 2012. Good agreement was found with other studies, which helps to support
the methodology adopted for CF4 and NF3.

The Bayesian method adopted in the inversion framework of section E3.7.4.2 is capable of em-
ployment in other applications. Already, it is being used by BIPM and NPL in transferring the
model of the BIPM ionization chamber [295], used to establish equivalence of radioactivity mea-
surement made by the national metrology institutes, to a secondary chamber at the BIPM.

The data and software used in [269] and reported here are owned by a third party and therefore
not publicly available.
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Example E3.8

Preparation of calibration gas mixtures
using permeation

M. Čaušević, H. Meuzelaar, A.M.H. van der Veen, M.G. Cox

E3.8.1 Summary

This example describes the uncertainty evaluation of the preparation of a calibration gas mixtures
of ammonia in nitrogen by using permeation. The measurand is the amount fraction ammonia.

E3.8.2 Introduction of the application

Permeation [296] is one of several techniques to prepare dynamically calibration gas mixtures
[297]. The method is a dynamic-gravimetric method, which implies that mass flow rates are
used, together with information concerning the purity of the materials used [97] and the molar
masses of the components to calculate the composition. One of the mass flow rates originates
from the permeation tube (“permeation rate”), the other from a thermal mass flow controller.
In this example, we describe the calculation of the composition of the calibration gas mixture
expressed in amount fractions, as used in many high-end applications [298,299].

E3.8.3 Specification of the measurand(s)

The measurand is the amount fraction ammonia, the most abundant component in the perme-
ation tube. A calibration gas mixture is prepared of this component in high-purity nitrogen.

E3.8.4 Measurement model

The measurement model consists of the following parts:

1. expression to calculate the amount fraction ammonia,
2. expression to calculate the permeation rate (using regression of the recorded mass loss of

the permation tube as a function of time), including effects of temperature and pressure,
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3. expression of the molar masses of the parent gases,
4. expressions for calculating the composition of the parent gases.

E3.8.4.1 Principle

The component of interest, which in this case is ammonia (NH3), is permeated from a permeation
tube through a membrane into a flow of the carrier gas [296]. In this instance, it is high-purity
nitrogen (N2; grade 6.0). A permeation tube, containing NH3 of known purity was hooked inside
the temperature and pressure controlled permeation chamber to a magnetic suspension balance,
which continuously performs accurate mass measurements. The permeation chamber is purged
at a known and controlled flow rate by the carrier gas. The flow rate of the carrier gas is controlled
by using thermal mass flow controller [300]. The permeation rate is determined by continuously
measuring the mass of the permeation tube. The permeation rate of the component of interest
through the membrane depends on the properties of the component and the permeability of the
membrane:

– chemical nature and structure of the membrane,
– area and thickness of the membrane,
– temperature and pressure gradient of the calibration component across the membrane.

Generally, different amount fractions are realised by either changing the gas flow of the carrier gas
or the permeation flow. The latter can be changed by changing the temperature in the permeation
chamber.

The measurement equation to calculate the amount fraction yk of the component of interest k
reads as [296]

yk =

ṁ1
M̄1

x1k

ṁ1
M̄1
+ ṁ2

M̄2

, (E3.8.1)

where ṁ1 denotes the mass flow rate from the permeation tube and ṁ2 the mass flow rate mea-
sured by the thermal mass flow controller (MFC). M̄1 and M̄2 denote molar masses of the parent
gases respectively, and x1k the amount fraction of the component of interest in parent gas 1
(from the permeation tube). As nominally pure substances are used, x1k ≈ 1, but a purity anal-
ysis according to ISO 19229 [97] is necessary to determine the value for x1k and the associated
standard uncertainty. Furthermore, equation (E3.8.1) presumes that the component of interest
is not present in the carrier gas, which is for ammonia in nitrogen a reasonable assumption. The
most general form of model is that of ISO 6142-1 [301,302], which can be used if the assumptions
underlying equation (E3.8.1) are not met.

E3.8.4.2 Permeation rate

The permeation rate (mass flow rate from the permeation tube) ṁ1 is defined as [296]

ṁ1 = qm1 =
dm1

dt
,

where m1 denotes the mass of the permeation tube and t time. In this instance, a calibrated
magnetic suspension balance is used to monitor the mass loss of the permeation tube.

Temperature fluctuations in the permeation chamber affect the permeation rate of the tube and
the performance of the weighing. Also, pressure fluctuations in the permeation chamber affect
the weighing. These effects are all incorporated in the measurement model.
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E3.8.4.3 Material purity

Material purity affects the molar masses M̄1 and M̄2 of the parent gases in equation (E3.8.1). The
only restriction in the modelling is that the component of interest does not occur in the carrier
gas. As NH3 is not a common impurity in high-purity N2, this assumption is reasonable.

In this example, nominally pure ammonia and nitrogen have been used. So, the composition
of the parent gases can be described as follows. The amount fraction of the most abundant
component is calculated as [97]

xs j = 1−
q
∑

i=1
i ̸=s

x i j , (E3.8.2)

where s denotes index of the most abundant component.

E3.8.4.4 Molar masses

The molar mass of any component can be expressed as [301]

Mi =
Z
∑

z=1

νziAz , (E3.8.3)

where

– Az denotes the standard atomic weight of the element z,
– vzi coefficient of element z in the molecular formula of component i.

So, for ammonia (NH3), ν1i = 1 for nitrogen and ν2i = 3 for hydrogen. Covariances between
the molar masses of the components arise because of the use of the standard atomic weights of
the elements for all molecules. (So, the molar masses of N2 and NH3 are correlated through the
standard atomic weight of nitrogen.)

The molar mass of parent gas j is calculated as

M̄ j =
q
∑

i=1

x i j Mi , (E3.8.4)

where x i j denotes the amount fraction of component i in parent gas j.

E3.8.5 Uncertainty propagation

E3.8.5.1 General

Throughout this example, the law of propagation of uncertainty in the GUM [2] is mostly used.
For the Bayesian model that takes account of the finite resolution of the balance, Markov Chain
Monte Carlo is used to obtain a sample of the posterior probability density function, from which
an estimate and standard uncertainty are computed.
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E3.8.5.2 Amount fraction of the component of interest

The evaluation of the standard uncertainty associated with yk is performed using the law of prop-
agation of uncertainty. A convenient way to obtain the expressions for the sensitivity coefficient
(first partial derivatives of yk with respect to the input quantities) is to use differentials.

Equation (E3.8.1) can be written as

yk =
ṅ1 x1k

ṅ1 + ṅ2
,

where ṅ j = ṁ j/M̄ j . The expressions for the partial derivatives with respect to the input variables
read as

dyk =
ṅ1

ṅ1 + ṅ2
dx1k +

ṅ2 x1k

(ṅ1 + ṅ2)2
dṅ1 −

ṅ1 x1k

(ṅ1 + ṅ2)2
dṅ2,

where

dṅ j =
1

M̄ j
dṁ j −

ṁ j

M̄2
j

dM̄ j .

The expression for calculating the squared standard uncertainty (variance) associated with yk,
taking into consideration the covariances between M̄1 and M̄2 as well as between M̄1 and x1k
takes the form

u2(yk) =
�

∂ yk

∂ x1k

�2

u2(x1k) +
�

∂ yk

∂ ṁ1

�2

u2(ṁ1) +

�

∂ yk

∂ M̄1

�2

u2(M̄1) +
�

∂ yk

∂ ṁ2

�2

u2(ṁ2)

+

�

∂ yk

∂ M̄2

�2

u2(M̄2) + 2
∂ yk

∂ M̄1

∂ yk

∂ M̄2
u(M̄1, M̄2) + 2

∂ yk

∂ x1k

∂ yk

∂ M̄1
u(x1k, M̄1),

where

∂ yk

∂ x1k
=

ṅ1

ṅ1 + ṅ2

∂ yk

∂ ṁ1
=

ṅ2 x1k

(ṅ1 + ṅ2)2
1

M̄1

∂ yk

∂ M̄1
= −

ṅ2 x1k

(ṅ1 + ṅ2)2
ṁ1

M̄2
1

∂ yk

∂ ṁ2
= −

ṅ1 x1k

(ṅ1 + ṅ2)2
1

M̄2

∂ yk

∂ M̄2
=

ṅ1 x1k

(ṅ1 + ṅ2)2
ṁ2

M̄2
2

and, assuming that the amount fraction x1k is calculated by difference (see equation (E3.8.2)),

u(x1k, M̄1) = −
∑

i ̸=k

Miu
2(x1i)
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Uncertainty due to temperature variations in the permeation rate

The temperature dependence of the permeation rate follows Arrhenius’ law [303–305]; thus the
temperature dependence takes the form

ṁ= k0 exp
�

−
EA

RT

�

, (E3.8.5)

where EA denotes the activation energy and k0 is a constant, dependent on, e.g., the component
and the polymer used for the permeation tube. From this expression, it follows that

∂ ṁ
∂ T
=

k0EA

RT2
exp

�

−
EA

RT

�

. (E3.8.6)

Values for k0 and EA can be obtained using the measured permeation rate determined at two
different temperatures. From equation (E3.8.5), for permeation rates ṁ1 and ṁ2 at temperatures
T1 and T2, it follows that

EA =
R ln

ṁ1

ṁ2

1
T2
−

1
T1

and

k0 = ṁ1exp
�

EA

RT1

�

.

The uncertainty due to temperature variations in the permeation rate according to the stan-
dard [297] requires one more term, which is the standard uncertainty u(T ) associated with the
measured temperature stability of the temperature in the tube enclosure. It can be determined di-
rectly from the measured data by the following equation for the experimental standard deviation
of the observations [2].

The uncertainty due to temperature variations in the permeation rate is then calculated as

∂ ṁ
∂ T
=

k0EA

RT2
exp

�

−
EA

RT

�

u(T ). (E3.8.7)

At T = 52.45 °C, the permeation rate is −7.4921µgmin−1 with an associated standard uncer-
tainty of 0.0795µgmin−1, determined using ordinary least squares (OLS). The activation energy
is 59.164 kJ mol−1 and the value of k0 = 43.069µg min−1. The value of the sensitivity coeffi-
cient at T = 62.00 °C is 4.81× 10−7

µgmin−1 K−1. The standard uncertainty contribution due to
temperature fluctuations on the permeation rate is 0.0022µgmin−1.

Uncertainty of weighing with the balance

Factors that affect the uncertainty of weighing include resolution of the balance, repeatability, and
the linearity of the balance. Eccentric loading of the balance does not occur, since the weighted
tube is fixed in the same position during the whole measurement. The repeatability of the weigh-
ing affects the readings that are used to calculate the permeation rate, so this effect is duly taken
into account when calculating the uncertainty of the permeation rate. The resolution of the
balance amounts to 1µg and affects the assessment of the linearity of the balance.
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Fluctuations of temperature, pressure and convection are believed to be duly reflected in the dis-
persion of the weighing data and not evaluated separately. Such an evaluation could, if necessary,
be performed by determining the effect of temperature and pressure on buoyancy. Temperature
and pressure fluctuations give rise to fluctuations in the density of the carrier gas (N2 in this
example). The density can be calculated from a suitable equation of state [87] or a simplified
formula such as given in ISO 6976 [306].

Linearity testing verifies the accuracy of the instrument at intermediate values of weight. The
balance linearity test assesses the ability of the balance to accurately measure the mass of an
added weight. The uncertainty of the balance due to linearity can then be described as deviation
of the straight line between two measured values of the same load. The linearity assessment is
conducted by verifying whether the balance records a mass loss (mimicked by a weight of 100 mg)
is, within the uncertainty correctly recorded by the MSB. The permeation tube is substituted by
a 20 g weight in this approach.

The balance used for weighing the permeation tube is assessed for linearity as follows. A 20 g
weight is suspended in the permeation chamber for a prolonged period of time. The reading
of the balance is recorded in the same fashion as for a permeation tube. After allowing for a
stabilisation period and taking a sufficient number of readings, a weight of 100 mg is added.
Then, again after a stabilisation period, a further sufficient number of readings is taken. The
results of the weighings are shown in figure E3.8.1.
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Figure E3.8.1: Results of the weighings performed for a linearity assessment of the balance over
a range of 100 mg

From the data in figure E3.8.1, it can be seen that there are at least two effects at play, (1) the
repeatability of weighing and (2) the resolution of the balance. To evaluate the linearity of the
balance, the recorded mean difference of the two weighings is compared with the conventional
mass of the 100 mg weight. The mass difference as recorded by the balance is defined as

d = µ2 −µ1, (E3.8.8)

where µi denotes the mean reading of the balance. From both weighings, 700 observations are
available, which have been used. A naive evaluation would use the type A evaluation method
of either the GUM [2], based on the normal distribution, or that in Supplement 1 of the GUM
(GUM-S1) [3], based on the t distribution. Neither of these two methods is capable of addressing
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duly the two effects (finite resolution and repeatability), as in the recorded readings these effects
are inseparable. Hence, the use of a Bayesian that addresses both effects and is fitted to the data
is to be preferred.

The Bayesian evaluation used is based on the manual of the R [11] package RStan [61]. In this
manual, a Bayesian model is given for evaluating the standard deviation of the mean of a series
of observations. The likelihood is formulated as follows

zi ∼ N(µ,σ2)

with unknown mean µ and unknown varianceσ2. The zi denote raw (not rounded) observations.
The joint prior on the parameters is non-informative and takes the form of a Jeffreys’ prior [65]

p(µ,σ2)∝ σ−2.

The raw observations are distributed as

zi ∼ R(yi , r),

where R denotes the rectangular distribution with mean yi and semi-width r = 0.5µg (the res-
olution of the balance). Save for using zi instead of yi , this model is well covered in the litera-
ture [65,307] and also revisited in the framework of evaluating measurement uncertainty [63].
The complete Bayesian model computes the difference d using equation (E3.8.8). The model as
outlined for µ and σ2 is used for both weighing sequences parameters respectively (µ1,σ2

1) and
(µ2,σ2

2). The full model has been coded as shown in listing E3.8.1.

Fitting the data shown in figure E3.8.1 yields the following results (all values are in µg):

Inference for Stan model: Model3.
4 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 97.5% n_eff Rhat
mu1 100151.305 0.001 0.217 100150.880 100151.737 41351 1
sigma1 5.674 0.001 0.153 5.385 5.981 38617 1
mu2 2.268 0.001 0.201 1.871 2.662 39273 1
sigma2 5.242 0.001 0.140 4.978 5.522 39697 1
diff 100149.036 0.001 0.298 100148.454 100149.628 40528 1

Samples were drawn using NUTS(diag_e) at Wed Jan 29 12:51:54 2020.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

Four chains have been used with 10 000 iterations, of which the first 5000 have been used as
warm-up of the sampler. The definitions and interpretation of the parameters R̂ and the ef-
fective chain length neff in the Markov Chain Monte Carlo method have been discussed else-
where [63] and are not repeated here. From the values of these parameters, it can be concluded
that the fit of the model is satisfactory. This is confirmed by the trace plot of the four parameters
(figure E3.8.2). The calculated mass difference is 100149.036µg with an associated standard
uncertainty 0.298µg. The mass of the 100 mg weight is 100.181 mg with associated standard
uncertainty 0.005 mg (true mass). The relative deviation is 0.03 %, which is negligible in view of
the uncertainty on the permeation rate. Hence, neither a correction is made, nor the uncertainty
is incorporated in the calculations.
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1 data {
2 in t<lower=1> N1;
3 vec to r [N1] y1 ;
4 in t<lower=1> N2;
5 vec to r [N2] y2 ;
6 }
7 parameters {
8 r e a l mu1;
9 r e a l mu2;

10 rea l<lower=0> sigma_sq1 ;
11 rea l<lower=0> sigma_sq2 ;
12 vector<lower==0.5, upper=0.5>[N1] y_err1 ;
13 vector<lower==0.5, upper=0.5>[N2] y_err2 ;
14 }
15 transformed parameters {
16 rea l<lower=0> sigma1 ;
17 rea l<lower=0> sigma2 ;
18 vec to r [N1] z1 ;
19 vec to r [N2] z2 ;
20 sigma1 = s q r t ( sigma_sq1 ) ;
21 sigma2 = s q r t ( sigma_sq2 ) ;
22 z1 = y1 + y_err1 ;
23 z2 = y2 + y_err2 ;
24 }
25 model
26 {
27 t a r g e t += =2 ∗ log ( sigma1 ) ;
28 z1 ~ normal (mu1, sigma1 ) ;
29 t a r g e t += =2 ∗ log ( sigma2 ) ;
30 z2 ~ normal (mu2, sigma2 ) ;
31 }
32 generated q u a n t i t i e s {
33 r e a l d i f f ;
34 d i f f = mu1=mu2;
35 }

Listing E3.8.1: Model for computing the difference between two series of observations, with flat
priors on µ and lnσ2 and modelling the effect of finite resolution
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Figure E3.8.2: Trace plot of the four model parameters in the Bayesian model used to fit the
weighing data
Uncertainty of the mass flow controller used for measuring flow rate of the dilution gas

The mass flow of the carrier gas is measured with a thermal mass flow controller. The mass
flow of the dilution gas is constant and amounts to 250mL min−1, which corresponds to a mass
flow rate of 0.3126g min−1. The required density of the gas can be computed using the method
described in ISO 6976 [306,308]. The standard uncertainty of the volume flow rate is 0.2%. For
the mass flow rate, the same relative standard uncertainty applies, which is as absolute standard
uncertainty 0.0006g min−1. The uncertainty of the gas density at reference conditions is ignored,
as it is in the order of 0.02 % [308], which is negligible in view of the standard uncertainty
associated with the mass flow rate.

Uncertainty in permeation rate

The permeation data are given at two temperatures, in tables E3.8.1 and E3.8.2. According to
ISO 6145-10 [296], a number of observations shall be taken so that u(ṁ)/|ṁ| ≈ 1%. In this
example, this requirement corresponds to measurement data taken over an interval of approxi-
mately 20 min, which is a reasonable time span considering effects such as the stabilisation time
of the permeation system. The calculated permeation rate is an average taken over such a time
span.

The resolution of the time measurement is 1 s. Hence, modelling this effect with the rectangular
distribution leads to standard uncertainty of 1 s/

p
12 = 0.29 s. The resolution of the balance is

1µg. The standard deviation of weighing a 10 g weight for approximately 40 hours is 2.9µg.
These standard uncertainties have been used in errors-in-variables (EIV) regression [226, 309].
This regression method is appropriate here, for it takes into consideration the uncertainties as-
sociated with the independent and dependent variables.
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Table E3.8.1: Measured values of time t, temperature T , pressure p and mass m of the permeation
tube containing ammonia in the permeation chamber at nominally 52 °C

t/min T/°C p/mbar m/g t/min T/°C p/mbar m/g

49.39 52.45 1018.1 16.467067 58.44 52.45 1018.7 16.466 999
49.72 52.45 1018.1 16.467063 58.77 52.45 1018.7 16.466 994
50.06 52.45 1018.2 16.467059 59.11 52.45 1018.7 16.466 987
50.39 52.45 1018.2 16.467055 59.44 52.45 1018.7 16.466 986
50.72 52.43 1018.1 16.467056 59.77 52.45 1018.7 16.466 990
51.06 52.45 1018.1 16.467044 60.11 52.45 1018.7 16.466 987
51.39 52.45 1018.2 16.467046 61.63 52.45 1018.7 16.466 976
51.72 52.45 1018.1 16.467047 61.97 52.45 1018.7 16.466 967
53.25 52.45 1018.7 16.467035 62.30 52.45 1018.7 16.466 962
53.58 52.45 1018.7 16.467032 62.63 52.45 1018.7 16.466 965
53.92 52.45 1018.7 16.467029 62.97 52.45 1018.7 16.466 963
54.25 52.45 1018.7 16.467026 63.30 52.45 1018.7 16.466 960
54.58 52.45 1018.7 16.467021 63.63 52.45 1018.7 16.466 956
54.92 52.45 1018.7 16.467022 63.97 52.45 1018.7 16.466 957
55.25 52.45 1018.7 16.467021 64.30 52.45 1018.7 16.466 955
55.58 52.45 1018.7 16.467013 65.83 52.45 1018.7 16.466 939
55.92 52.45 1018.7 16.467016 66.16 52.45 1018.7 16.466 938
57.44 52.45 1018.7 16.467003 66.49 52.45 1018.7 16.466 936
57.77 52.45 1018.7 16.467002 66.83 52.43 1018.7 16.466 931
58.11 52.45 1018.7 16.467001 67.16 52.45 1018.7 16.466 926
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Figure E3.8.3: Results of the errors-in-variables regression of the permeation data at 62 °C from
table E3.8.2
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Table E3.8.2: Measured values of time t, temperature T , pressure p and mass m of the permeation
tube containing ammonia in the permeation chamber at nominally 62 °C

t/min T/°C p/mbar m/g t/min T/°C p/mbar m/g

1382.38 62.01 1014.3 16.449565 1392.65 62.00 1014.2 16.449 430
1383.91 62.00 1014.3 16.449544 1392.98 62.00 1014.2 16.449 424
1384.25 62.00 1014.3 16.449540 1393.32 62.00 1014.2 16.449 418
1384.58 62.00 1014.4 16.449526 1393.65 61.99 1014.2 16.449 418
1384.91 62.00 1014.3 16.449526 1393.98 62.00 1014.2 16.449 413
1385.25 62.00 1014.3 16.449528 1394.32 62.01 1014.2 16.449 407
1385.58 62.00 1014.3 16.449529 1394.65 62.00 1014.2 16.449 404
1385.91 62.00 1014.3 16.449522 1394.98 61.98 1014.1 16.449 395
1386.25 62.00 1014.3 16.449518 1396.52 62.00 1014.1 16.449 374
1386.58 62.00 1014.3 16.449513 1396.85 62.00 1014.1 16.449 369
1388.11 61.99 1014.2 16.449489 1397.18 62.00 1014.1 16.449 365
1388.45 61.99 1014.2 16.449491 1397.52 61.99 1014.1 16.449 359
1388.78 62.00 1014.2 16.449482 1397.85 62.00 1014.1 16.449 356
1389.11 61.99 1014.2 16.449477 1398.18 62.00 1014.1 16.449 349
1389.45 61.99 1014.2 16.449473 1398.52 62.00 1014.1 16.449 345
1389.78 62.00 1014.2 16.449464 1398.85 62.00 1014.2 16.449 339
1390.11 62.00 1014.2 16.449468 1399.18 62.00 1014.1 16.449 339
1390.45 62.00 1014.2 16.449465 1400.72 62.00 1014.2 16.449 318
1390.78 61.99 1014.2 16.449457 1401.05 62.00 1014.2 16.449 317
1392.32 62.00 1014.2 16.449434 1401.39 62.00 1014.2 16.449 308

The permeation rate is determined using regression. The results using errors-in-variables re-
gression, which takes into account the standard uncertainties associated with the time and mass
measurements, are shown in figure E3.8.3. The top-left panel shows the permeation data and
the bottom-left panel the same data with the fitted straight line. The residuals are shown in
the right panels, the top figure displaying the residuals in the x-direction (time) and the bot-
tom figure those in the y-direction (mass). Practically all residuals meet the consistency cri-
teria of Deming regression [226, 310], namely that their absolute value does not exceed the
expanded uncertainty. From the EIV regression, ṁ = −13.599µg min−1 with standard uncer-
tainty u(ṁ) = 0.088µgmin−1. Using OLS [76], ṁ = −13.599µg min−1 with standard uncer-
tainty u(ṁ) = 0.108µgmin−1. To the last stated digit, the calculated permeation rates concur,
which implies that it is justified to use OLS.

For OLS, the built-in function LINEST in MS Excel provides identical values to the OLS results
above for the slope and associated standard uncertainty. To obtain both the estimate and the
standard uncertainty, LINEST should be called with the last two arguments equal to TRUE; the
first one to allow for a non-zero intercept, the second for calculating additional statistics.

E3.8.5.3 Uncertainty due to materials purity

The squared standard uncertainty of xs j is computed as

u2(xs j) =
q
∑

i=1
i ̸=s

u2(x i j). (E3.8.9)
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The expression for the covariance term of the amount fraction of the most abundant component
and all other components in the parent gas j (i ̸= s) is given by [311]

u(xs j , x i j) = −u2(x i j).

Both expressions follow from the applying the law of propagation of uncertainty to equation (E3.8.2).
The composition of the materials used is summarised in table E3.8.3. The amount fractions am-
monia (parent 1) and nitrogen have been computed using equation (E3.8.2) and the standard
uncertainty has been obtained from equation (E3.8.9). The amount fractions methane, carbon
monoxide, carbon dioxide and oxygen in nitrogen stem from the limit of quantification of the
respective methods. The derivation of the values and standard uncertainties has been performed
using the rectangular distribution in accordance with ISO 19229 [97].

Table E3.8.3: Purity information of ammonia (Parent 1) and nitrogen (Parent 2), expressed in
amount fractions (mol mol−1)

Component Parent 1 Parent 2
x u(x) x u(x)

Argon 0.000005 0.000 003
Methane 8.00× 10−9 5.00× 10−9

Carbon monoxide 1.50× 10−8 9.00× 10−9

Carbon dioxide 1.00× 10−8 6.00× 10−9

Hydrogen 2.50× 10−8 1.50× 10−8

Water 0.010 0.002 1.00× 10−8 6.00× 10−9

Nitrogen 0.999995 0.000 003
Oxygen 5.00× 10−9 3.00× 10−9

Ammonia 0.990 0.002

E3.8.5.4 Uncertainty due to the molar masses

The squared standard uncertainty of the molar mass is computed by applying the law of propa-
gation of uncertainty of the GUM [2] to equation (E3.8.3):

u2(Mi) =
Z
∑

z=1

ν2
ziu

2(Az), (E3.8.10)

where u(Az) is obtained by using the rectangular distribution to model the uncertainty of the
standard atomic weights [301].

ISO 6142-1 [301] does not take into account covariance between the molar masses of two com-
ponents, yet according to [311] it can be calculated as:

u(Mi , M j) =
L
∑

z=1

vzi vz ju
2(Az), (E3.8.11)

where L denotes the number of atoms that components i and j have in common.

Molar masses of each component of ammonia (Parent 1) and nitrogen (Parent 2) have been cal-
culated by using the standard atomic weights of elements (E3.8.3). As an illustration of equation
(E3.8.11) we can consider the covariance between the molar masses of water and ammonia.
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The common element for these components is hydrogen (H), where its stochiometric number
in molecular formula of water is vzi = 2 and in ammonia vz j = 3. The standard uncertainty of
the standard atomic weight of hydrogen with the assumed rectangular probability distribution
amounts to u(Az) = 0.00007803, which gives u(MH2O, MNH3

) = 3.64 × 10−8. The covariance
matrix of the molar masses of each component has been computed as

VM ×1×10−8 =



























33.3 0 0 0 0 0 0 0 0
0 43.1 33.3 33.3 4.86 4.86 0 0 7.29
0 33.3 37.9 42.5 0 4.56 0 9.13 0
0 33.3 42.5 51.6 0 9.13 0 18.3 0
0 4.86 0 0 2.43 2.43 0 0 3.64
0 4.86 4.56 9.13 2.43 6.99 0 9.13 3.64
0 0 0 0 0 0 2.41 0 12.0
0 0 9.13 18.3 0 9.13 0 18.3 0
0 7.29 0 0 3.64 3.64 12.0 0 11.5



























, (E3.8.12)

where each diagonal element represents the squared standard uncertainty of molar masses and
otherwise the covariance between the molar masses of two components.

The components themselves are ordered into rows and columns according to their distribution
shown in table E3.8.3. The matrix multiplication can be carried out in MS Excel by using the
in-built function MMULT.

The molar masses of components of parent gases, accompanied by associated standard uncer-
tainties, are given in table E3.8.4.

Table E3.8.4: Molar masses of components of parent gases ammonia and nitrogen and their
standard uncertainties

Component Mi u(Mi)

Argon 39.948 5.77× 10−4

Methane 16.0425 6.56× 10−4

Carbon monoxide 28.01000 6.16× 10−4

Carbon dioxide 44.0094 7.18× 10−4

Hydrogen 2.01595 1.56× 10−4

Water 18.01535 2.64× 10−4

Nitrogen 28.01371 4.91× 10−4

Oxygen 31.9988 4.27× 10−4

Ammonia 17.03078 3.39× 10−4

The squared standard uncertainty associated with the molar mass of parent gas j is calculated us-
ing the law of propagation of uncertainty for correlated input quantities of the GUM [2, eqn (13)]:

u2(M̄ j) =
q
∑

i=1

x2
i ju

2(Mi)+
q
∑

i=1

M2
i u2(x i j)+2

q−1
∑

i=1

q
∑

k=i+1

x i j xk ju(Mi , Mk)+2
q−1
∑

i=1

q
∑

k=i+1

Mi Mku(x i j , xk j),

where x i j denotes the amount fraction of component i in parent gas j.
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The expression for the covariance between M̄1 and M̄2 can be derived as follows. Let

M̄1 =
q
∑

i=1

x i1Mi ,

M̄2 =
q
∑

i=1

x i2Mi .

Given that the Mi are correlated, we need to generalise equation (F.1.2) of the GUM [2] to
enable working with correlated variables. Suppose we have two functions Y = f (X1, . . . , XN )
and Z = g(X1, . . . , XN ); then [312]

u(Y, Z) =
∑

i

∂ f
∂ X i

∂ g
∂ X i

u2(X i) +
∑

i

∑

j ̸=i

∂ f
∂ X i

∂ g
∂ X j

u(X i , X j). (E3.8.13)

Noting that the molar masses are the shared variables in the expressions for M̄1 and M̄2,

u(M̄1, M̄2) =
∑

i

x i1 x i2u2(Mi) +
∑

i

∑

k

x i1 xk2u(Mi , Mk).

This expression could also have been obtained using the law of propagation of uncertainty for
the explicit, multivariate measurement model of GUM-S2 [4], where the above expressions for
M̄1 and M̄2 form the multivariate measurement model. The covariance matrix contains u2(M̄1),
u2(M̄2) and u(M̄1, M̄2). The molar masses of parent gases have been calculated and amount
to M̄1 = 17.04063 gmol−1 for ammonia and M̄1 = 28.013 77g mol−1 for nitrogen. The asso-
ciated squared standard uncertainties and covariance have been computed as u2(M̄1) = 3.99×
10−6 g2 mol−2,
u2(M̄2) = 2.42× 10−7 g2 mol−2 and u(M̄1, M̄2) = 1.19 × 10−7 g2 mol−2. Hence, the correlation
coefficient is r(M̄1, M̄2) = 0.121, which implies a weak correlation between the molar masses of
the two parent gases.

E3.8.6 Reporting the result

The amount fraction NH3 is 70.8µmol mol−1 with standard uncertainty 0.6µmolmol−1. For the
components that have been added intentionally (in this example NH3 and N2), it is appropriate
to assume the normal distribution or t distribution to obtain a coverage factor to calculate the
expanded uncertainty. Hence, the result can be stated as (70.8± 1.2)µmolmol−1 (k = 2) with
95 % probability.

The full composition of the calibration gas mixture is given in table E3.8.5, computed with the
measurement model from ISO 6142-1 [301]. The measurement model in this example only
provides the amount fraction, which is also given in table E3.8.5.

E3.8.7 Interpretation of results

Experience has shown that as far as the amount fractions of abundant components are concerned,
the use of the law of propagation of uncertainty suffices to obtain an estimate and standard un-
certainty of the amount fraction of the component of interest. Also the establishment of coverage
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Table E3.8.5: Composition of a calibration gas mixture of NH3 in N2, expressed in amount frac-
tions (mol mol−1)

Component y u(y) u(y)

Argon 5× 10−6 3× 10−6 60.0 %
Methane 8× 10−9 5× 10−9 62.5 %
Carbon monoxide 1.5× 10−8 9× 10−9 60.0 %
Carbon dioxide 1× 10−8 6× 10−9 60.0 %
Hydrogen 2.5× 10−8 1.5× 10−8 60.0 %
Water 7.25× 10−7 1.43× 10−7 19.7 %
Nitrogen 0.999923 0.000 003 0.0003%
Oxygen 5× 10−9 3× 10−9 60.0 %
Ammonia 7.08× 10−5 5.99× 10−7 0.8%

intervals for these amount fractions using the normal or t distribution is appropriate. For trace
components, it can be necessary to use another probability density function for establishing cov-
erage intervals, such as the beta distribution [97,313].

In this example, we have shown how the use of OLS can be justified. The principal question
was whether the uncertainty associated with the recorded time measurements could be ignored
in the calculation of the permeation rate. The resolution of the time measurement is 1 s (see
tables E3.8.1 and E3.8.2). The comparison between the permeation rates obtained by EIV and
OLS shows that the simpler method can be used.

The method of total differentials as employed in section E3.8.5.2 is a convenient way to obtain
the expressions for the partial derivatives. It is particularly useful in multistage measurement
models, as it eases the use of the chain rule of differentiation. It can be shown that the chain rule
of differentiation can be readily implemented by substituting differentials [314]. The resulting
expressions for the sensitivity coefficients are compact. When applying this method to a mul-
tivariate measurement model (such as the model in ISO 6142-1 [301] to compute the amount
fractions of all components in the calibration gas mixture), the chain rule of differentiation can
be implemented in the form of a matrix multiplication [311].
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Example E4.1

Evaluation of measurement uncertainty
in totalization of volume
measurements in drinking water
supply networks
A.S. Ribeiro, M.G. Cox, J.A. Sousa, A.M.H. van der Veen, M. Reader-Harris, L.L. Martins,
D. Loureiro, M.C. Almeida, M.A. Silva, R. Brito, A.C. Soares

E4.1.1 Summary

Management of modern urban drinking water supply utilities requires measurement of volume
and flow to obtain information to inform the decision-making process, including management
of resources and supply conditions, and relations with stakeholders. The networks involve net
balances based on large amounts of data relating to water inflows and outflows provided by
equipment in many locations, together with hidden losses. This level of complexity makes un-
certainty of measurement a valuable tool to support the analysis of performance and risk related
to these utilities. This example provides a simple approach that allows this information to be
obtained using the data already provided by regular measurements of volume.

E4.1.2 Introduction of the application

Clean water and sanitation are one of the 17 sustainable development goals (SDG) of the United
Nations’ 2030 agenda [200], being directly related to several other objectives, namely, economic
growth, sustainable cities and communities, responsible consumption and production, and cli-
mate action. The growing demand for water increases the risk of scarcity and the need to promote
water supply efficiency and the improvement of water management in our society [315].

Water utilities rely on water supply networks based on hydrological and hydraulic elements al-
lowing the supply of water to households, industries, facilities, services and other users. Mea-
surement of quantities like flow, volume, level and velocity are key to providing reliable infor-
mation to management and to assure compliance with requirements of regulators and trust in
trade [316]. The knowledge regarding measurement data reliability and associated uncertainty
is a key issue for the management of water supply networks.

311
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Modern urban water supply systems have complex distribution structures; problems exist due to
lack of knowledge about the real performance of these systems, namely, related to the impact
of hidden water losses [317–320]. The development of good measurement practices and the
evaluation of uncertainty are needed to improve the quality of data and to increase confidence
in results.

In these water supply systems, there are usually several locations enabling the inflow and outflow
of water, the management of which is concerned with the water demand and the net balance of
the system. For this purpose, equipment is placed in multiple measurement locations to provide
measurement data for the volume net balance calculation, commonly using a three-stage process:

1. Data acquisition of flow or volume measurements with a fixed sampling rate, generating
time series;

2. Data processing, allowing the totalized volume for a time interval to be obtained;

3. Calculation of the net balance of the water supply system involving sums and differences
of the totalized volumes obtained for the several measurement locations.

In this process, the balance between inflows and outflows provides values of the quantity of in-
terest (in this case, volume) commonly used in trade relations. To perform the assessment of
the compliance and to make decisions, decision rules [6,321] need to be defined, thus requiring
knowledge of the associated measurement uncertainties. For many water utilities, although the
need for uncertainty evaluation is recognized as important, this task is still considered difficult,
requiring support to apply the provisions of the GUM. The application of the GUM to the sim-
ple mathematical models used in this context enables simplified equations to be obtained that
can be used in specific conditions of measurement (for example, measurement of constant flow,
totalization of volume at a single measurement point, sums and differences obtained by combin-
ing branches of a network), allowing non-expert users to be supported by more straightforward
approaches.

E4.1.3 Specification of the measurand(s)

The quantity of (liquid) volume is the measurand of interest in water supply networks, being
used in the management of these systems and in trade relations between suppliers and users.

Volume can typically be obtained directly or indirectly. Direct measurement uses totalizer type
flow meters that count cycles related to a reference volume of fluid passing through a com-
partment. These meters are commonly based on electromechanical transducers such as volume
totalizers, oval gear totalizers, oscillating piston totalizers, lobed impeller totalizers and turbine
totalizers.

Indirect measurement uses flowmeters able to evaluate the rate of a fluid flow (volumetric flow
rate) during a time interval (since observations are a time-dependent phenomenon). They allow
the volume to be calculated as the product of fluid flow and the time interval. Such measurement
usually involves the use of flowmeters based on various techniques: vortex, swirl, ultrasonic,
differential pressure, compact orifice, pitot, variable area and mass Coriolis.

The commonest type of direct measurement uses a turbine flowmeter (developed by R. Woltman,
often being called a Woltman water meter). In this case, the measurement method makes the
transduction of energy from a flowing fluid to the mechanical motion of a rotor causing it to
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rotate with angular velocity proportional to the flow rate of the fluid [242]. The energy transfer
is made from the mechanical motion to a counter or the generation of an electrical pulse signal
(usually a sine wave), its frequency being related to a volumetric unit and the speed of rotation
proportional to the flow rate. The mathematical model is:

ωrR
v̄
= tanα, (E4.1.1)

whereωr is the angular velocity of the blade, R is the radius of the blade, v̄ is the average velocity
of the fluid and α is the angle between the blade and the vertical axis of the rotor. Letting Q be
the volume flow rate and A the effective area of the conduit, a relation between the volumetric
flow rate and the angular speed is obtained:

ωr = v̄
tanα

R
=

Q
A

tanα
R
= kQ, (E4.1.2)

where

k =
tanα
RA

.

Knowing that each pulse is related to a certain volume and combining this information with the
frequency of the electrical signal, which is related to the flow rate, an estimate of volume for a
time interval can be obtained.

Indirect methods enable the measurement of the volumetric flow rate, Q, defined as the volume
of fluid that passes in a section per unit time (sometimes referred to as volume velocity using
the symbol V̇ ) and having m3 s−1 as SI unit. Volumetric flow rate can be obtained using equa-
tion (E4.1.3), which relates the fluid flow velocity, v, and the cross-sectional vector area, A, where
measurement takes place:

Q = vA. (E4.1.3)

Considering the case of a closed conduit with circular geometry having an internal diameter, D,
and a cross section orthogonal to the velocity vector 0°, equation (E4.1.3) becomes

Q = vAcosθ = v
πD2

4
. (E4.1.4)

Theoretically, to obtain the volume, V , from flow rate measurement, an integration over a time
interval ∆t should be made:

V =

∫

∆t
Qdt. (E4.1.5)

At the experimental level, flow rate is usually measured by sampling at constant time intervals,
∆t, creating a discrete set of n values of a time series. Thus, equation (E4.1.5) can be approxi-
mated by the sum

V =
n
∑

i=1

Q i∆t, (E4.1.6)

allowing the volume to be calculated at a certain physical location of the water supply system
where measurement is taken during the time interval considered.
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E4.1.4 Measurement model

The measurement model presented in equation (E4.1.6) can be applied to the two common cases
of behaviour of flow in water supply systems [322]:

– flow rate showing similar cycles of water consumption, usually related to users’ demands;
figure E4.1.1 typifies the consumption of water measured during a time interval, sometimes
making it possible to model (predictively) the system demands; and

– flow rate having two stages, fully open at a certain stationary flow or closed (being con-
trolled by the provider or by the user), as illustrated in figure E4.1.2, during a time interval
(e.g. filling a storage tank).

Figures E4.1.1 and E4.1.21 [322] illustrate the behaviour of experimental time series showing
the two cases mentioned.

Figure E4.1.1: Input flow measurement experimental data obtained in a water distribution net-
work with users and water losses during 6 days with time interval of sampling of 1 hour

The total volume, Vx, at a measurement location, x, obtained during a time interval, is given by
the sum of the n single volume observations, Vx,i , measured in that interval:

Vx =
n
∑

i=1

Vx,i . (E4.1.7)

To estimate the net balance of a water supply system with various measurement locations for
inflow and outflow having volumes V (in)x and V (out)

x , respectively, the net volume, Vnet, is given
by

Vnet =
∑

V (in)x −
∑

V (out)
x . (E4.1.8)

Although the mathematical model is of a very simple nature, for the water industry the issue
concerns the need to have tools that are easy to understand and simplify the calculation in order to
reduce time spent in this process for large quantities of data obtained from multiple measurement
locations.

1reproduced with permission
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Figure E4.1.2: Flow measurement experimental data obtained at the entrance of a storage tank
during 3 days with time interval of sampling of 30 minutes

E4.1.5 Uncertainty propagation

As starting point for the analysis of the problem, equation (E4.1.7) provides the functional rela-
tion used to obtain the output quantity required, the totalized volume (for a single location), Vx,
given as a sum of discrete values measured during the time of acquisition. Flow measurement
standard uncertainty is expressed in relative form (proportional to the measured values of the
quantity), given by

w (Vi) =
u (Vi)

Vi
, (E4.1.9)

requiring the relative standard uncertainty of each single volume measurement to be known. The
standard measurement uncertainty of the totalized volume (at a single location) can be obtained
by applying the LPU of the GUM [2] (not considering (auto)correlation):

u2 (Vx) =

�

∂ Vx

∂ Vx,1

�2

u2
�

Vx,1

�

+

�

∂ Vx

∂ Vx,2

�2

u2
�

Vx,2

�

+ · · ·+
�

∂ Vx

∂ Vx,n

�2

u2
�

Vx,n

�

. (E4.1.10)

Considering that the partial derivatives of V with respect to the Vi are in this case all equal to
unity, equation (E4.1.10) becomes

u2 (Vx) = u2
�

Vx,1

�

+ u2
�

Vx,2

�

+ · · ·+ u2
�

Vx,n

�

. (E4.1.11)

Substitution of relation (E4.1.9) into (E4.1.11) yields an equation based on relative uncertainty
contributions:

u2 (Vx) = w2
�

Vx,1

�

V 2
x,1 +w2

�

Vx,2

�

V 2
x,2 + · · ·+w2

�

Vx,n

�

V 2
x,n. (E4.1.12)

Some conditions usually met in water supply measurement systems allow the development of
further simplifications of the calculations needed to obtain measurement uncertainty without
requiring additional information. Three of these cases are presented:

– constant relative standard uncertainty in variable flow rate measurements,
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– constant relative standard uncertainty in stationary flow rate, and

– sampling effect in stationary flow rate measurements.

For the first condition, considering the common case of having a relative standard uncertainty
approximately constant for the measurement interval and variable flow rate:

w
�

Vx,i

�

= w
�

Vx,1

�

= w
�

Vx,2

�

= · · ·= w
�

Vx,n

�

, (E4.1.13)

which can be used in equation (E4.1.12) to obtain

u2 (Vx) = w2
�

Vx,i

�

�

V 2
x,1 + V 2

x,2 + · · ·+ V 2
x,n

�

. (E4.1.14)

The use of this expression allows the evaluation of the standard uncertainty of the total volume
based on the knowledge of the relative standard uncertainty common to the measurement range
and the set of values measured over time. Furthermore, it facilitates the approach used to eval-
uate the total volume relative standard uncertainty, again using equation (E4.1.9) in the form

w (Vx) =
u (Vx)

Vx
. (E4.1.15)

Consider an example with 10 measurements of volume (experimental data given in table E4.1.1),
each with relative standard uncertainty of 2.0 %.

Table E4.1.1: Example of 10 measurements of volume obtained using a volumetric counter

Vx,1 58m3 Vx,6 61m3

Vx,2 63m3 Vx,7 52m3

Vx,3 62m3 Vx,8 57m3

Vx,4 57m3 Vx,9 69m3

Vx,5 79m3 Vx,10 76m3

With this information, using equations (E4.1.14) and (E4.1.15), the total volume standard uncer-
tainty and relative uncertainty, respectively, would be evaluated for the total volume of 643 m3:

u (Vx) =
Æ

(0.022) (40 878)m3 ≈ 4.0m3, (E4.1.16)

w (Vx)≈ 0.64%. (E4.1.17)

The second condition yields cases having a relative standard uncertainty approximately constant
for the measurement interval and stationary flow rate, which for measurements taken at the
same frequency of acquisition implies the measurement of approximately the same volume for
each reading. This is the case found when filling a storage tank (figure E4.1.2):

Vx,i = Vx,1 = Vx,2 = · · ·= Vx,n. (E4.1.18)
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This relation applied to equation (E4.1.12), which does not take into account autocorrelation,
gives

u2 (Vx) = w2
�

Vx,i

�

�

nV 2
x,i

�

, (E4.1.19)

from which

u (Vx) =
p

nw
�

Vx,i

�

Vx,i , (E4.1.20)

w (Vx) =

p
nw
�

Vx,i

�

Vx,i

Vx
. (E4.1.21)

These equations provide a relation between the value of the measurand and the number of mea-
surement samples (n), the effect of which is explored in the next section.

The third condition yields cases having a relative standard uncertainty that is approximately
constant for the measurement interval and stationary flow rate, being of interest in relating the
measurement uncertainty evaluation to the decision regarding the sampling procedure.

The first rationale for the definition of a sampling interval should naturally be an interval ade-
quate to allow observations of the expected phenomenon variability. However, in special cases
like that mentioned with constant flow, intuitively one could think that it had no impact on the
level of accuracy of the method.

Looking at equations (E4.1.20) and (E4.1.21), applicable to obtaining the standard uncertainty
and relative standard uncertainty of the total volume, respectively, it becomes clear that results
depend on the number of samples, n, and on the value obtained of each observation of the
volume, Vi. For a certain total volume V that is fixed, when n grows, the single observation of
volume decreases proportionally:

bVt =
V
n

. (E4.1.22)

Using this relation in equation (E4.1.21), a simplified relation is obtained showing that the rel-
ative standard uncertainty of the total volume decreases with an increasing number of samples,
n :

w(V ) =
w (Vi)p

n
. (E4.1.23)

Consider a simple example, having a relative standard uncertainty of 2 %, and 10 observations
each of 100 m3, or five observations of 200 m3, with total volume in both cases of 1000 m3.
Applying equation (E4.1.23) the results are, for the data series of 10 values,

w(V ) =
w (Vi)p

n
= 0.63 %, (E4.1.24)

and, for the data series of 5 values,

w(V ) =
w (Vi)p

n
= 0.89 %. (E4.1.25)

Having these results for a single location, the development of an approach applied to a water
supply system network in which the water volume net balance is the main output of the evaluation
becomes the most relevant outcome of this example.
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Most of water supply infrastructures are part of services provided for trade of this resource, in
which it is required to make a net balance of inflow and outflow of water volume in the system
and in a set period. The approach usually taken is based on measuring the volume at different
locations and the use of sums and differences to obtain information needed in the economic
process. In many cases, it also makes it possible to identify water losses and to evaluate the
efficiency of the system. A functional relation to characterise the net balance is given by

Vnet =
l
∑

i=1

Vi −
m
∑

j=1

eVj + δVloss, (E4.1.26)

where Vi represents the n measuring locations of inflow of water into the system, eVi represents
the m measuring locations of water outflow of water in the system, and δVloss the water losses
during the transfer process.

The LPU presented in the GUM for a functional relation of the type, Y = f (X1, · · · , Xn) , for linear
models, provides an exact solution given by:

u2(y) =
n
∑

i=1

�

∂ f
∂ x i

�2

u2 (x i) + 2
n−1
∑

j=1

n
∑

k= j+1

∂ f
∂ x j

∂ f
∂ xk

u(x j)u(xk)r(x j , xk). (E4.1.27)

It includes, as the first sum, contributions related to the diagonal elements of the covariance
matrix and, as the second sum, contributions related to the correlation of input quantities, where
r
�

x j , xk

�

is the correlation associated with x j and xk

Applying the LPU to equation (E4.1.26), neglecting the correlation contributions and noticing
that the partial derivatives are all equal to one, the estimate of the net balance uncertainty (with-
out correlation), u

�

Vnet,nc

�

, is given by

u2 (Vnet.nc) =
l
∑

i=1

u2 (Vi) +
m
∑

j=1

u2
�

eVj

�

+ u2 (δVloss) . (E4.1.28)

Considering the existence of a similar standard uncertainty, u(V ), for the inflow and outflow
measurement locations, and neglecting the contribution related to the quantity lost, a simplified
equation is obtained:

u
�

Vnet,nc

�

≈
Æ

(l +m)u(V ). (E4.1.29)

The nature of the net balance model, however, requires the consideration of correlation between
the inflow and outflow contributions. The evaluation of the correlation of measured values ob-
tained from time-series at different locations of the net is a difficult task because of the dynamics
of the system. At any instant of time the flow at a measuring point a of the net is not equivalent
to the flow at another point b. Thus, a matching algorithm is applied to the time-series that is
able to evaluate time delays based on flow and distance between measurement locations in the
net branches.

Given the formula to obtain the net-balance standard uncertainty without correlation, in order to
estimate the limits of the uncertainty in the presence of correlation, another approach is presented
considering the assumption of maximum correlation between input quantities. To implement this
approach, it is needed to calculate the contribution of the term

2
n−1
∑

j=1

n
∑

k=2

∂ f
∂ x j

∂ f
∂ xk

u(x j)u(xk)r(x j , xk). (E4.1.30)
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Again, the same standard uncertainty, u(V ), for all input quantities is considered and it is as-
sumed that the correlation coefficient is maximum, r (x i , xk) = 1, for the inflow and outflow
measurement locations, allowing equation (E4.1.30) to be simplified:

2
n−1
∑

j=1

n
∑

k=2

∂ f
∂ x j

∂ f
∂ xk

u2(V ). (E4.1.31)

Regarding the partial derivatives, for the l inflow input quantities, ∂ f
∂ Vi
= 1; and for the m outflow

input quantities, ∂ f
∂ eVj
= −1. These conditions imply that the will be positive and negative unit

contributions from correlated terms due to multiplying the partial derivatives. In this case, there
are three types of combinations:

a) Product of partial derivatives of inflow input quantities, l, being the result of the product
equal to 1

b) Product of partial derivatives of outflow input quantities, m, being the result of the product
equal to 1

c) Product of partial derivatives of inflow and outflow input quantities, being the result of the
product equal to -1

The number of combinations without repetition in cases a) and b) can be evaluated using the
general expression for choosing r members from a set of n members,

�n
r

�

= n!
r!(n−r)! . In these

cases, r is equal to 2, and the general expression to apply is
�

n
2

�

=
1
2

n(n− 1), (E4.1.32)

which gives, for combinations multiplied by 2 (factor in equation (E4.1.31)), for the case a for
case b), m(m− 1). For case c) there are 2(lm) possible combinations.

Combining these results, expression (E4.1.31) becomes,

[l(l − 1) +m(m− 1)− 2(lm)]u2(V ) =
�

(l −m)2 − l −m
�

u2(V ), (E4.1.33)

which gives a final expression for the net-balance standard uncertainty, considering that input
quantities are taken as fully correlated,

u
�

Vnet,fc

�

=
�

(l +m) + (l −m)2 − l −m
�

1
2 u(V ) = |l −m|u(V ). (E4.1.34)

Equations (E4.1.29) and (E4.1.34) provide the uncertainty evaluation considering the two ex-
treme possibilities for the net balance uncertainty (input quantities are not correlated or are fully
correlated, respectively). Therefore, for each net system, it is possible to obtain extreme limits
for the uncertainty.

Taking a simple example of a network with l = 6 inflow contributions and m= 4 outflow contri-
butions, using equations (E4.1.29) and (E4.1.34), the results would be:

u
�

Vnet,nc

�

=
p

l +mu(V ) = 3.2u(V ), (E4.1.35)

u
�

Vnet,fc

�

= |l −m|u(V ) = 2u(V ), (E4.1.36)

since, for positive l and m

|l −m|<
p

l +m,

correlation contributions reduce the uncertainty, which allows u
�

Vnet,nc

�

to be viewed as an upper
bound for the net-balance uncertainty. The case l = m gives u

�

Vnet,fc

�

= 0.
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E4.1.6 Reporting the result

For the present example, three cases of behaviour of the experimental data related to the mea-
surement of flow rate to obtain the quantity volume were considered:

– constant relative standard uncertainty in variable flow rate measurements;

– constant relative standard uncertainty in stationary flow rate; and

– sampling effect in stationary flow rate measurements.

Furthermore, it was assumed that the relative standard uncertainties of the individual measure-
ments were approximately equal, using the knowledge of the authors of typical measuring sys-
tems.

Based on this approach to the problem, equations were obtained allowing the calculation of the
standard uncertainty related to the volume measured for a time interval.

For the first case, considering a single location, x , and the condition of having a relative standard
uncertainty approximately constant for the measurement interval and variable flow rate, the
simplified equation (E4.1.14) was given:

u2 (Vx) = w2
�

Vx ,i

�

�

V 2
x ,1 + V 2

x ,2 + · · ·+ V 2
x ,n

�

.

For the second case, considering a relative standard uncertainty approximately constant for the
measurement interval and stationary flow rate, the simplified equation (E4.1.19) was given:

u2 (Vx) = w2
�

Vx ,i

�

�

nV 2
x ,i

�

.

The third case was intended to explore the impact of sampling in the calculation of uncertainty,
allowing to obtain a relation (E4.1.20) between the measurand and the number of measurement
samples (n)

u (Vx) =
p

nw
�

Vx,i

�

Vx,i .

Finally, considering the water volume net balance in an infrastructure based on equation (26),

Vnet =
l
∑

i=1

Vi −
m
∑

j=1

eVj + δVloss,

where Vi represents the l measuring locations of inflow of water into the system, eVi represents
the m measuring locations of water outflow of water from the system, and δVloss the water losses
during the transfer process.

Considering the existence of a similar standard uncertainty, u(V ), for the inflow and outflow
measurement locations, and neglecting the contribution related to the quantity lost, simplified
equations are obtained for the net balance uncertainty without correlation effects (nc) and with
full correlation (fc) giving the bounds for expected values:

u
�

Vnet,nc

�

≈
p

l +m u(V ),
u
�

Vnet,fc

�

≈ |l −m|u(V ),

showing that net-balance standard uncertainty not including the effect of correlation gives an
upper bound, and that the increase of the number of locations used in the net balance will increase
the measurement standard uncertainty of the estimated net volume.
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E4.1.7 Interpretation of results

Observation of time-varying phenomena but with conditions of a cyclic or permanent nature is
common in many branches of science and is known in particular in the context of hydrology.

Given the usual complexity of metering systems in infrastructures such as those promoting the
management of resources such as water supply, it is very useful to find solutions that can simplify
the application of uncertainty calculation considering, on one hand, the importance of integrating
this component into the instrumentation metrological management process and, on the other
hand, by the relevance that this information may have in the decision making process.

Considering this context, the main objective of this study is to demonstrate how it is possible
to develop mechanisms that allow the calculation of measurement uncertainties in a simplified
way in these processes. Moreover, the study demonstrates that under some circumstances it is
possible to perform the calculation without the need to apply sophisticated operations such as
the determination of partial derivatives. Even if these derivatives can be obtained using simple
numerical operations, they often lead to difficulties in the industrial context.

In addition to the analysis presented within the scope of volume observation at a specific lo-
cation, the infrastructure management process makes decisions based on the water volume net
balance that results from the combination of information of inflow and outflow at different system
locations. The approach presented here makes it possible to relate the measurement standard
uncertainty to the number of measurement sites considered, establishing a relationship with com-
plementary information of interest for the design and development component of the measuring
systems that are included in the life cycle of these infrastructures.

If actual correlation information were available such as common effects relating to the flowmeters
used, that information should be taken into consideration in providing more valid uncertainties
associated with estimates of water volume net balance.
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Example E4.2

Uncertainty of the orifice-plate
discharge coefficient

M. Reader-Harris, C. Forsyth and T. Boussouara

E4.2.1 Summary

The uncertainty of the orifice-plate discharge coefficient given by the Reader-Harris/Gallagher
(1998) Equation has been calculated taking account of the uncertainty of the data on which it is
based and of the variability in manufacture permitted by ISO 5167-2. Although using the correct
method to determine the uncertainty in ISO 5167-2 has made an insignificant difference to the
value given in the standard, in other similar cases where the uncertainty for an artefact is based
on data from other similar artefacts the uncertainty values obtained by the correct method may
be significantly different from those by the incorrect method.

E4.2.2 Introduction to the application

It is estimated that at least 40 % of industrial flow meters in use at present are differential-
pressure-based devices, with the orifice plate being the most popular for accurate measurement
of fluid flow. These devices have been described in standards for many years: ISO 5167 [323,324]
now provides the most wide-ranging of these standards. ISO 5167 is used in the measurement
of many different fluids across a wide range of applications; nevertheless, the measurement of
natural gas is highest in terms of financial importance: about £16 billion (=C20 billion) of natural
gas each year in the UK is measured by devices conforming to this standard [325].

A diagram of an orifice meter is provided in figure E4.2.1. Differential pressure can be measured
using one of three permissible tapping pairs: corner tappings (in the corners), D and D/2 tappings
(one diameter upstream and half a diameter downstream of the orifice plate) and flange tappings
(one inch (25.4 mm) both upstream and downstream of the orifice). Flange tappings are the
most convenient and most common. Data taken with Corner 2 tappings (a different method of
inserting corner tappings) have not been analysed in this report.

NOTE ‘Orifice plate’ can refer just to the plate or to the whole meter; where it is important to be
clear that the plate and pipework are meant, ‘orifice meter’ can be used.
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Figure E4.2.1: The approximate pressure profile through an orifice meter
E4.2.3 Specification of the measurand(s)

The measurand is the mass flow rate.

E4.2.4 Measurement model

E4.2.4.1 Fundamental equation

The attraction of using an orifice meter is that it is very rarely necessary to calibrate it in a flowing
fluid. It is usual to make it in accordance with the pattern in ISO 5167 and then calculate the
mass flowrate from equation (E4.2.1) using measurements made in the factory, measurements
made in the field and equations in ISO 5167:

qm =
Cϵ

p

1− β4

πd2

4

p

2ρ1∆p, (E4.2.1)

where qm is the mass flow rate, C is the discharge coefficient (given in ISO 5167-2 and discussed
in section E4.2.4.2), ϵ is the expansibility factor (given in ISO 5167-2), ρ1 is the density at the
upstream tapping, ∆p is the differential pressure, and β is the diameter ratio, equal to d/D,
where d and D are the orifice and pipe diameters.

E4.2.4.2 Reader-Harris/Gallagher (1998) equation

Using ISO 5167-2:2003, the discharge coefficient is given by the Reader-Harris/Gallagher (1998)
Equation [326]:
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C = 0.5961+ 0.0261β2 − 0.216β8 C∞ term ,

+ 0.000521
�

106β/ReD

�0.7
+ (0.0188+ 0.0063A)β3.5

�

106/ReD

�0.3
slope term ,

(E4.2.2a)

+
�

0.043+ 0.080e−10L1 − 0.123e−7L1
�

(1− 0.11A)
β4

1− β4
upstream tapping term ,

− 0.031
�

M ′2 − 0.8M ′1.1
2

�

β1.3 downstream tapping term.

Where D < 71.12 mm
�

2.8′′
�

the following term should be added to equation (E4.2.2a):

+0.011(0.75− β)
�

2.8−
D

25.4

�

small pipe diameter term .

(E4.2.2b)

where D is the pipe diameter in mm.

In equation (E4.2.2a),

A=
�

19000β
ReD

�0.8

and M ′2 =
2L′2

1− β
.

The Reynolds number, ReD, can be obtained from

ReD =
4qm

πµ1D
,

where µ1 is the dynamic viscosity at the upstream tapping. L1 is the quotient of the distance of
the upstream tapping from the upstream face of the plate and L′2 is the quotient of the distance
of the downstream tapping from the downstream face of the plate.

Equations (E4.2.2a) and (E4.2.2b) are based on the EEC/API database, which is described in
pages 131 to 133 of [327]. These equations represent model fits to the data, the model being
a hybrid based on the physics and some empirical terms. Where flange tappings are used it is
required that both ReD ≥ 5000 and ReD ≥ 170β2D, where D is expressed in millimetres.

To achieve this discharge coefficient and its associated uncertainty there are many specific re-
quirements in ISO 5167-2 [324] on the dimensions and geometry of both the orifice plate (de-
picted in figure E4.2.2) and the upstream and downstream pipework. There is a picture of one
of the original EEC plates in Figure E4.2.3.

The uncertainty in the discharge coefficient is often the largest component of the uncertainty in
the flowrate and thus of great importance for fair taxation and custody transfer.

E4.2.4.3 Calculating the uncertainty

It is not simple to calculate the uncertainty for the orifice discharge-coefficient equation. Evaluat-
ing the uncertainty for that equation is different from most evaluations of uncertainty: a normal
evaluation of uncertainty is for an instrument which is calibrated and itself subsequently used.
However, the orifice discharge-coefficient equation is used for plates other than those used to
collect the data.
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Figure E4.2.2: Diagram of an orifice plate Figure E4.2.3: An EEC orifice plate

Because the standard deviation in the EEC/API database does not necessarily reflect the variabil-
ity permitted by the standard it is not appropriate to evaluate the expanded uncertainty, corre-
sponding to 95 % coverage, of the orifice discharge-coefficient equation as twice the standard
deviation of the data in the EEC/API database about the equation, which is the method used by
API 14.3:1990 [328].

Rather than simply taking twice the standard deviation it is desirable first to reduce as much as
possible the effects of random errors in the database (see section E4.2.4.4), then to determine
what the uncertainty would be for an orifice plate of average edge sharpness in a pipe of average
roughness, taking into account the uncertainty of the original data as well as the spread of the
data about the equation. However, there is variability within prescribed limits permitted in the
manufacture of orifice meters: so the uncertainty of an orifice meter in accordance with ISO 5167-
2 should have additional uncertainty incorporated. In this way the uncertainty of the Reader-
Harris/Gallagher (1998) Equation can be calculated.

NOTE: It is possible to look at the deviations between orifice plates that were not used to derive
the equation and the equation itself (Appendix E4.2.A), but there is less information about
these plates and the uncertainty of their calibration, and the permitted variability should still be
included.

E4.2.4.4 Reducing the effects of random errors in the database

For each orifice meter (considering an orifice plate with three different sets of tappings as three
orifice meters) using a single point from each laboratory means that the points are independent
and can be combined as in E4.2.4.6. Moreover, this has the advantage described in this section.

Twice the standard deviation of the data in the database about the Reader-Harris/Gallagher
(1998) Equation includes the effects of random errors in the original sets of data collected with
equipment whose random scatter may be higher than that available today. To avoid the uncer-
tainty of the equation being increased by the uncertainty due to random errors in each set of data
in the database it is possible to fit each set of data in the database as a linear function of Re−0.5

D
and then represent each line by a single point at the middle of its range. Such fitted points have
reduced uncertainty due to random errors. Figure E4.2.4 (discussed below) illustrates this well.

Since uncertainties increase for large β , small Red (= ReD/β), small d, and large ∆p/p1 (where
p1 is the static pressure at the upstream tapping) the data for 0.19< β < 0.67, Red > 150000β ,
d > 50mm and, if gas, ∆p/p1 ≤ 0.04 were analysed as a core population (NIST Gaithersburg
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data with∆p less than 180 mbar were excluded: see E4.2.4.6). Data taken to determine installa-
tion effects were also excluded). For this core population of 7031 points the standard deviation,
s, about the equation was determined: 2s = 0.41 %; there are 339 data sets making up the core
population: for the 339 mid-range calculated points 2s = 0.38%. To illustrate the difference in
deviations Figure E4.2.4 shows one set of 24 water points from the database. Although twice
the r.m.s. (root mean square) deviation of the (24) points about the Reader-Harris/Gallagher
(1998) Equation is 0.28 %, the (expanded) uncertainty due to random effects of the fitted point
is 0.06 %. The deviation of the fitted point from the Reader-Harris/Gallagher (1998) Equation
and the mean deviation of the 24 points from the Reader-Harris/Gallagher (1998) Equation are
both equal to −0.03 %.

Figure E4.2.4: One set of NEL 4′′ (100 mm) β = 0.57 water data from the orifice-plate discharge-
coefficient database

In figure E4.2.4 the fitted straight line is almost exactly parallel to the Reader-Harris/Gallagher
(1998) Equation; i.e. the errors vary very little with Reynolds number (have nearly zero gra-
dient). At the fitted point the fitted discharge coefficient is equal to the average value of the
measured discharge coefficients. The difference between taking the average of the deviations
and calculating the deviation at the fitted point is less than 0.001 %. The uncertainty of the fit-
ted line at the fitted point has not been included, since the fitted point will not have a larger
uncertainty than the individual points do.

NOTE 30 years after the data were collected it would be hard to re-evaluate the uncertainties; the
average deviations from different laboratories are generally consistent even when it is assumed
that the deviations are not a function of Reynolds number (see E4.2.4.6).

E4.2.4.5 Errors if data had average pipe roughness and edge sharpness

The database contains points with a range of values of relative pipe roughness, Ra/D, and relative
edge sharpness, re/d: the fitted equation has effectively been derived for a particular relative pipe
roughness (as a function of Reynolds number) and relative edge sharpness (based on the relative
pipe roughness and relative edge sharpness of the original data); if the actual orifice meter to
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be manufactured for a user of ISO 5167-2 had the same relative pipe roughness and the same
relative edge sharpness as those on which the fitted equation is based the uncertainty could be
considerably reduced.

The Reader-Harris/Gallagher (1998) Equation is associated with the relative pipe roughness
(here expressed as k/D) and friction factor λ shown in Table 9 of ISO/TR 12767 [329], given
here as table E4.2.1.

Table E4.2.1: Values of k/D and λ associated with the Reader-Harris/Gallagher (1998) Equation

ReD 1× 104 3× 104 1× 105 3× 105 1× 106 3× 106 1× 107 3× 107 1× 108

1× 104k/D 1.75 1.45 1.15 0.9 0.7 0.55 0.45 0.35 0.25
λ 0.031 0.024 0.0185 0.0155 0.013 0.0115 0.0105 0.01 0.0095

The relative edge sharpness associated with the Reader-Harris/Gallagher (1998) Equation can
be calculated from the measurements of edge sharpness for each plate. The average reduces as
the Reynolds number increases: see figure E4.2.5, on which the following equation is plotted:

1000
re

d
= 0.6343e−0.139 lg ReD . (E4.2.3)

Figure E4.2.5: Edge sharpness (re) relative to the orifice diameter for each set of EEC data: values
are plotted at the pipe Reynolds number of the fitted point for the set; equation (3) in the figure
legend refers to equation (E4.2.3) in the text.

Taking the fitted points in the database, calculating (using the calculations in E4.2.4.7 and
E4.2.4.7) what the value would have been with the relative pipe roughness in table E4.2.1 and
the edge sharpness in equation (E4.2.3) (where there are multiple points taken in the same labo-
ratory taking averages to include all the points) gives the values that are included in subsequent
sections.

To the API data no correction was made for edge sharpness.
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E4.2.4.6 Calculating the deviations taking account of the uncertainty of the labo-
ratories

It is necessary also to consider the uncertainty contributed by the original laboratories: on the
one hand the uncertainty of the average of the data from the independent laboratories should be
added to the uncertainty of the Equation; on the other hand the scatter contributed by calibration
in a range of independent laboratories should be removed from the uncertainty of the Equation.

Almost all the European orifice plates were calibrated in multiple laboratories. The errors for the
orifice plates in 24′′ (600 mm) pipe are shown in figure E4.2.6.

Figure E4.2.6: Discharge coefficient deviation from the Reader-Harris/Gallagher (1998) Equa-
tion for the EEC 24” (600 mm) data adjusted to average pipe roughness and edge sharpness (in
this key and those for figures E4.2.7 and E4.2.8 the value of β and the pressure tappings used
are given)

In figure E4.2.6 for β = 0.37,0.5 and 0.57 the deviations are consistent and have little variation
with Reynolds number. It is less obvious whether the same is true for β = 0.2 and 0.66. Testing
the data with the χ2 test in section 5.3 of Cox [70] gives χ2

obs < 1.01 for β = 0.37,0.5 and 0.57,
χ2

obs < 3.34 for β = 0.66, and 8.8 < χ2
obs < 11.4 for β = 0.2. The consistency check in Cox is

met for all β except 0.2. Removing either the highest set or the lowest one for β = 0.2 gives
consistency: removing the lowest one gave slightly lower χ2

obs.

A similar test is applied to the EEC 10′′ (250 mm) data: see figure E4.2.7. The results were found
to be consistent for all pairs of tappings (except for a plate that was subsequently replaced. Only
the data from the replacement plate are included in figure E4.2.7 or in subsequent calculations).
‘0.57∗’ refers to a second orifice plate with β = 0.57.

The fact that the data are consistent in the 10′′(250mm) and 24′′(600 mm) sets suggests that
the claimed uncertainties are not too small (at least after some of the uncertainty due to random
effects has been removed).
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Figure E4.2.7: Discharge coefficient deviation from the Reader-Harris/Gallagher (1998) Equa-
tion for the EEC 10′′ (250 mm) data adjusted to average pipe roughness and edge sharpness

A similar test is applied to the EEC 4′′ (100 mm) data: see figure E4.2.8. The results are only
found to be consistent for all three tappings once the second set of three points from the right
was removed for both β = 0.57 and β = 0.66 and the left hand set of three points removed for
β = 0.57.

Figure E4.2.8: Discharge coefficient deviation from the Reader-Harris/Gallagher (1998) Equa-
tion for the EEC 4” (100 mm) data adjusted to average pipe roughness and edge sharpness

The 4′′ (100 mm) data that were collected to study installation effects have been omitted.

The NIST Gaithersburg data have an uncertainty that depends very strongly on the differential
pressure. By limiting the data to those with differential pressure above 180 mbar each of the
averaged data has an uncertainty within 0.01 % of 0.135 %.

If three points or fewer for a single plate from a laboratory met the criteria in E4.2.4.4 the aver-
aged point was not used.
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The weighted average deviations for the consistent sets are shown in figure E4.2.9. Each point
represents a different orifice meter (considering an orifice plate with three different sets of tap-
pings as three orifice meters). The weighted averages were obtained using the method in sec-
tion 5.1 of Cox [70].

Figure E4.2.9: Weighted average deviations for the consistent sets

In support of the idea that a plate has a single value of deviation some modern NEL data are
provided in Appendix E4.2.B: the data are roughly parallel to the Reader-Harris/Gallagher (1998)
Equation. Moreover, in figures E4.2.6 to E4.2.8 roughly the same number of deviations have a
positive slope against the Reynolds number as have a negative slope. Even if it were not accepted
that the deviation can be considered constant then for each plate the weighted mean deviation
would apply for an intermediate value of the Reynolds number.

The deviations of the points in figure E4.2.9 are summarized in table E4.2.2.

Table E4.2.2: Deviations of the fitted and adjusted points from the Reader-Harris/Gallagher
(1998) Equation

β < 0.6 β ≈ 0.66

Mean deviation (%) 0.001 −0.004
2 x r.m.s. deviation (%) 0.220 0.288
Expanded uncertainty of points 0.141 0.130
Square root of the sums of the squares of the two lines above (%) 0.261 0.315

The expanded uncertainty of the points was obtained by evaluating the uncertainty for each point
in figure E4.2.9 using the method in section 5.2 of Cox [70] and then taking the r.m.s. value of
all these uncertainties. The expanded uncertainty of the individual points in figure E4.2.9 varied
from 0.11 % to 0.16 %.

The API data (with no averaging between facilities) give roughly the same deviations as the EEC
data when all the fitted and adjusted data points in each set are considered.
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E4.2.4.7 Variability permitted by ISO 5167

Introduction

What is required as the uncertainty of the discharge-coefficient equation is the uncertainty of an
orifice meter with the variability permitted by the standard.

Pipe roughness

The effect of pipe roughness on discharge coefficient is given in figure E4.2.10.

Figure E4.2.10: The effect of rough pipe on the orifice plate discharge coefficient; equation (5)
in the figure legend refers to equation (E4.2.5).

Figure E4.2.10 gives measured and computed (using CFD (Computational fluid dynamics)) val-
ues of ∆C as a function of β3.5∆λ, where λ is the friction factor given by

∆p =
λρū2 x

2D
, (E4.2.4)

where ∆p is the difference in pressure between two tappings spaced a distance x apart in a pipe
of diameter D and ū is the mean velocity in the pipe.

References to the computational and experimental data are given in Reader-Harris [327], which
also includes the derivation of equation (E4.2.5) :

∆Crough =
�

3.134+ 4.726A′
�

β3.5∆λ, (E4.2.5)

where ∆Crough is the change in discharge coefficient due to a change in friction factor ∆λ, and
A′ is given by

A′ =
�

2100β
ReD

�0.9

. (E4.2.6)

P, the maximum permissible percentage shift in C , is given in table E4.2.3.
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Table E4.2.3: Maximum permissible percentage shift, P, in C due to pipe roughness

β P U

0.1≤ β ≤ 0.2 0.5β 0.7− β
0.2≤ β ≤ 0.5 0.5β 0.5
0.5< β ≤ 0.6 0.25 0.5
0.6< β ≤ 0.71 0.5(1.667β − 0.5) 1.667β − 0.5

0.71< β 1.13β3.5 1.667β − 0.5

U , the stated percentage uncertainty of the Reader-Harris/Gallagher (1998) Equation in ISO
5167-2, is also given in table E4.2.3, for P was determined to ensure that for β ≤ 0.5, where
other sources of error are dominant, P/U ≤ β; for 0.5< β ≤ 0.71 P/U = 0.5; for 0.71< β P/U
increases from 0.5 at β = 0.71 to 0.55 at β ≤ 0.75.

NOTE It can be checked that this value of P is correct, since it, together with the value of λ
associated with the data in the database (and thus with the Reader-Harris/Gallagher (1998)
Equation) in Table E4.2.1, and equation E4.2.5 to calculate the effect of ∆λ on C , leads to the
maximum and minimum values of pipe roughness for pipes upstream of orifice plates given in
Tables E4.2.1 and E4.2.2 of ISO 5167-2 (except that the maximum value of Ra/D has been set
as 1.5× 10−3; so in some cases the maximum deviation is smaller than P above).

Installation effects

The requirement for upstream lengths used by ISO 5167-2 was put forward by API: all the
installation-effects data of sufficient quality are brought together; at least two high-quality sets of
data are necessary to determine each upstream length; the permissible upstream length chosen
for the standard is a location at which data were taken; moreover, the data taken at that location
and all the data with longer upstream lengths must lie within the acceptable band; the acceptable
band is half the (expanded) uncertainty of the Reader-Harris/Gallagher (RG) Equation at infinite
Reynolds number as calculated by API (from the scatter of the original data about the Equation).
The value of this (expanded) uncertainty is shown in figure 1-4 of API MPMS 14.3.1:1990 (fig-
ure 4 of API MPMS 14.3.1:2012 [330]): for example, the value is 0.51 % at β = 0.2, reducing to
0.44 % at β = 0.5 and 0.6 and then increasing to 0.47 % at β = 0.67 and 0.56 % at β = 0.75.

NOTE By using this rule the maximum shift due to upstream installation should in practice often
be significantly less than the maximum permitted value (i.e., half of the (expanded) uncertainty
shown in figure 1-4 of API MPMS 14.3.1:1990).

Edge sharpness

The permissible value of edge sharpness is given by re ≤ 0.0004d. The effect of edge radius
is given in figure E4.2.11, which shows the data of Hobbs and Humphreys [331], taken in 12′′

(300 mm) pipe. The data points with the smallest value of re/d for each β are taken as having
no shift in discharge coefficient. The slope of the fitted line is approximately 550; so the effect
of a change of edge radius of 0.000 27d on C is 0.15 %.

Putting a maximum effect of edge sharpness as 0.15 % gives the lower (dash-dot) line shown
in figure E4.2.5. All the points in the database are between the dashed line and the maximum
permissible value. For ReD greater than 1× 106 the edge sharpness cannot cause a deviation of
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more than 0.15 % from the Reader-Harris/Gallagher (1998) Equation. No actual EEC plates gave
a deviation due to edge sharpness more than 0.09 % from the Reader-Harris/Gallagher (1998)
equation.

Figure E4.2.11: Effect of orifice edge radius (re) on discharge coefficient: NEL tests

Plate bending

With a slope of 1 % the theoretical model of Jepson and Chipchase [332, 333] gives a shift in
discharge coefficient of a little less than 0.2 % in absolute value at maximum. In practice an
orifice meter system is checked so that it is known that the plate has a slope of less than 0.5 %
(i.e. a shift in discharge coefficient of less than 0.1 %) when there is no differential pressure
across the plate (ISO 5167-2:2003 5.1.3.1). The plate thickness will have been chosen so that
elastic deformation will not give a shift in discharge coefficient of more than 0.1 % (i.e. the plate
has a slope of less than 0.5 % due to elastic bending: see ISO/TR 9464:2008 5.2.5.1.2.3 [334]).

It is assumed (reasonably) that the two types of bending, i.e. at manufacture and due to differ-
ential pressure, are independent of each other.

Eccentricity

The ISO limit according to figure 6 of ISO/TR 12767:2007 [329] gives shifts up to about 0.09 %
in magnitude.

Steps

The effect of a permissible step is about 0.1 % at worst for β = 0.67: in the case depicted in
figure E4.2.12 (see Reader-Harris and Brunton [335]) a Schedule 10 pipe is permitted beyond
10D from the orifice plate and a Schedule 80 pipe beyond 28D from the orifice plate (no length
is specified for a Schedule 120 pipe). The requirements are in 6.4.3 of ISO 5167-2:2003. The
effect is about 0.1(0.6/0.67)3.5 at worst for β = 0.6 as a dependence on β raised to a power of
about 3-4 is typical for velocity profile effects on orifice plates [327, p. 249] and the minimum
lengths are 10D and 26D for Schedule 10 pipe and Schedule 80 pipe, respectively.

Examples of evaluating measurement uncertainty First edition



Example E4.2. Uncertainty of the orifice-plate discharge coefficient 335

Figure E4.2.12: Upstream steps: % shift in discharge coefficient due to pipes at various distances
upstream of an orifice plate (β = 0.67) in a Schedule 40 pipe

E4.2.5 Uncertainty propagation

All the above uncertainty components are listed in Table E4.2.4.

Table E4.2.4: Calculated percentage expanded uncertainty components for the Reader-
Harris/Gallagher (1998) Equation

β 0.2 0.3 0.4 0.5 0.6 0.67

Base uncertainty for
calculated pipe rough-
ness and edge sharp-
ness

0.261 0.261 0.261 0.261 0.261 0.315

Pipe roughness 0.1 0.15 0.2 0.25 0.25 0.31
Installation effects 0.255 0.24 0.23 0.22 0.22 0.235
Edge sharpness* 0.15 or 0.09 0.15 or 0.09 0.15 or 0.09 0.15 or 0.09 0.15 or 0.09 0.15 or 0.09
Plate bending at man-
ufacture

0.1 0.1 0.1 0.1 0.1 0.1

Plate bending due to
differential pressure

0.1 0.1 0.1 0.1 0.1 0.1

Eccentricity 0.09 0.09 0.09 0.09 0.09 0.09
Steps 0.003 0.007 0.018 0.039 0.068 0.1

* 0.15 % includes likely practical range; 0.09 % includes all the EEC data.

If the components in table E4.2.4 (with 0.15 % for edge sharpness) are combined by taking the
root sum square of the components in table E4.2.4 the total expanded uncertainty increases
monotonically from 0.44 % to 0.48(4)% as β increases from 0.2 to 0.6 and then to 0.55(8)%
at β = 0.67. All these are a little smaller than the uncertainty values in ISO 5167-2:2003 (see
table E4.2.3).

If, following the GUM [2], the standard uncertainty is obtained from the expanded uncertainty
by dividing by 2 for the base uncertainty (since the probability distribution is assumed to be
normal) and by

p
3 for the other components (since their probability distributions are assumed

to be rectangular) the components are given in table E4.2.5.
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Table E4.2.5: Calculated percentage standard uncertainty components for the Reader-
Harris/Gallagher (1998) equation

β 0.2 0.3 0.4 0.5 0.6 0.67

Base uncertainty for calcu-
lated pipe roughness and edge
sharpness

0.131 0.131 0.131 0.131 0.131 0.158

Pipe roughness 0.058 0.087 0.115 0.144 0.144 0.179
Installation effects 0.147 0.139 0.133 0.127 0.127 0.136
Edge sharpness* 0.087 or

0.052
0.087 or
0.052

0.087 or
0.052

0.087 or
0.052

0.087 or
0.052

0.087 or
0.052

Plate bending at manufacture 0.058 0.058 0.058 0.058 0.058 0.058
Plate bending due to differen-
tial pressure

0.058 0.058 0.058 0.058 0.058 0.058

Eccentricity 0.052 0.052 0.052 0.052 0.052 0.052
Steps 0.002 0.004 0.01 0.023 0.039 0.058

* 0.087 % includes likely practical range; 0.052 % includes all the EEC data

If the components in table E4.2.5 (with 0.052 % for edge sharpness) are combined by taking
the root sum square of the components in table E4.2.5 the standard uncertainty increases mono-
tonically from 0.233 % to 0.260 % as β increases from 0.2 to 0.6 and then to 0.301 % at β =
0.67. When these are multiplied by 1.96 the expanded uncertainty increases monotonically from
0.45(6)% to 0.51 % as β increases from 0.2 to 0.6 and then to 0.59 % at β = 0.67. Four out of six
values are smaller than the uncertainty values in ISO 5167-2:2003 (see table E4.2.3); none of the
values exceeds the uncertainty values in ISO 5167-2:2003 by more than 0.01 %. In some cases
the higher value of edge-sharpness uncertainty might be appropriate; in many cases there will
be no steps and the plate thickness will be chosen to avoid plate bending near the maximum per-
mitted; moreover, in many cases the uncertainty due to installation effects has been overstated
(see section E4.2.4.7).

E4.2.6 Reporting the result

The uncertainty of the Reader-Harris/Gallagher (1998) Equation has been calculated taking ac-
count of all the sources of uncertainty, including the uncertainty of the original data and the
variability permitted by ISO 5167-2. The value is very similar to that in ISO 5167-2; the stan-
dard does not need to be changed. Confidence in such an important standard has been increased.

E4.2.7 Interpretation of results

Although no change to ISO 5167 will be proposed, a standard has been set here for other similar
calculations where results may be significantly different from those by the incorrect method.

Although the uncertainty of calibration facilities has improved since the 1980s it would not be
easy to achieve a very large reduction in uncertainty by collecting new data and fitting an im-
proved discharge-coefficient equation: if the base uncertainty in table E4.2.4 were halved the
total expanded uncertainty would only reduce by about 0.06 % (unless, for example, the mini-
mum upstream straight lengths were increased or a narrower range of permitted pipe roughness
achieved).
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E4.2.A Comparison with other data

One way to determine the uncertainty of the Reader-Harris/Gallagher (1998) Equation is to
examine how it performs when the discharge coefficients of orifice plates not used to determine
the equation are compared with it. Just over 100 runs of calibration data using more than 50
orifice plates [336–345] have been compared with it: for each set of data a mean deviation has
been calculated. These sets of data include both water data and high-pressure gas data; so there is
a useful range of Reynolds number. The mean deviations are shown in figure E4.2.13. From this
figure the quoted uncertainty in ISO 5167-2:2003 appears reasonable, but no account is taken of
the uncertainty of the data itself or any analysis of the range of permissible manufactured pipes
or plates or installations.

Figure E4.2.13: Percentage mean deviation in C from the Reader-Harris/Gallagher (1998) Equa-
tion from more than 50 orifice plates

E4.2.B Calibrating 8 ′′ (200 mm) orifice plates

Six orifice plates were calibrated in 8 ′′ (200 mm) pipe: one β = 0.2, one β = 0.4 and four β =
0.6. The plates had spark-eroded orifices: although no data on edge sharpness or pipe roughness
were collected it has been assumed that the edge radius was 9µm, the same as on smaller orifices
from the same manufacturer (see [327, p .71]) and that the pipes had the roughness given on the
drawings (upstream pipes were 0.8µm or 1.6µm; 1.2µm has been used for the graphs below).

Figures E4.2.14 to E4.2.16 show the data for the three values of β: the Reader-Harris/Gallagher
(1998) Equation (here called (RG(1998)) is shown on each together with its uncertainty bands;
an adjusted equation taking account of the edge sharpness of the orifice and the roughness of
the pipe is also shown together with an uncertainty of 0.261 %. The uncertainty of the data is
0.16 %. Moreover, all the sets of data are close to parallel to the Reader-Harris/Gallagher (1998)
Equation.
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Figure E4.2.14: Data for β = 0.2

Figure E4.2.15: Data for β = 0.4
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Figure E4.2.16: Data for β = 0.6
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Example E4.3

Calibration of a sonic nozzle as an
example for quantifying all
uncertainties involved in straight-line
regression

S. Martens, K. Klauenberg, B. Mickan, C. Yardin, N. Fischer, C. Elster

E4.3.1 Summary

When calibrating a sonic nozzle, it is recommended to estimate the straight-line relationship be-
tween the discharge coefficient of the nozzle and the square root of the inverse Reynolds number
for a gas. The slope and intercept of this relation characterise the nozzle, and reliable estimates
and uncertainties for this multivariate measurand are mandatory for its use as transfer or working
standard.

This example emphasises the importance of accounting for correlation for a reliable uncertainty
evaluation. The use of common reference standards and instruments causes correlation among
and between the discharge coefficient and the Reynolds number, and impacts significantly on
the uncertainty of the characteristic parameters of the nozzle. To show this, a measurement
model based on the weighted total least-squares method (WTLS) method is applied and its input
quantities are fully characterised. In particular, we demonstrate in detail how to jointly evaluate
the correlation, uncertainties and estimates for the input quantities of least-squares methods
applying the Monte Carlo method. As a result, sonic nozzles can be characterised in line with
the Guide to the expression of Uncertainty in Measurement (GUM).

E4.3.2 Introduction of the application

Sonic nozzles are widely used to determine gas flow rates with high precision and excellent repro-
ducibility. Technically called Critical Flow Venturi Nozzles, they are internationally recognised
as a calibration standard for gas flow meters and other flow measurement devices, which in turn
facilitate traceable measurements, e.g., in gas and oil pipelines, in chemical, pharmaceutical and
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food industries as well as for fuel dispensers, water, heat and gas meters at home. Sonic nozzles
are also employed in dilution systems for the preparation of calibration gas mixtures [346], for
flow limiting and overspeed protection of gas flow meters, to name a few.

For toroidal sonic nozzles, the standard ISO 9300 [347] specifies the following relation between
the discharge coefficient Y and the Reynolds number Re

Y = β0 +
β1p
Re

, (E4.3.1)

see Appendix E4.3.A for some background information. The two parameters β0 and β1 char-
acterise a specific nozzle (depending on its inner contour curvature and surface structure [348,
349]). The use of the nozzle as transfer standard depends on the reliability of the estimates and
uncertainties of these parameters.

0.92

0.94

0.96

0.010 0.015 0.020

inverse square root of Reynolds number  X 

di
sc

ha
rg

e 
co

ef
fic

ie
nt

  Y
 

methods

WTLS
WTLS w/o
correlation

Figure E4.3.1: Estimates and uncertainties for the discharge coefficient Yn as a function of the
inverse square root of Reynolds number Xn (both dimensionless) for measurements n= 1, . . . , 30.
The data are available online in repository [350]. Superimposed are the estimated straight-line
relationship (solid lines) and the associated 95 % coverage bands (dashed lines) obtained by
WTLS (blue) and by WTLS without correlation (yellow).

In this example, a toroidal sonic nozzle shall be characterized based on N = 30 pairs of discharge
coefficients Yn and inverse square root of Reynolds numbers Xn = Re−0.5

n , n= 1, . . . , N . Estimates
and uncertainties for these quantities, as measured at PTB and displayed in figure E4.3.1, rely on
common input quantities which cause correlation (cf. [2, clause 5.2.4]). Such correlations among
and between the quantities Xn and Yn along with their uncertainties need to be evaluated and
accounted for, to reliably quantify the characteristic slope β1 and intercept β0 of the straight-line
relation (E4.3.1).

The aim of this example is to derive reliable estimates and uncertainties for the characteristic
values of a sonic nozzle following the GUM. As illustrated in figure E4.3.2, we will proceed in
two stages:
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1. Estimates, uncertainties, and correlations for all quantities Xn, Yn are evaluated. For this
purpose, probability distributions for all input quantities are propagated through a first,
joint measurement model with the help of the MCM.

2. Estimates and uncertainties for the measurands β0 and β1 are evaluated from a second
measurement model. The latter is based on the WTLS method which accounts for all un-
certainties and correlations derived in stage 1.

E4.3.3 Specification of the measurands

Let X denote the inverse square root of the Reynolds number, and Y the discharge coefficient.
According to equation (E4.3.1) and equivalently standard [347], Y depends linearly on X ,

Y = β0 + β1X . (E4.3.2)

The measurands are the intercept parameter β0 and slope parameter β1 of this straight-line
model.

The quantities X = (X1, . . . , XN )⊤ and Y = (Y1, . . . , YN )⊤ influence the measurands and in turn
are influenced by further input quantities. For stage 1 of this example, (X , Y ) will itself be a
measurand – a 2N -dimensional, intermediate one. The full covariance matrix U as well as the
estimates (x , y) for this intermediate measurand shall be evaluated and in turn used to evaluate
estimates and uncertainties for the final measurands β0 and β1. The covariance matrix U contains
on its diagonal the squared standard uncertainties associated with the estimates, and on its off-
diagonal positions, the covariances associated with pairs of these estimates, see [4, clause 3.20].
Thus, uncertainties and correlations can be derived directly from U .

E4.3.4 Measurement models

The uncertainty evaluation in this example consists of two consecutive measurement models, see
figure E4.3.2. Section E4.3.4.1 first describes the measurement model for the intermediate mea-
surand (X , Y ) and characterises its input quantities. Section E4.3.4.2 describes the subsequent
measurement model for the final measurands β0 and β1. Equivalently, both models could be
viewed as a single, multi-stage model.

E4.3.4.1 Intermediate measurands X and Y (stage 1)

Referring to appendix E4.3.A, the inverse square root of the Reynolds number X = (X1, . . . , XN )⊤

and the discharge coefficient Y = (Y1, . . . , YN )⊤ are modelled as follows

Xn =

√

√πM D
4Qn

, Yn =
4Qn

πD2Ψ∗n
with n= 1, . . . , N , (E4.3.3)

and denoting Q = (Q1, . . . ,QN )⊤ and Ψ∗ = (Ψ∗1 , . . . ,Ψ∗N )
⊤. Equations (E4.3.3) define the joint,

2N -variate measurement model for the intermediate measurand (X , Y ). The throat diameter of
the nozzle D, the dynamic viscosity of the gas M , and the n-th real mass flow rate Qn influence
the quantity Xn. The same diameter D, the same flow rate Qn, and the n-th critical mass flow
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input quantities intermediate 
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final 
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stage 1 stage 2
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Figure E4.3.2: Illustration of the two consecutive measurement models and their input quantities.
density Ψ∗n impact on the quantity Yn. (See also figure E4.3.2.) The intermediate measurands X
and Y are correlated due to the common quantities Q and D. The common quantities M and D
cause additional correlation among the X and among the Y , respectively.

Let us characterise these input quantities for the considered example. The estimates and un-
certainties for the throat diameter D and the dynamic viscosity of the gas M are displayed in
table E4.3.1. A Gaussian distribution is assigned to each of these two input quantities. The quan-
tities Qn and Ψ∗n , n= 1, . . . , N , are derived from measurements which were calibrated against ref-
erences. The estimates and Type A evaluated uncertainty contributions uA(.) are obtained from
repeated measurements and are provided online in the repository [350]. The Type B uncertainty
contributions, say uB(.), are given in table E4.3.1. The Type A and Type B evaluated uncertainties
are added quadratically

q

u2
A(.) + u2

B(.) for each quantity Qn and Ψ∗n , and a Gaussian distribution
is assigned to each. In addition, we assume independence between the Type B contributions
to the components of the quantities Q and Ψ (which could be revised using [347, clause 9]
and [351] if necessary). For general guidance, how to assign distributions to input quantities
(also multivariate ones), see GUM-S1 and GUM-S2 [3,4].

Having specified all input quantities, the assigned distributions can be propagated through model
(E4.3.3) with the help of the Monte Carlo method to arrive at a joint 2N -dimensional distribution
of the intermediate measurand (X , Y ), see section E4.3.5.1 and Supplement 2 to the GUM [4].
Estimates (x , y) and the full covariance matrix U can then be derived from the Monte Carlo
samples of this distribution.

Table E4.3.1: Characterization of the input quantities in measurement model (E4.3.3). The
estimate and Type B evaluated, relative standard uncertainty as well as the assigned distribution
is given for each input quantity.

Input Quantity Distribution Estimate Unit Type B relative stand. References
uncertainty ×10−3

D throat diameter Gaussian 1.2067× 10−3 m 0.4165 Cal. Cert.1

M dynamic viscosity Gaussian 1.82 × 10−5 kg m−1 s−2 5 [352]
Qn mass flow rate Gaussian – kg s−1 0.55 [353]
Ψ∗n critical mass flow Gaussian – kgm−2 s−1 0.25 [347, clause 8.3]

[351,354]
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E4.3.4.2 Weighted total least-squares method (stage 2)

The measurement model for the straight-line regression (E4.3.2) can be constructed from the ap-
propriate least-squares method. The frequently applied ordinary and the weighted least-squares
method (WLS) may be inappropriate here, because they assume the measured values x to be
exact. WTLS takes into account uncertainties associated with the estimates x and y for the in-
termediate measurands X and Y as well as their associated covariances. WTLS is recommended
by multiple standards [77,110] and applied here.

The WTLS is based on minimizing the generalized sum of squares

S =

�

x − eξ
y − (eβ0 + eβ1

eξ)

�⊤

U −1

�

x − eξ
y − (eβ0 + eβ1

eξ)

�

, (E4.3.4)

with respect to eβ0, eβ1 and the unknown, “true” values of x called eξ. Here, the vector x contains
the elements x = (x1, . . . , xN )⊤ and the vectors y and eξ are likewise defined. The minimizer

of (E4.3.4) defines the solution (bβ0, bβ1,bξ
⊤
) of the WTLS.

The measurement model is then defined by replacing the estimates x and y in the minimization
of S by the underlying quantities X = (X1, . . . , XN )⊤ and Y = (Y1, . . . , YN )⊤, respectively. That is,

(β0,β1,ξ⊤)⊤ = arg min
eβ0,eβ1,eξ

�

X − eξ
Y − (eβ0 + eβ1

eξ)

�⊤

U −1

�

X − eξ
Y − (eβ0 + eβ1

eξ)

�

, (E4.3.5)

where only (β0,β1) define the final measurand in this example.

E4.3.5 Estimation and uncertainty evaluation

Following the GUM [2,4], estimates bβ0 and bβ1 of the final measurands are obtained by evaluat-
ing measurement model (E4.3.5) at the estimates x and y of the intermediate measurand (X , Y ).
The uncertainties associated with (bβ0, bβ1) result from propagating the covariance matrix U as-
sociated with these intermediate estimates through the same model, which will be detailed in
section E4.3.5.2. Before, section E4.3.5.1 describes how to arrive at the intermediate estimates
x and y , and the full covariance matrix U following the GUM [4].

E4.3.5.1 Intermediate measurands X and Y (stage 1)

The probability distributions of the input quantities M , D,Q andΨ∗, as assigned in section E4.3.4.1,
shall be propagated through model (E4.3.3) to evaluate estimates, uncertainties and correla-
tions for the intermediate measurand (X , Y ). Application of the multivariate LPU [4, clause 6]
is lengthy due to the full correlation structure resulting from model (E4.3.3), and it may not be
adequate due to non-linearities in model (E4.3.3). Instead, the MCM [4, clause 7] is applied to
approximate the 2N -dimensional distribution for (X , Y ) numerically and summary information
is obtained subsequently.

In particular, R repeated samples are drawn from the 2N +2 independent Gaussian distributions
of the input quantities M , D,Q and Ψ∗. Model (E4.3.3) is applied to each of these samples, gen-
erating R samples of the intermediate measurand (X , Y ) – each sample representing a random

1The dimensions of the inner geometry are measured by an accredited laboratory using a coordinate measuring
machine (CMM). The uncertainty is calculated based on the method of “virtual CMM” [355].
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realisation from the 2N -dimensional distribution. If these output samples form a matrix of di-
mension 2N×R, an estimate (x , y) is obtained by averaging over its columns, and the covariance
matrix U is obtained by calculating the covariance between all rows (cf. [4, clause 7.6]).

This summary information for (X , Y ) is available online in repository [350]. The estimates and
uncertainties are displayed in figure E4.3.1 and the correlation matrices for X as well as for Y are
displayed in figure E4.3.3. One observes that the correlation coefficients associated with pairs of
estimates xn and xm, n ̸= m, are close to one. This is due to the fact that xn and xm are affected by
a common, dominating source of uncertainty; in fact, the covariance element u(xn, xm) and the
uncertainty u(xn) are governed by the squared relative uncertainties associated with the estimate
of M (cf. table E4.3.1). The correlation coefficients associated with pairs of estimates yn and ym
are mostly about 2/3 (see right panel in figure E4.3.3). Only the correlation associated with the
components n = 23 and n = 24 of Y is smaller, because the contributing Type A uncertainties
associated with Qn and Ψ∗n are larger. Consequently, the combined uncertainties u(y23) and
u(y24) are larger than for the other components of Y , while the covariance element u(yn, ym)
remains unaffected. The magnitude of the correlation between X and Y is much smaller (in the
range between −0.067 and −0.045) and not displayed here.

Let us note, that model (E4.3.3) theoretically involves a division by 0 and a square root of negative
numbers for normally distributed input quantities M , D,Qn and Ψ∗n . Practically, this does not
cause problems here because the uncertainty of the input quantities is much smaller than the
estimate (less than 0.5 %). Formally, truncated normal distributions could be assigned to each
input quantity instead.

The above Monte Carlo procedure was implemented in R Markdown [356] code, which is also
available online in repository [350]. We chose to implement R = 1 × 108 Monte Carlo trials
providing a relative numerical accuracy of smaller than 1 × 10−7 for the estimates (x , y), but
as high as 5 × 10−3 for the covariances U (especially for the covariance between X and Y).
Nevertheless, the results of the final measurand (β0,β1) vary little when repeating the Monte
Carlo procedure (no more than 1× 10−3 times the associated standard uncertainty).
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Figure E4.3.3: Upper triangle of the correlation matrices associated with x (left panel) and with y
(right panel), obtained from model (E4.3.3) and by the Monte Carlo method, cf. sections E4.3.4.1
and E4.3.5.1. To increase the visibility of strongly correlated values, values with a perfect corre-
lation of 1 are marked in grey.
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E4.3.5.2 Weighted total least-squares method (stage 2)

The measurement model (E4.3.5) based on WTLS is implicit, multivariate, non-linear and usu-
ally no closed form is available for its solution. An iterative scheme for deriving estimates bβi with
i = 0, 1 and their associated uncertainties u

�

bβi

�

is described in clause 10 of the standard [77] and
implemented in the R Markdown code in [350]. This simple scheme also provides correlations
between β0 and β1. The iterative algorithm requires the covariance matrix U to be symmetric
and positive definite, which is fulfilled by construction. For numerically semidefinite matrices
the Cholesky decomposition of U could be replaced by a modified version [357], or other decom-
position methods.

Assuming a Gaussian distribution2 for the measurand, a 95 % coverage interval for each measur-
and βi is given by

�

bβi − 1.96 u
�

bβi

�

, bβi + 1.96 u
�

bβi

��

. (E4.3.6)

A two-dimensional, joint 95 % coverage region can be calculated following [4, clause 6.5.2].

E4.3.6 Reporting the result

Table E4.3.2 contains the estimates cβ0 and cβ1 for the final measurands and their associated stan-
dard uncertainties. These results are obtained following the GUM by applying measurement
model (E4.3.5) for the weighted total least-squares method to the estimates x , y and their asso-
ciated covariance matrix U; which in turn are obtained by applying measurement model (E4.3.3)
using the Monte Carlo method.

Table E4.3.2: Results obtained by weighted total least-squares (WTLS), by weighted least-squares
(WLS), and by WTLS regression without correlation (WTLS w/o correlation). Listed are the
estimates for slope and intercept, their associated uncertainties and covariance.

Method bβ0 u(bβ0) bβ1 u(bβ1) cov(bβ0,bβ1)

WTLS 0.99663 0.000961 −3.5267 0.04827 −2.53× 10−5

WLS 0.99664 0.000966 −3.5275 0.04855 −2.58× 10−5

WTLS w/o correlation 0.99666 0.000842 −3.5295 0.08223 −6.75× 10−5

For comparison, measurement model (E4.3.5) is applied ignoring any correlation (WTLS w/o
correlation) by assuming a diagonal covariance matrix U (see also [77, clause 8]). In addition,
measurement model (E4.3.5) is applied omitting the uncertainty and correlation in the quantity
X , as well as the correlation between X and Y . That is, a simple weighted least-squares (WLS) fit
is applied accounting only for the uncertainty and correlation in quantity Y (see also [77, clause
9]). Figure E4.3.4 shows the estimates bβ0 and bβ1 (markers), their joint 95 % coverage region
(ellipses), and the associated 95 % coverage interval for these three least-squares methods.

Nearly identical results have been obtained by applying the GUM-S2 [4] to measurement
model (E4.3.5) and the algorithm in [77, clause 10]. The non-linearity of (E4.3.5) or a non-
normality behind (E4.3.6) could cause differences, however, this was not observed.

2Cf. clause 6.3.3 in [2] and section 10.2.3 in [77] for the approximate validity of this normality assumption.
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Figure E4.3.4: Displayed are the estimates bβ0 and bβ1 (markers), their joint 95 % coverage region
(ellipses), and the associated 95 % coverage intervals (horizontal and vertical lines) for the least-
squares methods listed in table E4.3.2.

We stress that OLS and WLS using standard software often involves the estimation of a multiple
for the variance of the input quantity Y . Such a procedure is rarely adequate in metrology and
estimating variance components of input quantities cannot be formulated as a measurement
model. Thus it is not covered by the current GUM. It would usually cause significantly different
uncertainties for the regression parameters, which would be only a fifth in this example. A
measurement model for OLS regression, which enables the user to propagate the uncertainties of
the input quantities in the sense of the GUM, is presented and discussed in a related example E6.2.
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Figure E4.3.5: Displayed are the residuals
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�

x − bξ
�⊤

,
�

y − bβ0 − bβ1
bξ
�⊤�

weighted by the

Cholesky decomposed covariance matrix U . The absence of systematic behaviour seen here in-
dicates that there is no violation of the straight-line relation (E4.3.2).
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Before interpreting the results of a regression, the data as well as the assumptions contributing
to the analysis should be assessed critically. For instance, the graphical analysis of the weighted
residuals did not indicate a violation of the straight-line assumption (E4.3.2), see figure E4.3.5.
Also a more flexible, polynomial model Y = β0+β1X+β2X 2 does not improve the fit significantly.

The sonic nozzle used in this example was repeatedly calibrated for many years. For five measure-
ment series the estimates bβ0 and bβ1 and their associated 95 % coverage intervals are displayed in
figure E4.3.6. All five, temporally separate, measurement series display consistent straight-line
relationships. Similar equivalence statements are relevant when approving, or disapproving,
calibration and measurement capabilities in interlaboratory comparisons and require reliable
uncertainties complying with the GUM.
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Figure E4.3.6: Displayed are the estimates bβ0 and bβ1 (dots) and their 95 % coverage intervals
obtained by the WTLS method (E4.3.5) for each of five, temporally separate, measurement series.
These were measured (1) at 06/21/2010 with N = 3, (2) at 06/28/2012 with N = 6, (3) at
10/08/20123 with N = 9, (4) at 07/15/2018 with N = 30, and (5) at 02/21/2019 with N = 3.

E4.3.7 Discussion and conclusion

Ignoring correlation in the calibration of the sonic nozzle under consideration causes only minor
differences in the estimates of its characteristic parameters β0 and β1 (compare WTLS and WTLS
w/o correlation in table E4.3.2 and figure E4.3.4). However, ignoring any correlation impacts
markedly on the uncertainty of these parameters. The standard uncertainty for the intercept
u(bβ0) is understated by about 12 %, while the standard uncertainty for the slope u(bβ1) is over-
stated by almost 70 %. In addition, the covariance between β0 and β1 increases by a factor of
roughly 2.5 if correlations are omitted. As a consequence, the 95 % coverage band around the
estimated straight line has a different shape and is much broader over the range of the data when
correlation is accounted for; see figure E4.3.1.

Ignoring the uncertainty and correlation in the quantity X yields almost identical results in this
example (compare WTLS and WLS in table E4.3.2 and figure E4.3.4). The reason is twofold:
First, the correlation between X and Y is small, and implicitly ignoring it in the simpler weighted

3In contrast to the other measurements, this series has been measured with pressurized air. The associated Type B
relative standard uncertainty for Qn is 0.75× 10−3.
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least-squares method is inconsequential. Second, also the squared standard uncertainties and co-
variances in X relative to the variance of all measurements x1, . . . , xn are two magnitudes smaller
than in Y (relative to the variance of y1, . . . , yn). For this example, it may thus be sufficient to
consider only the uncertainty and correlation in Y . While this is not known in advance here, it
might be for future calibrations of this nozzle.

Reliable calibration results thus require accounting for correlation. For calibrating a sonic nozzle,
we demonstrated how these correlations can be evaluated and accounted for. We provide reliable
estimates and uncertainties for the characteristic parameters of the nozzle and contribute to its
use as a transfer standard.
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E4.3.A Background information on sonic nozzles

Sonic nozzles (also called Critical Flow Venturi Nozzles) consist of a smooth rounded inlet section
converging to the throat area Athroat = 0.25πD2 (the area of minimum size with throat diameter
D) and then diverging along a pressure recovery section. Construction details are described
e.g. in the standard ISO 9300 [347]. Here, we follow the notation of the GUM (cf. Note 1–3
in [2, clause 4.1]) and denote all quantities which are used in the main part of this example by
capital letter symbols.

The gas flow through the nozzle is driven by the pressure difference between the upstream stag-
nation pressure p0 and the downstream pressure pd. If the ratio pd/p0 is below a certain critical
limit, the maximum flow velocity, which is achieved at the throat, is identical to the local speed
of sound of the gas. This velocity cannot be exceeded, even if the pressure ratio pd/p0 is further
decreased.

The theoretical, ideal mass flow rate Q(ideal) through the nozzle equals the product of the throat
area Athroat and the so-called critical mass flow density Ψ∗, i.e., Q(ideal) = AthroatΨ

∗. Thereby,
Ψ∗(T0, p0, gas) is purely a function of the stagnation pressure p0, the stagnation temperature
T0 upstream of the nozzle, and the gas composition. For many gases, this functionality is well
known [351,354].

Because the gas velocity is zero at the wall of the nozzle due to non-slipping conditions, there
exists a boundary layer of thickness δ1 between the core flow and the wall; the gas velocity (and
with this the mass flow density) is decreasing from sonic speed down to zero within this layer.
Hence, the overall average of the mass flow density Q in the throat is in reality smaller than the
theoretical one. The correction is expressed by the discharge coefficient Y = Q/Q(ideal) (in the
flow community, the discharge coefficient is usually denoted by cD). The discharge coefficient is
connected with the displacement thickness δ1 of the boundary layer at the throat via [358, p.
250] [359]

Y = β0

�

1− 2
δ1

D

�2

. (E4.3.7)
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From the Navier-Stokes equation it can be derived that δ1 is inversely proportional to the square
root of Reynolds number Re (i.e. δ1∝ Re−0.5) as long as the flow in the boundary layer is lami-
nar. The Reynolds number is a dimensionless flow number, which is given by Re =Q D/(Athroat M)
with M being the dynamic viscosity of the gas. Ignoring the term proportional to (δ1/D)2

in (E4.3.7), one obtains the functional relationship between the discharge coefficient Y and the
Reynolds number Re provided by the standard ISO 9300 [347], namely,

Y = β0 + β1Re−0.5. (E4.3.8)

In [347], two nozzle types, the cylindrical and the toroidal one, are defined with tight require-
ments to keep to specifications. Thereby, equation (E4.3.8) is valid for both types as long as the
flow in the boundary layer is laminar.

Sonic nozzles have a great advantage over sub-sonic flowmeters such as Venturi tubes or orifice
plates. In a sonic nozzle, any downstream pressure disturbances cannot move upstream past the
throat of the nozzle because the throat velocity is higher (speed of sound of the gas) and in the
opposite direction. Therefore, they cannot affect the speed or density of the flow through the
nozzle. This is in contrast to Venturi’s or orifice plates, where any change in downstream pressure
will affect the differential pressure across the flowmeter, which in turn, affects the flow.
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Example E4.4

Measurement uncertainty evaluation of
the load loss of power transformers

A. Bošnjaković, V. Karahodžić, M. Čaušević, A.M.H. van der Veen

E4.4.1 Summary

In this example, the evaluation of measurement uncertainty of power transformer losses are
given. It is shown how this evaluation can be performed using the law of propagation of uncer-
tainty (LPU) from the Guide to the expression of Uncertainty in Measurement (GUM) as well as
the propagation of distributions using the Monte Carlo method (MCM) from GUM Supplement 1
(GUM-S1). It is shown how the approach using the Monte Carlo method can be used to validate
the output from the law of propagation of uncertainty from the GUM.

E4.4.2 Introduction of the application

When it comes to electrical energy production, transformation, distribution or consumption, en-
ergy losses generated by transformers play a very important role. These losses form the second
largest part of the total losses in the distribution of energy and the network. Measurement results
of power transformer losses should be accurate as these are often the object of guarantee and
penalty in many contracts and hence play an important role in billing. Costs of losses in power
transformers are comparable to the product cost and play an important role in the evaluation of
the total costs of obtaining the energy at the point of use.

Many European regulations set requirements for reliable loss values. For instance, the Ecodesign
Directive [360] provides EU rules for improving environmental performance of products, among
which power transformers are recognized. The directive sets out minimum mandatory require-
ments for the energy efficiency of these products, which helps to prevent creation of barriers
to trade, improve product quality and yield environmental protection. The European Commis-
sion Regulation [361] on implementation of Directive [360] with regard to small, medium and
large power transformers recognised energy in the use phase as one of the most significant envi-
ronmental aspect that can be addressed through product design. This regulation provides basic
measurements concepts as well as tolerances to be achieved in order to comply with this regula-
tion.

353
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In the case of market surveillance, if a power transformer facility exceeds the guaranteed limit
for losses, a fine must be paid. Therefore, IEC 60076-19 [362] recommends that the evaluated
uncertainty should be less than the tolerance limit set out in regulations. The measurement
uncertainty is often not taken into account in considering the agreement between the manu-
facturer and costumer on who will pay the fine in case the losses exceed the guaranteed value.
Furthermore, IEC 60076-19 recommends that guarantee and penalty calculations should refer
to the best estimated values of the losses without considering the measurement uncertainties,
based on a shared risk concept, where both parties are aware of and accept the consequences of
non-negligible measurement uncertainty.

In this example, it is shown how the evaluation of the measurement uncertainty for load losses can
be conducted to improve existing practice for power load loss measurements. Two approaches are
used: the law of propagation of uncertainty of the GUM [2] and the propagation of distributions
[3]. The latter method is applied to validate the uncertainty evaluation method proposed in
IEC 60076-19 [362].

E4.4.3 Specification of the measurand(s)

The measurand in this example is power load loss, stated at the rated current at a given reference
temperature. A value for the measurand is either obtained by measuring the power load loss at
the rated current, or by recalculation to this current. The measurand is specified at a temperature.
The conversion to that reference temperature is part of the measurement model.

E4.4.4 Measurement model

The total load loss PLL of a transformer at reference temperature θr, summed over the three
phases, can be expressed as (adapted from [362])1

PLL =
3
∑

i=1

I2
NHVR1,HV,i

t + θr

t + θ1
+ I2

NLVR1,LV,i
t + θr

t + θ1
+ Pa2,i

t + θ2

t + θr
, (E4.4.1)

where INHV denotes the rated primary phase current, INLV the rated secondary phase current,
R1,HV,i the resistance of the primary winding at temperature θ1 for phase i, R1,LV,i the resistance of
the secondary winding at temperature θ1 for phase i, t a constant for the winding material, θ1 the
temperature during the resistance measurement, θ2 the temperature during loss measurement,
θr the reference temperature and Pa2,i the additional loss for phase i. The index i runs over the
three phases (denoted by U, V, and W). The additional loss is computed as

Pa2,i = P2,i − I2
NHV,iR2,HV,i − I2

NLV,iR2,LV,i , (E4.4.2)

where

R2 = R1
t + θ2

t + θ1
, (E4.4.3)

1IEC 60076-19 does not provide an explicit equation for the summation over the three phases of the alternating
current. In this example, we provide this expression explicitly, and substitute for the summands (the load loss PLL,i of
the three phases the expression given in the said standard instead).

Examples of evaluating measurement uncertainty First edition



Example E4.4. Uncertainty evaluation of the load loss of power transformers 355

and the power P2,i measured at the load loss measurement corrected for known systematic devi-
ations and referred to the current IN,prim,i is computed as

P2,i = kCN(1+ ϵC)kVN
1

1+ ϵV

PW,i

1− (∆ϕV,i −∆ϕC ,i) tanϕi

�

INHV,i

kCN IM,i

�2

, (E4.4.4)

where
�

INHV

kCN IM,i

�2

the term related to the actual current IM,i , rated to the refer-
ence current INHV for which transformer shall be tested,

kCN rated transformation ratio of the current transformer,
kVN rated transformation ratio of the voltage transformer,
ϵC actual ratio error of the current transformer (% of nominal ra-

tio),
ϵV actual ratio error of the voltage transformer (% of nominal ra-

tio),
1

1− (∆ϕV,i −∆ϕC,i) tanϕi
the term related to the correction for phase displacement (FD,i)
of the current (∆ϕC,i) and voltage transformers (∆ϕV,i),

PW,i reading of the wattmeter and the wattmeter is considered to
have unknown errors, and thus no correction term.

The actual phase angle ϕi between voltage and current under the sinusoidal conditions normally
valid for load-loss measurement depends on the phase angle measured with power meter (ϕM)
and is obtained from

ϕi = ϕM,i − (∆ϕV,i −∆ϕC,i) = arccos

�

PW,i

IM,iUM,i

�

− (∆ϕV,i −∆ϕC,i). (E4.4.5)

The substitution of equations (E4.4.2) and (E4.4.3) into (E4.4.1) yields

PLL =
3
∑

i=1

I2
NHVR1,HV,i

t + θr

t + θ1
+ I2

NLVR1,LV,i
t + θr

t + θ1
+
�

P2,i − I2
NHV,iR2,HV,i − I2

NLV,iR2,LV,i

� t + θ2

t + θr

=
t + θr

t + θ1

3
∑

i=1

�

I2
NHVR1,HV,i + I2

NLVR1,LV,i

�

+
t + θ2

t + θr

3
∑

i=1

�

P2,i − I2
NHV,iR2,HV,i − I2

NLV,iR2,LV,i

�

=
�

t + θr

t + θ1
−

t + θ2

t + θr

t + θ2

t + θ1

� 3
∑

i=1

�

I2
NHVR1,HV,i + I2

NLVR1,LV,i

�

+
t + θ2

t + θr

3
∑

i=1

P2,i (E4.4.6)

E4.4.5 Evaluation of the input quantities

E4.4.5.1 Specifications and measurement data

The characteristics of the transformer are summarised in table E4.4.1. The rated primary and
secondary currents are considered constants, that is, without uncertainty. The same applies to
the reference temperature θr. As the windings are made from copper (Cu), t = 235 and also
treated as a constant [362].

Examples of evaluating measurement uncertainty First edition



Example E4.4. Uncertainty evaluation of the load loss of power transformers 356

Table E4.4.1: Specification of the phase transformer – dry type transformer [362]

Component Symbol Value Unit

Rated power Sr 630 kV A
Rated primary voltage UNHV 6000 V
Rated secondary voltage UNLV 400 V
Rated primary phase current INHV 60.62 A
Rated secondary phase current INLV 909.33 A
Reference temperature θr 120 °C
Winding material Cu

This example uses the specifications of the transformer as well as of the measuring instruments.
These specifications are summarised in table E4.4.2.

Table E4.4.2: Specifications of measuring system current and voltage transducers for the three
phases U, V and W (adapted from IEC 60076-19 [362])

Component Symbol/Unit U V W

CT accuracy class 0.2 0.2 0.2
CT ratio kCN 1 1 1
CT max. amplitude error eclass,CT/% ±0.2 ±0.2 ±0.2
CT max. phase displacement ∆φ,C/

′ ±10 ±10 ±10

VT accuracy class 0.2 0.2 0.2
VT ratio kVN 1 1 1
VT max. amplitude error eclass,VT/% ±0.2 ±0.2 ±0.2
VT max. phase displacement ∆φ,V/

′ ±10 ±10 ±10

Maximum of current range of Power Meter Imax/A 50 50 50
Maximum of voltage range of Power Meter Umax/V 240 240 240

The measured data are summarised in table E4.4.3.

Table E4.4.3: Experimental data of the load loss measurement [362]

Component Symbol/Unit U V W

Resistance HV RHV/Ω 0.0490 0.0500 0.0510
Resistance LV RLV/Ω 0.001600 0.001 500 0.001700
Temp. during resistance meas. θ1/°C 22.1 22.1 22.1
Voltage Phase-Neutral UM/V 191.5 195.2 194.8
Phase current IM/A 40.55 40.2 40.6
Measured active power PW/W 748 756 762
Power factor cosϕ/1 0.09633 0.09634 0.096 35
Temp. during loss meas. θ2/°C 21.8 21.8 21.8
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Starting with the input quantities in equation (E4.4.4), ϵC is modelled as having a rectangular
distribution (uniform distribution) with zero mean and semi-width eclass,CT (see table E4.4.2).
The standard uncertainty is given by

u(ϵC) =
eclass,CTp

3
.

In the application of the law of propagation of uncertainty of the GUM, the fact will be exploited
that equation (E4.4.4) can be considered as a product of a set of independent quantities of the
kind

Y = cX p1
1 X p2

2 . . . X pN
N ,

where c denotes a constant. If the input quantities X1, X2, . . . , XN are mutually independent, then
the squared relative standard uncertainty associated with the measurand Y can be expressed as
follows in terms of the relative standard uncertainties associated with the input quantities [2,
clause 5.1.6]:

u2
rel(Y ) =

N
∑

i=1

p2
i u2

rel(X i)

Considering 1 + ϵC as a term in the product, the relative standard uncertainty of this term is
needed and is given by

urel(1+ ϵC) =
u(ϵC)
1+ ϵC

. (E4.4.7)

The evaluation of the standard uncertainty of ϵV is very similar to that of ϵC. ϵV is modelled
using the rectangular distribution with zero mean and semi-width eclass,VT. The relative standard
uncertainty of 1/(1+ ϵV) is given by

urel

�

1
1+ ϵV

�

=
u(ϵV)
1+ ϵV

(E4.4.8)

using the fact that |urel(1/X )|= |urel(X )|.

The standard uncertainty of the power measurement PW,i is based on the specification for the
maximum permissible error. This error is specified as 0.015% PW,i + 0.010 % Pmax where Pmax =
ImaxUmax = 12 000W. PW,i is modelled using the rectangular distribution with mean PW,i and
semi-width the error thus computed.

The standard uncertainty associated with the phase displacement FD,i according to IEC 60076-19
[362] is evaluated as follows. The relative standard uncertainty is approximated by

urel(FD,i) = tanϕi u(∆ϕV,i −∆ϕC,i), (E4.4.9)

where [362]

u(∆ϕV,i −∆ϕC,i) =
q

u2(∆ϕV,i) + u2(∆ϕC,i).

The standard uncertainties u(∆ϕV,i) and u(∆ϕC ,i) are obtained from the rectangular distribution
with zero mean and the maximum errors specified in table E4.4.2.

In the uncertainty evaluation described in IEC 60076-19 [362], the uncertainty associated withϕi
is not considered. When applying the law of propagation of uncertainty, the sensitivity coefficient
equals ∆ϕV,i −∆ϕC,i and is zero in this particular case (the values of ∆ϕV,i and ∆ϕC,i are both
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zero). The standard uncertainty associated with ϕi can be obtained from equation (E4.4.5). The
derivative of arccos x is −1/

p
1− x2 [59] and that of tan x is cos−2 x [59]. So,

u2(tanϕi)≈
1

cos4ϕi
u2(ϕi)

and

u2(ϕi)≈
1

1− [PW/(IM,iUM,i))]2
u2

�

PW,i

IM,iUM,i

�

+ u2(∆ϕC,i) + u2(∆ϕV,i)

and

u2
rel

�

PW,i

IM,iUM,i

�

= u2
rel(PW,i) + u2

rel(IM,i) + u2
rel(UM,i),

which are obtained using the law of propagation of uncertainty from the GUM [2]. Given that
both tan x and arccos x are strongly non-linear functions, the results are only approximate; hence
the ≈ sign. Strictly speaking, this applies also to all expressions for the relative standard uncer-
tainty based on clause 5.1.6 of the GUM.

The uncertainty associated with the current IM,i is evaluated as follows. The specification of the
current measurement is that the maximum permissible error equals 0.01% IM,i+0.02 % Imax. The
current is modelled using the rectangular distribution with centred at IM,i with semi-width equal
to the maximum permissible error.

The standard uncertainty of the voltage measurement UM,i is based on the specification for the
maximum permissible error. This error is specified as 0.010 % UM,i + 0.018% Umax. UM,i is mod-
elled using the rectangular distribution centred at UM,i with semi-width equal to the error thus
computed.

Use of the specifications provides the relative standard uncertainties in table E4.4.4. This un-
certainty component can be included in the uncertainty budget by approximating the sensitivity
coefficient numerically using the definition of a derivative. In that case, the sensitivity coefficient
is 1 (the partial derivatives are respectively ∂∆ϕC,i/∂∆ϕC,i and ∂∆ϕV,i/∂∆ϕV,i).

Table E4.4.4: Uncertainty evaluation of tanϕi for the three phases based on equation (E4.4.5).
Values in percentages are relative standard uncertainties; other values are absolute standard
uncertainties

Source Unit Phase

U V W

CT max. phase displacement (rad) 0.001 679 0.001 679 0.001 679
VT max. phase displacement (rad) 0.001 679 0.001 679 0.001 679
Phase current unc % 0.020 0.020 0.020
Measured active power unc % 0.101 0.100 0.100
Voltage phase-neutral unc % 0.019 0.019 0.019
u(cosϕ) 0.002 377 0.002 377 0.002 377
u(tanϕ) 0.26 0.26 0.26

Examples of evaluating measurement uncertainty First edition



Example E4.4. Uncertainty evaluation of the load loss of power transformers 359

E4.4.6 Propagation of uncertainty

E4.4.6.1 Law of propagation of uncertainty

The propagation of uncertainty for the power measured at load loss P2 (equation (E4.4.4)) is
performed using the formula for a measurement model as a pure product (see GUM clause 5.16
[2]). Substituting the values and specifications provides the following relative uncertainties (ta-
ble E4.4.5) for the three phases.

Table E4.4.5: Uncertainty evaluation for the measured load loss P2 at ambient temperature
(adapted from [362])

Quantity Component urel/% Exponent

U V W

CT ratio error ϵC 0.115 0.115 0.115 1
VT ratio error ϵV 0.115 0.115 0.115 1
Measured power PW 0.101 0.100 0.100 1
Phase displacement FD 2.454 2.454 2.454 1
Ampere meter IM 0.040 0.040 0.040 2

Load loss P2 2.930 2.928 2.926

The values of the measured and additional load loss obtained according to equations (E4.4.1)
and (E4.4.2) are shown in table E4.4.6.

Table E4.4.6: Values of measured load loss and additional load loss at temperature θ2 and load
losses at temperature θr

Quantity Component Value /W

U V W

Measured load loss at θ2 P2 1671.7 1719.1 1698.8
Additional load loss Pa2 170.4 296.7 107.5
I2
NR loss I2

NR 1501.3 1422.4 1591.3
Load loss at θr PLL 2198.7 2181.0 2277.5

It should be noted that both the primary and secondary current and resistance of the windings
are taken into account when calculating additional load loss.

The sensitivity coefficients for calculation of the uncertainty contributions of the uncertainty of
resistance at temperature θ2 are computed in accordance with equation (E4.4.3) as

∂ R2

∂ R1
=

t + θ2

t + θ1
, (E4.4.10)

∂ R2

∂ θ1
= −

R2

t + θ1
, (E4.4.11)

∂ R2

∂ θ2
=

R2

t + θ2
. (E4.4.12)
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The sensitivity coefficient as the result from the mathematical formulation (E4.4.2) of the mea-
sured load loss at ambient temperature equals 1, whereas its standard uncertainty is obtained
from the relative standard uncertainties given in table E4.4.5. The sensitivity coefficient for the
resistance of the windings at temperature θ2 is equal to the squared rated current for both the
primary and secondary coil. Both quantities, temperature during resistance measurement and
load loss measurement, have rectangular distributions with mean 0 K and semi-width 1 K. The
uncertainty contributions of each component are given in table E4.4.7.

Table E4.4.7: Uncertainty of additional load loss at temperature θ2

Quantity Component Uncertainty contribution /W
(sensitivity coeff. × standard unc.)

U V W

Resistance HV at θ1 R1,HV 2.83× 10−5 2.88× 10−5 2.94× 10−5

Resistance LV at θ1 R1,LV 9.23× 10−7 8.65× 10−7 9.80× 10−7

Temp. resistance meas. (HV) θ1 −1.09× 10−4 −1.12× 10−4 −1.14× 10−4

Temp. resistance meas. (LV) θ1 −3.59× 10−6 −3.36× 10−6 −3.81× 10−6

Temp. load loss meas. (HV) θ2 1.10× 10−4 1.12× 10−4 1.14× 10−4

Temp. load loss meas. (LV) θ2 3.59× 10−6 3.37× 10−6 3.82× 10−6

Measured load loss at θ2 P2 2398.91 2534.03 2471.27
Resistance HV at θ2 R2,HV 0.58 0.59 0.60
Resistance LV at θ2 R2,HV 4.27 4.00 4.53

Additional load loss at θ2 u(Pa2) 49.17 50.50 49.92

Using equation (E4.4.1) and the computed values given in the table E4.4.6 the uncertainty of load
loss at reference temperature θr is calculated for all three phases. The values in table E4.4.8 are
obtained by taking into account the sensitivity coefficient for each quantity in the measurement
model (E4.4.1), except the reference temperature and indicated currents which are considered
to be constant.

Table E4.4.8: Uncertainty of load losses reported at reference temperature θr

Quantity Component Uncertainty /W

U/W V/W W/W

Reported load loss u(PLL) 35.89 36.81 36.46
Expanded uncertainty of reported load loss (k = 2) U(PLL) 71.77 73.63 72.93

The total load loss, computed as the load loss of the three phases U, V, and W, is 6657 W with
standard uncertainty 63 W.

E4.4.6.2 Monte Carlo method

The implementation of the propagation of distributions is carried using the measurement model
as given in equations (E4.4.1), (E4.4.2), (E4.4.4) and (E4.4.5). As to the input quantities, the
same probability density functions are used as for the evaluation using the law of propagation of
uncertainty.
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For the purpose of describing the R software used for the evaluation, the variables holding the
measured values and some constants are declared below, where their names are largely self-
explanatory (table E4.4.9. Finally, the measured values for resistance, power, current and voltage
are declared similarly.

Table E4.4.9: Cross reference of symbols and variable names used in the R code

Variable Symbol Variable in R code

Offset for winding material t tW

Rated maximum current Imax I_max

Rated maximum voltage Umax U_max

Rated maximum power Pmax P_max

Temperature during resistance measurement θ1 theta1.val

Temperature during load loss measurement θ2 theta2.val

Reference temperature θref theta_r

CT ratio kCN k_CN

VT ratio kVN k_VN

CT maximum amplitude relative error ϵC eps_C.val

VT maximum amplitude relative error ϵV eps_V.val

Half-width of the rectangular distribution of ϵC eps_C.hw

Half-width of the rectangular distribution of ϵV eps_V.hw

Currents in the high-voltage and low-voltage circuit INHV textttI_NHV
Currents in the high-voltage and low-voltage circuit INLV I_NLV

t_W = 235
I_max = 50
U_max = 240
P_max = I_max*U_max

theta1.val = 22.1 # rectangular distribution, half-width = 1 K
theta2.val = 21.8 # rectangular distribution, half-width = 1 K
theta_r = 120
k_CN = 1
k_VN = 1
eps_C.val = 0.0 # rectangular distribution, half-width = 0.2% of k_CN
eps_C.hw = 0.002
eps_V.val = 0.0 # rectangular distribution, half-width = 0.2% of k_VN
eps_V.hw = 0.002
I_NHV = 60.62
I_NLV = 909.33
Delta_C = 0.0 # rectangular distribution, half-width = 10 arcmin
Delta_C.hw = 10/(60*180)*pi
Delta_V = 0.0 # rectangular distribution, half-width = 10 arcmin
Delta_V.hw = 10/(60*180)*pi

# measured resistances for the three phases
R_HV = c(0.049,0.0500,0.0510)
# at theta1 ... (rectangular, half-width 0.1% relative)
R_LV = c(0.001600,0.001500,0.001700)
# at theta1 ... (rectangular, half-width 0.1% relative)

# measured power, current and voltage for the three phases
P_W = c(748,756,762) # rectangular distribution
I_M = c(40.55,40.2,40.6) # rectangular distribution
U_M = c(191.5,195.2,194.8) # rectangular distribution
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The three functions needed to calculate the load loss are coded as follows (see code below).
The constants are declared as variables with a default value in the function heading, which en-
ables calling the function without having to include these variables (R will then use their default
values). This approach makes the code less cluttered.

# power P_2
P2func <- function(k_CN=1,eps_C=0,k_VN=1,eps_V=0,P_W,Delta_C=0,Delta_V=0,
I_M,U_M,I_N) {
phi = acos(P_W/(I_M*U_M)) - (Delta_V-Delta_C)
k_CN*(1/(1+eps_C))*k_VN*1/(1+eps_V)*P_W/
(1-(Delta_V-Delta_C)*tan(phi))*(I_N/(k_CN*I_M))^2
}

# temperature correction
temp.corr <- function(R,theta1,theta2,t_W = 235) {
R*(t_W+theta2)/(t_W+theta1)
}

# load loss for a single phase
PLL.func <- function(I_NHV,I_NLV,R_2HV,R_2LV,P2,theta2,theta_r = theta_r,
t_W = 235) {
I_NHV^2*temp.corr(R_2HV,theta2 = theta_r,theta1 = theta2)+I_NLV^2*
temp.corr(R_2LV,theta2 = theta_r,theta1 = theta2) +
(P2-I_NHV^2*R_2HV-I_NLV^2*R_2LV)*(t_W+theta2)/(t_W+theta_r)
}

To implement the Monte Carlo method, the R function runif(), which provides a random variate
with a rectangular distribution, is recast so that it can be called with a central value and half-
width as arguments. The number of trials M is set to 1× 106. First, the variables are generated
for all phases, followed by generating the data for the phases U, V, and W. The phase angle phi
(φ) is calculated as described in IEC 60076-19 [362].

The measurement model in this application is quite involved in that it contains several steps.
Also, it should be noted that the summation over the three phases is not necessarily a summation
of three independent quantities, that is, the load losses for the phases U, V, and W are correlated.
All these aspects are taken care of by the Monte Carlo method, as outlined below.

rrect <- function(num,middle=0,hw=1) {
runif(n=num,min=middle-hw,middle+hw)
}

# MC data
M = 1000000

# all phases
theta1 = rrect(M,theta1.val,1.0)
theta2 = rrect(M,theta2.val,1.0)
eps_C = rrect(M,eps_C.val,eps_C.hw)
eps_V = rrect(M,eps_V.val,eps_V.hw)

# phase U
Delta_C.U = rrect(M,0.0,10*pi/(60*180)) # use specified half-width
Delta_V.U = rrect(M,0.0,10*pi/(60*180))
R_HV.U = rrect(M,R_HV[1],0.001*R_HV[1])
R_LV.U = rrect(M,R_LV[1],0.001*R_LV[1])
U_M.U = rrect(M,U_M[1],0.00010*U_M[1]+0.00018*U_max)
I_M.U = rrect(M,I_M[1],0.00010*I_M[1]+0.00020*I_max)
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P_W.U = rrect(M,P_W[1],0.00015*P_W[1]+0.00010*P_max)

R_2HV.U = temp.corr(R_HV.U,theta1 = theta1,theta2 = theta2)
R_2LV.U = temp.corr(R_LV.U,theta1 = theta1,theta2 = theta2)

phi = acos(P_W.U/(I_M.U*U_M.U)) - (Delta_V.U-Delta_C.U)
F_D.U = 1/(1-(Delta_V.U-Delta_C.U)*tan(phi))

P2.U = P2func(eps_C = eps_C, eps_V = eps_V,P_W = P_W.U,Delta_C = Delta_C.U,
Delta_V = Delta_V.U,I_M = I_M.U,U_M = U_M.U,I_N = I_NHV)

PLL.U = PLL.func(I_NHV = I_NHV,I_NLV = I_NLV,R_2HV = R_2HV.U,R_2LV = R_2LV.U,
P2 = P2.U,theta2 = theta2, theta_r = theta_r)

# phase V
Delta_C.V = rrect(M,0.0,10*pi/(60*180)) # use specified half-width
Delta_V.V = rrect(M,0.0,10*pi/(60*180))
R_HV.V = rrect(M,R_HV[2],0.001*R_HV[2])
R_LV.V = rrect(M,R_LV[2],0.001*R_LV[2])
U_M.V = rrect(M,U_M[2],0.00010*U_M[2]+0.00018*U_max)
I_M.V = rrect(M,I_M[2],0.00010*I_M[2]+0.00020*I_max)
P_W.V = rrect(M,P_W[2],0.00015*P_W[2]+0.00010*P_max)

phi = acos(P_W.V/(I_M.V*U_M.V)) - (Delta_V.V-Delta_C.V)
F_D.V = 1/(1-(Delta_V.V-Delta_C.V)*tan(phi))

P2.V = P2func(eps_C = eps_C, eps_V = eps_V,P_W = P_W.V,Delta_C = Delta_C.V,
Delta_V= Delta_V.V,I_M = I_M.V,U_M = U_M.V,I_N = I_NHV)

R_2HV.V = temp.corr(R_HV.V,theta1 = theta1,theta2 = theta2)
R_2LV.V = temp.corr(R_LV.V,theta1 = theta1,theta2 = theta2)

PLL.V = PLL.func(I_NHV = I_NHV,I_NLV = I_NLV,R_2HV = R_2HV.V,R_2LV = R_2LV.V,
P2 = P2.V,theta2 = theta2, theta_r = theta_r)

# phase W
Delta_C.W = rrect(M,0.0,10*pi/(60*180)) # use specified half-width
Delta_V.W = rrect(M,0.0,10*pi/(60*180))
R_HV.W = rrect(M,R_HV[3],0.001*R_HV[3])
R_LV.W = rrect(M,R_LV[3],0.001*R_LV[3])
U_M.W = rrect(M,U_M[3],0.00010*U_M[3]+0.00018*U_max)
I_M.W = rrect(M,I_M[3],0.00010*I_M[3]+0.00020*I_max)
P_W.W = rrect(M,P_W[3],0.00015*P_W[3]+0.00010*P_max)

R_2HV.W = temp.corr(R_HV.W,theta1 = theta1,theta2 = theta2)
R_2LV.W = temp.corr(R_LV.W,theta1 = theta1,theta2 = theta2)

phi = acos(P_W.W/(I_M.W*U_M.W)) - (Delta_V.W-Delta_C.W)
F_D.W = 1/(1-(Delta_V.W-Delta_C.W)*tan(phi))

P2.W = P2func(eps_C = eps_C, eps_V = eps_V,P_W = P_W.W,Delta_C = Delta_C.W,
Delta_V = Delta_V.W,I_M = I_M.W,U_M = U_M.W,I_N = I_NHV)

PLL.W = PLL.func(I_NHV = I_NHV,I_NLV = I_NLV,R_2HV = R_2HV.W,R_2LV = R_2LV.W,
P2 = P2.W,theta2 = theta2, theta_r = theta_r)

# total load loss
PLL.tot = PLL.U + PLL.V + PLL.W
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#output
# c(mean(PLL.tot),sd(PLL.tot),quantile(PLL.tot,probs=c(0.025,0.975)))
PLL.tot.val = mean(PLL.tot)
PLL.tot.unc = sd(PLL.tot)
PLL.tot.Unc = 0.5*(quantile(PLL.tot,probs=c(0.975))-
quantile(PLL.tot,probs=c(0.025)))
PLL.tot.k = PLL.tot.Unc/PLL.tot.unc

The load loss is 6657 W with standard uncertainty 53 W, about 15 % smaller than that ob-
tained with the GUM uncertainty framework. The expanded uncertainty is obtained using the
quantile() function in R as shown above. The coverage factor is obtained by dividing the
expanded uncertainty by the standard uncertainty. The expanded uncertainty is 104 W with a
coverage factor k = 1.95. The relevant guidance can be found in GUM-S1 [3, clause 7.6] and
GUM-S2 [4, clause 7.6].

The assessment of the strength of the dependencies between the measurement results of the three
phases U, V, and W can be readily accomplished in R, using the output of the Monte Carlo method.
First, the vectors PLL.U, PLL.V and PLL.W are combined into a matrix called PLL.matrix.
Then, using the R-function cor, the correlation matrix is obtained:

PLL.matrix = cbind(PLL.U,PLL.V,PLL.W)
cor(PLL.matrix)

## PLL.U PLL.V PLL.W
## PLL.U 1.00000000 0.01333439 0.01479030
## PLL.V 0.01333439 1.00000000 0.01474804
## PLL.W 0.01479030 0.01474804 1.00000000

From the correlation matrix thus obtained, it is evident that the correlation coefficients between
phases are very small (all positive and less than 0.015, compared with unity for fully correlated
values). Hence, summing the results of the three phases as if they were independent (uncorre-
lated) is justified.

E4.4.7 Reporting the result

According to the Monte Carlo method, the load loss is 6657 W with standard uncertainty 53 W.
The expanded uncertainty is 104 W and the coverage factor, computed as the ratio of the ex-
panded uncertainty and standard uncertainty is 1.95.

The GUM uncertainty framework gives the same estimate, namely 6657 W, as the Monte Carlo
method and a somewhat larger standard uncertainty of 63 W. Assuming a normal distribution
yields for 95 % coverage probability a coverage factor of 1.96, and thus an expanded uncertainty
of 124 W.

E4.4.8 Interpretation of results

The outcomes of the GUM uncertainty framework and the Monte Carlo method agree quite well.
The Monte Carlo method enables, as demonstrated, to assess the validity of the assumption made
when applying the law of propagation of uncertainty that the results of the three phases can be
treated as independent.
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An improvement of the treatment could be the consideration that the results of the three phases
are dependent (due to using the same equipment for the measurement of the electrical quantities
of the three phases).

For the data used, the Monte Carlo method, regarded by many (such as [96,263–266]) as a ‘gold
standard’ for uncertainty propagation, indeed validates the GUM results although the latter can
be regarded as moderately conservative. In this instance, the Monte Carlo method is also used
to justify treating the losses over the three phases as independent (see also equation (E4.4.1)).
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Example E4.5

Evaluation of measurement uncertainty
in thermal comfort

J.A. Sousa, A.S. Ribeiro, M.G. Cox, L.L. Martins

E4.5.1 Summary

The Monte Carlo method for uncertainty evaluation is particularly suitable to handle the com-
plexity of the mathematical model that specifies the relation between the quantities involved in
the evaluation of thermal comfort. The standard ISO 7730:2005 is the main document in the
field of thermal comfort and, besides the application and uncertainty evaluation, the limitations
of this standard will also be discussed.

E4.5.2 Introduction of the application

The example, which is based in part on the paper [363], is concerned with the evaluation of
thermal comfort as defined in the international standard ISO 7730:2005 – the condition of mind
that expresses the degree of satisfaction with the thermal environment [364], which inevitably
differs from person to person and thus entails a probabilistic approach. The main parameter to
be evaluated is a thermal comfort index named predicted mean vote (PMV), which predicts the
average thermal sensation of a large group of persons exposed to the same environment, based
on principles of heat balance and experimental data collected in a controlled climate chamber
under steady-state conditions.

Although the PMV formula is widely recognised and adopted, little has been done to establish
measurement uncertainties associated with its use, bearing in mind that the formula depends on
measured values and tabulated values given to limited numerical accuracy. Knowledge of these
uncertainties is invaluable when values provided by the formula are used in making decisions in
various health and civil engineering situations. Energy efficiency is an example where thermal
perception plays an important role in influencing the thermal performance of buildings, which
in turn has enormous impact on energy consumption worldwide.

367
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This example examines this formula, providing a general mechanism for evaluating the uncer-
tainties associated with values of the quantities on which the formula depends. Further, con-
sideration is given to the propagation of these uncertainties through the formula to provide the
uncertainty associated with the value obtained for the index. Current international guidance on
uncertainty evaluation is utilised and discussed.

Alternative approaches are discussed, e.g., using raw data from enquiries on thermal comfort,
to overcoming the limitation of the coarse resolution imposed by the standard ISO 7730 on the
thermal sensation felt by a specific individual. Consideration is given to the possibility of using
a continuous scale, thus introducing comparability of the scale used in a possibly modified ISO
7730 and an enquiries-based scale.

E4.5.3 Specification of the measurand(s)

The PMV index is given in ISO 7730 by the following mathematical function of eight quantities:

PMV =[0.303 exp(−0.036M) + 0.028]

×
�

M −W − 3.05× 10−3 [5733− 6.99(M −W )−ρa]

− 0.42(M −W − 58.15)− 1.7 · 10−5 (5867−ρa)M − 0.0014 (34− ta)M

−3.96 · 10−8
�

(tcl + 273)4 − (tr + 273)4
�

fcl − (tcl − ta) fclhc (tcl)
	

,

(E4.5.1)

where
M metabolic rate in W m−2

W effective mechanical power in W m−2

ρa water-vapour partial pressure in Pa
ta air temperature in °C
fcl clothing surface area factor
tcl clothing surface temperature in °C
tr mean radiant temperature in °C and
hs convective heat transfer coefficient in W m−2 K−1

with the main complication arising from the fact that the quantity tcl is defined implicitly (see
expression (E4.5.2) below).

The model is clearly non-linear, and depends on (a) fundamental quantities M , W and Icl ob-
tained from tables (tcl and fcl each depend on Icl, the clothing insulation in m2 K W−1), and (b)
quantities ta, tr, var and RH obtained by measurement (var is the relative air velocity in m s−1 that
influences hc, and RH is the relative humidity in % that influences ρa.

The expressions involved are quite complicated as described in the next section.

E4.5.4 Measurement model

To be able to calculate the PMV index we need to specify the input quantities. The clothing
surface temperature is defined implicitly and in terms of other input quantities:

tcl =35.7− 0.028(M −W )

− Icl

�

3.96 · 10−8
�

(tcl + 273)4 − (tr + 273)4
�

fcl + (tcl − ta) fclhc (tcl)
	

,
(E4.5.2)

where the convective heat transfer coefficient is

hc (tcl) =max
�

2.38 |tcl − ta|
1/4 , 12.1

p

var

�

, (E4.5.3)
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which is mathematically identical to the expression given in the standard [364], but simpler.
We write hc (tcl) in this equation rather than simply hc to emphasise that it depends on tcl, a
parameter already existing explicitly in the model. The clothing surface area factor depends on
the clothing insulation:

fcl =

�

1.00+ 1.290Icl, Icl ≤ 0.0775m2 K W−1

1.05+ 0.645Icl, Icl > 0.0775m2 K W−1

�

. (E4.5.4)

In the cases considered in this study ρa or, more precisely, ρw (ta) , the water-vapour partial
pressure, may be obtained from measurements of the relative humidity RH = 100ρa/ρs (ta) ,
using

ρa = RH×ρs (ta)10 Pa, (E4.5.5)

where ρs (ta) is the water-vapour saturation pressure given by the function

ρs (ta) = exp
�

16.6536−
4030.183
ta + 235

�

K Pa. (E4.5.6)

The degree of complexity can be slightly reduced if advantage is taken of the fact that the term

g (tcl) = 3.96 · 10−8
�

(tcl + 273)4 − (tr + 273)4
�

fcl + (tcl − ta) fclhc (tcl) , (E4.5.7)

is common to equations (E4.5.1) and (E4.5.2). Again, we indicate g as a function of tcl to
emphasise that, given values for the other quantities involved, the value of g (tcl) can readily be
obtained knowing tcl. Therefore, equation (E4.5.2) can be expressed as

tcl = 35.7− 0.028(M −W )− Icl g (tcl) , (E4.5.8)

and equation (E4.5.1) can be simplified accordingly to

PMV =[0.303 exp(−0.036M) + 0.028]

×
�

M −W − 3.05× 10−3 [5733− 6.99(M −W )−ρa]

− 0.42(M −W − 58.15)− 1.7 · 10−5 (5867−ρa)M − 0.0014 (34− ta)M

− [35.7− 0.028(M −W )− tcl]/Icl} .

(E4.5.9)

Nevertheless, the above expressions remain complicated and working with them using the GUM
approach (LPU) [2] is not only questionable from the point of view of the assumptions entailed
by that approach, but difficult to implement since it requires the calculation of partial derivatives
within an implicit non-trivial formulation.

Concerning the associated uncertainties, the metabolic rate M , the effective power W and the
clothing insulation Icl were defined according to the conditions and tables given in ISO 7730 and
therefore their values have no associated uncertainty. The experimental data for the measured
quantities were obtained from calibrated instruments (traceable to national standards with re-
ported measurement uncertainties). The data were used in a thermal comfort study developed
for a health institution and obtained from three locations: two offices with different indoor en-
vironmental conditions and a customer service room.

For each location the testing procedure included the measurement of the following quantities:
air temperature ta, globe temperature1 tg, relative humidity RH, relative air velocity var, and
mean radiant temperature tr.

1Measured with a globe thermometer as a means of assessing the combined effects of radiation, air temperature
and air velocity on human comfort.
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In table E4.5.1, best estimates of the quantities concerned are taken as the average values of 40
observations (obtained every 2 min) for those quantities, and standard uncertainties associated
with those estimates are evaluated. It is assumed that the measuring conditions are stable during
the period of measurement and thus the observations can be regarded as repeated indication
values of the quantities. These standard uncertainties comprise contributions from the averaging
process (Type A evaluation of uncertainty) and from instrument calibration (Type B evaluation),
as discussed above.

Table E4.5.1: Estimates of the input quantities

Location M × 58.2 W Icl × 0.155 ta tg RH var tr
W m−2 W m−2 m2 K W−1 °C °C % ms−1 °C

Office 1 1.2 0 0.7 25.8 26.3 47.4 0.01 26.4
Office 2 1.2 0 1.0 20.9 21.2 68.1 0.02 21.3
Customer service 1.2 0 0.7 24.0 24.3 46.4 0.07 24.6

In table E4.5.2, sample standard deviations of the experimental data, taken as the standard un-
certainties, are given, which express the repeatability (Type A) contributions obtained from the
experimental data used for the studies. The table also gives the Type B contributions, which for
each quantity is a constant value because the same measuring instrument was used for all three
locations.

Table E4.5.2: Standard uncertainties associated with the estimates of the measured quantities in
table E4.5.1

Location ta tg RH var tr
°C °C % ms−1 °C

Office 1 0.04 0.05 0.56 0.03 0.15
Office 2 0.05 0.00 0.28 0.02 0.08
Customer service 0.04 0.03 0.13 0.05 0.05
All 0.1 0.1 0.5 0.05 0.2

All entries in table E4.5.2 are given to the same number of decimal places. As a result, some of
these entries are reported as zero. It would be necessary to use one or two further decimal digits
to demonstrate that these values are non-zero albeit negligible.

Another important comment refers to the difference between the definitions and use of standard
uncertainty in the GUM and GUM-S1 [3]. In the former the sample standard deviation is used as
the standard uncertainty whereas in the latter a factor of [(n−1)/(n−3)]1/2 is included to obtain
the standard deviation of the state-of-knowledge distribution assigned to the corresponding input
quantity. In this case, for a sample size of n= 40 the effect is small (less than 3 %), not affecting
the standard uncertainties in table E4.5.2 to the number of decimal digits reported.
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E4.5.5 Uncertainty propagation

E4.5.5.1 Preamble

Two approaches for the evaluation of uncertainty are considered: the GUF, based on the LPU [2],
and the propagation of distributions of GUM-S1, based on the Monte Carlo method [3].

Both approaches depend on knowledge of the PDFs for the input quantities, but whereas the GUF
uses summary information – estimates and associated standard uncertainties – obtained from the
PDFs, the propagation of distributions uses the PDFs themselves. The simplification inherent in
the GUM approach, however, imposes limitations on its applicability, which are irrelevant to the
GUM-S1 approach, making the latter more reliable and which should be used for validation,
when the conditions for the use of the GUM approach are not fully met.

E4.5.5.2 GUM Uncertainty Framework

The GUF requires the calculation of sensitivity coefficients ci , the first partial derivatives of the
PMV index measurement function with respect to the quantities on which the function depends,
evaluated at the estimates of those quantities. These derivatives are determined from expres-
sion (E4.5.8). As for many complicated models, determining the required partial derivatives
algebraically is not always practical and a numerical approach is recommended [365]. It is a
burden not shared by the GUM-S1 approach.

In this model, special attention must be paid to the derivative ∂ (PMV)/∂ tcl given values for all
other input quantities. Equation (E4.5.8) (with equation (E4.5.7)) is solved for tcl, and then
PMV is evaluated using equation (E4.5.9). The partial derivatives of PMV with respect to the
input quantities, required by the LPU, are formed in the usual manner apart from the partial
derivative of PMV with respect to tcl. The fact that PMV defined by equation (E4.5.1) involves
g (tcl), defined by equation (E4.5.7), and hence the derivative g ′ (tcl) is required. This derivative
is not necessary when using equation (E4.5.8), is a simplification that poses no problem since
g (tcl) is already used when solving equation (E4.5.8) numerically for tcl. No further numerical
operations are necessary in evaluating the partial derivative.

Another aspect of this non-trivial model is that there are two instances where estimates of the
input quantities are close to the breakpoints (derivative discontinuities) of the respective model
functions. They relate to the clothing surface area factor fcl (equation (E4.5.4)) and to the
convective heat transfer coefficient hc (equation (E4.5.3)).

The first of these model functions (the second is similar) is illustrated in Figure E4.5.1 , showing
fcl as a function of clothing insulation Icl. Equation (E4.5.4) can be also be expressed as

fcl = 1.1+min [0.645 (Icl − 0.0775) , 1.290 (Icl − 0.0775)] ,

which displays explicitly the fact that the function is continuous at Icl = 0.0775 m2 K W−1 with
fcl taking the value 1.1. The sensitivity coefficient ∂ fcl/∂ Icl changes from 1.290 to 0.645 at
Icl = 0.0775m2 K W−1, halving its value.

Figure E4.5.2 shows the PDF for fcl when Icl is assigned a Gaussian PDF N(0.0775, (0.01)2),
as produced by a Monte Carlo calculation. It is generally far easier to use such a calculation
to provide (or at least approximately) a PDF, even though an analytical solution could also be
obtained using the “change of variables” formula [366], applying the formula separately in both
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Figure E4.5.1: Clothing surface area factor fcl as a function of clothing insulation Icl

Figure E4.5.2: PDF for fcl as a function of Icl, as produced by a Monte Carlo calculation
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branches. The PDF obtained agrees to graphical accuracy with that provided by the Monte Carlo
calculation. The PDF in this case is discontinuous, in fact a mixture of two “half-Gaussians”, with
standard deviations in the ratio 2:1.

Even when the measurement model involves derivative discontinuities, as here, the standard de-
viation of the measurand ( fcl or subsequently PMV index) is a continuous function of the input
quantities in the model. Figure 3 shows the standard deviation of fcl (equal to the standard uncer-
tainty associated with an estimate of fcl) for Icl ranging from 0.001 m2 W K−1 to 0.200 m2 W K−1.
The smooth but rapid change of the standard deviation from 0.0129 to 0.0065 over this interval
is apparent. Convection plays a predominant role in the thermal comfort perception, as expected.

Figure E4.5.3: Standard deviation of fcl as a function of Icl

E4.5.6 Reporting the result

Table E4.5.3 shows for the PMV model the input quantities, the PDFs that characterise them,
and their estimates and associated standard uncertainties. Some of the input quantities are ex-
perimental, while other quantities have tabulated values [364] for which values are regarded as
fixed and exact. Together with the above partial derivatives evaluated at the estimates of the
input quantities, LPU is applied to produce results given in the table. In the case of ta the PDF
results from the combination of data from measurement and instrument calibration.

A relevant conclusion that can be drawn from table E4.5.3 is that relative air velocity is a domi-
nant factor in the perception of thermal comfort (expressed as PMV) in this particular case, which
is a well-known phenomenon. In this model its influence is through quantity hc. The PDF for
hc is very sensitive to relative air velocity and its shape is like that of the output quantity PMV,
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Table E4.5.3: GUM uncertainty budget for the PMV model

Quantity PDF Estimate ui ci ciui

M/W m−2 Ref. value 70
W/W m−2 Ref. value 0
ta/°C Combined 22.0 0.1 0.228 0.013
Icl/m

2 K W−1 Ref. value 0.078
tr/°C Gaussian 22.0 negligible
RH/% Rectangular 60.0 0.3 0.0059 0.0017
var/m s−1 Rectangular 0.10 0.03 3.27 0.094
PMV -0.75 u(PMV) = 0.094 U0.95(PMV) = 0.18

which corroborates the finding on the predominant role of relative air velocity in the perception
of thermal comfort. The influence of hc can also be concluded from a sensitivity analysis of the
quantities present in equation (E4.5.1).

The Monte Carlo calculation was based on the experimental input indicated in tables E4.5.1 and
E4.5.2. The number of Monte Carlo trials was taken as 1×105. Thus, samples of 1×105 drawn
from the PDFs for the input quantities were used to obtain a PDF for the output quantity as
described in GUM-S1 [3].

Figure E4.5.4 shows the PDF for the PMV index provided by the MCM for the same location as
table E4.5.3. The striking asymmetry in the PDF is evident, with a very long right-hand tail. This
long tail implies there is non-negligible probability of having a different (higher) value for the
PMV index than would have been obtained by applying the GUM with its assumption that the
measurand is Gaussian.

Figure E4.5.4: PDF for the PMV index from Monte Carlo calculation

The advantages of MCM over GUF are apparent in this application. The latter only delivers an
estimate (expectation), an associated standard uncertainty (standard deviation) and a coverage
interval based on the assumption of normality. The MCM gives considerable insight, providing
much richer information, through the display of any given shape for the PDF for the measurand,
allowing characteristics such as the tails to be considered.

Results related to the figure are presented in table E4.5.4 in which “estimate” is taken as the
expectation of the PDF for the corresponding measurand. We note that this parameter can be
somewhat misleading in the case of an extremely asymmetric PDF although it does indeed for-
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mally give the expectation (mean) of the distribution. The mode (point at which the probability
density is greatest) might be more meaningful, but it is recommended that only the expectation
is used for purposes of uncertainty propagation [2].

Table E4.5.4: Results from the Monte Carlo calculation

Quantity Estimate Standard uncertainty 95 % coverage interval

Lower limit Upper limit Width

PMV 0.23 0.04 0.18 0.34 0.16

A complementary study was carried out to provide a sensitivity analysis for the input parameters
used to obtain the PMV index. For this purpose, small variations of the input quantities were
introduced successively, keeping all other input quantities fixed at their estimates, to approximate
the partial derivatives near the measurement point. The analysis showed that relative air velocity
has the largest impact. As pointed out before, the convective heat transfer coefficient also has
a significant impact on the perception of thermal comfort, and thus any changes related to air
temperature and air velocity impact appreciably on the perception of thermal comfort.

The same analysis was applied to those quantities whose values were taken from tables [364].
The partial derivatives and the effect of uncertainty related to these quantities (based on assuming
an error magnitude of at most one half in the last stated decimal place) on PMV index uncertainty
showed non-linear behaviour in the neighbourhood of the estimates of the input quantities, which
is another reason in favour of the application of MCM. In relation to the relative influence of
uncertainty contributions, the sensitivity analysis, assuming the Gaussian PDF N(1.2, (0.05)2)
for M and the Gaussian PDF N(0.7, (0.05)2) for Icl, enabled it to be concluded that the variation
of M has little influence on PMV, whereas Icl greatly influences it. Care should thus be taken
when selecting these tabular values from Standard ISO 7730 [364], especially those related to
clothing insulation.

An important point to be made relates to the validation of the Monte Carlo implementation,
which was made using five reference test sets taken from Table D1 in Annex D of ISO 7730
[364], to cover various testing conditions. The comparison showed strong agreement between
the reference values and the values provided by GUM-S1.

Comparing the results for the estimate of PMV and its associated standard uncertainty as provided
by the GUF and MCM, using two of those reference test sets, showed a surprising close agreement
between both approaches, which is not always the case. Bearing in mind that the opposite can
also occur, it emphasises the need for validation whenever possible: any difference may affect
decision making in conformity assessment in thermal comfort.

This decision making has an immediate application in this standard if thermal environments are
to be classified in various categories, as in Annex A of ISO 7730 [364]. A detailed evaluation of
measurement uncertainty applied to PMV index is required, since this parameter will have a direct
impact on the classification to be attributed to a specific thermal environment, by affecting the
possible values of PMV, with the corresponding consequences on value and suitability of different
building spaces. Detailed information on conformity assessment can be found in JCGM 106 [6].
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E4.5.7 Interpretation of results

Since this project EMUE is being developed within the framework of pre-normative projects, it
is important to evaluate aspects not only of the standard ISO 7730 [364], but also of ISO 7726
[367], which relates closely to the former standard by specifying the requirements for the accu-
racy of the measuring instruments used in ISO 7730.

In terms of ISO 7730, the PMV index is defined on a continuous scale, whereas the interpre-
tation is often translated into a discrete scale, on a 7-point thermal sensation scale (−3/cold,
−2/cool, −1/slightly cool, 0/neutral, +1/slightly warm, +2/warm, +3/hot), values relating to
the subjective thermal perception of a large sample of individuals exposed to the same thermal
conditions.

On one hand, the resolution of this scale is too coarse, leading to an increase in uncertainty that
would be totally artificial. For example, if a value of PMV is halfway between two points on its
seven-point scale ( ≈ 0.5, say), a substantial increase in the uncertainty of a rounded PMV value
over and above the PMV uncertainty based on a continuous scale would occur.

On the other hand, based on experience, few individuals vote for the extreme values of the
discrete scale, the majority concentrating their votes on central values. Thus, the scale should
probably be changed to increase the resolution of the scale on the central part of acceptable ther-
mal condition. However, the treatment of ordinal scales is a branch of science on its own, using
e.g., Rasch models [368], and close collaboration should therefore be pursued with researchers
from the social sciences.

With respect to ISO 7726 [367], one study has shown [369] that of the two possible requirements
for the measurement instruments, namely “required” and “desirable”, only the latter permits to
obtain the accuracy assumed for the values used in ISO 7730, and therefore these points should
be conveyed to the standardization committee responsible for these documents.

E4.5.A GUM uncertainty framework and GUM-S1 propagation of dis-
tributions

E4.5.A.1 Explicit Model

In the more common explicit univariate measurement model, a single real output quantity Y is
related to a number of input quantities X = (X1, . . . , XN )

⊤ by a functional relationship f in the
form Y = f (X) as stated in the GUM [364]. The estimate of the output quantity is taken as
y = f (x ) The standard uncertainty u(y) associated with y is evaluated from

u2(y) =
N
∑

i=1

N
∑

j=1

ciu
�

x i , x j

�

c j (E4.5.10)

where ci is the partial derivative ∂ f /∂ X i evaluated at X = x and is known as the i th sensitivity
coefficient, u (x i) is the standard uncertainty associated with x i , and u

�

x i , x j

�

the covariance
associated with x i and x j

A compact way of writing the sum in expression (E4.5.10), better suited for scientific software
based on matrix formulation, e.g., MATLAB, is

u2(y) = cTV x c (E4.5.11)
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where Vx is the covariance matrix of dimension N × N containing the covariances u
�

x i , x j

�

V x =





u (x1, x1) · · · u (x1, xN )
...

. . .
...

u (xN , x1) · · · u (xN , xN )



 (E4.5.12)

and the (row) vector c⊤ = ⌈c1, . . . , cN ] of dimension 1× N contains the sensitivity coefficients.
Both expressions (E4.5.10) and (E4.5.11) are equivalent representations of LPU of the GUM
[364].

For independent input quantities, we would obtain the better-known simplified expression (equiv-
alent to using V x with its off-diagonal elements replaced by zeros)

u2(y) =
N
∑

i=1

[ciu (x i)]
2 =

N
∑

i=1

u2
i (y), ui(y)≡ |ci|u (x i) (E4.5.13)

The ui(y) are often used in uncertainty budgets to identify which input quantities, with respect
to their corresponding standard uncertainties, have significant influence on the standard uncer-
tainty u(y) associated with the estimate y of the output quantity.

E4.5.A.2 Implicit Model

For an implicit univariate measurement model, however, a single output quantity Y is related to
real input quantities X in a way that cannot readily or stably be represented by a direct functional
relationship. Instead, a model for the measurement takes the form h(Y, X) = 0, in which Y is
not expressed directly as a function of X , often requiring a numerical implementation to obtain
a solution [3].

The estimate y of Y is the value of η that solves the equation h(η, x) = 0. This equation is to be
solved numerically with a suitable zero-finding algorithm [368]. The standard uncertainty u(y)
associated with y is evaluated from

u2(y)c2
y = c⊤x U x cx (E4.5.14)

where c⊤x is the (row) vector of dimension 1 × N of partial derivatives ∂ h/∂ X i , and cy is the
partial derivative ∂ h/∂ Y , with all derivatives evaluated at X = x and Y = y [364].

E4.5.A.3 Conditions for valid application

There are a number of conditions for valid application of the GUF for non-linear models. They
include [2] that f must be continuously differentiable with respect to the elements X i of X in the
neighbourhood of the estimates x i of the X i , for all derivatives up to the appropriate order, and
that higher-order terms not included in the Taylor series approximation to f (X) are negligible.
The differentiation issue was treated above.

E4.5.A.4 Propagation of distributions

The most general and reliable approach for uncertainty propagation is the propagation of dis-
tributions, where the PDFs for the input quantities are propagated through the measurement
model to provide the PDF for the output quantity. The expectation of this PDF is then used as
the estimate of the measurand and the standard deviation of the PDF is used as the standard
uncertainty associated with that estimate.
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A MCM is an implementation of the propagation of distributions. It still requires a functional
relationship, but it does not suffer from the limitations imposed by the GUF, namely the differ-
entiable issues, the compliance with the central limit theorem, the requirement of symmetrical
input PDFs, Gaussian output PDF or the non-existence of a non-Gaussian dominant source of
uncertainty. It should provide valid results, provided an adequate number of samples is drawn,
whenever the applicability of the GUF is questionable. It should always be checked that any given
target uncertainty has been attained [366], which is a further feature the GUF cannot provide.

Once the PDF for the output quantity Y is available, a coverage interval for Y corresponding
to any stipulated coverage probability p can be obtained. Commonly, p is taken as 0.95. Such
a coverage interval contains the value of Y with probability p. A straightforward method for
obtaining a coverage interval from the results of applying an MCM is to sort the values of Y in
non-decreasing order and use the percentiles to obtain the required interval. The shortest 95%
coverage interval includes values with the highest density and can be obtained by the procedure
given in [2].

The GUF does not provide the PDF for Y , but instead assumes that Y can be described by a
Gaussian PDF N

�

y, u2(y)
�

, namely, with expectation y and standard deviation u(y) (or a scaled
and shifted t-distribution). Specifically, the GUM defines a coverage interval for Y as y ± Up,
where Up is an expanded uncertainty corresponding to coverage probability p given by Up =
kpu(y). The factor kp is known as a coverage factor, which is obtained from the standard Gaussian
PDF or the t-distribution [363].
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Example E4.6

Bayesian evaluation of a
between-bottle homogeneity study in
the production of reference materials
A.M.H. van der Veen, S.L.R. Ellison

E4.6.1 Summary

This example shows how a Bayesian hierarchical model can be used to determine the between-
bottle standard deviation of the amount fraction of a component in a set of synthetic natural
gas mixtures. The gas mixture are used in a proficiency test. The model takes as input an
n × k table with amount fractions of a selected component, where n denotes the number of
gas mixtures and k the number of replicates per mixture. It computes the mean µ, between-
group standard deviation τ and within-group standard deviation σ. The model assumes that
the amount fractions are, conditionally on the model parameters, normally distributed and uses
weakly informative prior probability density functions for the three parameters. The elicitation of
the parameters is based on experience in previous proficiency tests. The model is demonstrated
for two datasets, one for ethane and a second for nitrogen; in the former case, classical one-way
analysis of variance can be used well, but in the latter the classical analysis does not provide a
solution. The example also illustrates how such a model can be set up using R and Stan.

E4.6.2 Introduction of the application

An essential element in the production of certified reference materials and proficiency test ma-
terials in batch form is the evaluation of the between-bottle homogeneity [370]. This form of
(in)homogeneity accounts for the (small) differences in the property of interest between the bot-
tles (or more generally, items [371]) and including it in the uncertainty budget of the property
value ensures that the value and associated uncertainty are valid for each bottle in the batch,
rather than for the batch as a whole [370,372]. The evaluation of between-bottle homogeneity
is both a requirement in reference material production [8] as well as in proficiency testing [9,69].

Traditionally, classical ANOVA is used [69, 371] for this purpose, which is more fully described
elsewhere [370]. The parameter of prime interest is the between-group standard deviation,
which in this specific case is called the between-bottle standard deviation [64, 370]. Whereas
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classical ANOVA works well if the between-bottle homogeneity effect is of similar magnitude as
the measurement repeatability or greater, difficulties arise when the between-bottle homogeneity
effect is (substantially) smaller than the repeatability effect [64]. Such situations should be
avoided [370,371] but that is not always possible [64].

In this example, a dataset is used that suffers from poor repeatability which justifies the use
of a Bayesian hierarchical model. This model is, apart from the use of prior probability density
functions for the parameters, very similar to the traditional one-way ANOVA model widely used in
the evaluation of homogeneity studies [370]. The background of the model is briefly summarised
here; a more elaborate treatise is available elsewhere [63,64]. A similar model is also available
in the NIST Consensus Builder [373,374].

E4.6.3 Specification of the measurand(s)

The measurand in this example is the between-bottle standard deviation (τ) of the amount frac-
tion of a component in a batch of gas mixtures.

E4.6.4 Measurement model

The statistical model relating the observed amount fractions yi j for mixture i and replicate j to
the mean amount fraction µ, the error in the amount fraction in mixture i, Bi and the random
measurement error ϵi j takes the form [370]

yi j = µ+ Bi + ϵi j . (E4.6.1)

The objective of the evaluation is to determine τ2 = var(Bi) and σ2 = var(ϵi j). If no pooling is
used, then σ2

i = var(ϵi j), i.e., a standard deviation is computed for each mixture. In a between-
bottle homogeneity study, it would usually make sense to make the assumption that all standard
deviations σ are equal in principle, so to use pooling [64]. The Bayesian treatise presented here
is using pooling of the within-group standard deviations.

In this example, a Bayesian model is used, which implies that a joint prior PDF should be chosen
for the model parameters. In the case that the parameters are assumed to be mutually inde-
pendent, then this joint prior PDF can be replaced by the product of three probability density
functions, one for each of the parameters. These probability density functions are specified as
follows

µ∼ N(µ0,σ2
target), (E4.6.2)

τ∼ Cauchy(0,τ0), (E4.6.3)

σ ∼ Cauchy(0,σ0). (E4.6.4)

The prior probability density function (hereafter prior) forµ is a normal distribution with meanµ0
(elicited from the specification of the composition of the gas mixtures) and a standard deviation
that reflects how close the amount fraction for the component of interest of the batch is expected
to be to the specified value. The manufacturer specifies that the actual amount fraction will not
differ more than 5 % from the specified amount fraction. This specification is interpreted as a
95 % coverage interval, and hence a relative standard deviation of 2.5 % is used. This standard
deviation is sufficiently large to ensure that the posterior probability density function (hereafter
posterior) will be dominated by the data [63,64].
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The prior for the between-bottle standard deviation τ is chosen to be the Cauchy distribution
with location parameter 0 and scale parameter τ0. The latter is obtained from the specification
for the production of the batch gas mixtures, which is usually larger than the value expected for
τ. By using this approach, it is ensured that the scale parameter not smaller than the anticipated
standard deviation [375]. The Cauchy distribution concentrates most of the density between 0
and the scale parameter. Due to the restriction put on τ (and σ), the lower end of the prior
is 0, as a standard deviation cannot be negative. A similar approach is used for the prior of σ.
The scale parameter σ0 is set to be equal to the repeatability standard deviations of the amount
fractions in this type of mixtures, as observed in previous measurements.

The likelihood is, as stated previously, conditionally on the parameters, a normal distribution [63]

yi j|µ,τ,σ ∼ N(µ,τ2 +σ2). (E4.6.5)

The likelihood of ȳi|θi ,σi can be described as [65]

ȳi|θi ∼ N(θi ,σ
2/k),

where θi denotes the group mean and ȳi the mean of the yi j , averaged over the replicates. The
marginal distributions of the group means ȳi , averaged over the θi are independent normal

ȳi|µ,τ∼ N(µ,τ2 +σ2/k).

E4.6.5 Data evaluation

The model as described in the previous sections is used with Bayes’ rule. From the weakly infor-
mative priors for µ, τ, and σ (equations (E4.6.2)-(E4.6.4)), using the data and the likelihood,
a joint posterior for the model parameters is obtained. From this posterior, the value for τ, the
between-bottle standard deviation, is calculated.

E4.6.6 Implementation

In Stan code, the model of the between-bottle homogeneity study with pooling of the within-
group standard deviations reads as

data {
int<lower=1> N;
int<lower=1> K;
matrix[N,K] y;
int<lower=1> n[N];
real mu0;
real tau0;
real sig0;

}
transformed data {

matrix[N,K] y_;
real scale;
scale = mean(y);
y_ = y / scale;

}
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parameters {
real mu_;
real<lower=0> tau_;
real<lower=0> sig_;
vector[N] eta;

}
transformed parameters {

vector[N] theta_;
theta_ = mu_ + tau_*eta;

}
model {

tau_ ~ cauchy(0,tau0/scale);
sig_ ~ cauchy(0,sig0/scale);
mu_ ~ normal(mu0/scale,0.025*mu0/scale);
eta ~ normal(0, 1);
for (i in 1:N) {
y_[i,] ~ normal(theta_[i], sig_);

}
}
generated quantities { // computation of unscaled parameters

real mu;
real<lower=0> tau;
real<lower=0> sig;
vector[N] theta;
mu = mu_ * scale;
tau = tau_ * scale;
sig = sig_ * scale;
theta = theta_ * scale;

}

The model consists of the following blocks

1. data, declaring the data used by the model

2. transformed data, used here to rescale the data by dividing the observed amount frac-
tions by their mean

3. parameters, declaring the model parameters and any auxiliary parameters needed for
running the calculations

4. transformed parameters, declaring the scaled group means

5. model, specifying the Bayesian model in terms of the priors and the likelihood

6. generated quantities, declaring and computing the unscaled model parameters

In the data block, the variables are declared that are needed for transferring the data. In this
block, the number of gas mixtures (“bottles”) N (n) and the (maximum) number of replicates K
(k) are declared, following by the table with amount fractions y. mu0, tau0 and sigma0 are the
(hyper)parameters of the priors assigned to µ, τ, and σ respectively.

The next block, transformed data, performs a rescaling on the data in y. The transformation
consists of calculating the mean of all observed amount fractions and to use this to rescale the
data (variable scale). The rescaled variables is y_. This transformation could also have been
performed in R before transferring the data to the Bayesian model. Including it in the model
enables the user of the model to transfer the original data, and as we will see the model also
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Table E4.6.1: Amount-of-substance fraction of ethane (%) of the 10 mixtures

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5

D520472 3.496632 3.498528 3.495981 3.497959 3.495900
H95396 3.499540 3.496899 3.498857 3.497719 3.498985
VSL190663 3.499200 3.497277 3.496565 3.496385 3.499073
D520467 3.498073 3.496472 3.496522 3.496959 3.497474
D520834 3.499093 3.496120 3.496482 3.498150 3.497656
D520361 3.497502 3.498803 3.498913 3.499660 3.499122
D520270 3.497358 3.498859 3.497683 3.497349 3.498252
D520446 3.498206 3.497208 3.499195 3.498182 3.497208
VSL190485 3.498724 3.497021 3.496768 3.498014 3.495973
VSL190977 3.499762 3.498026 3.498264 3.495620 3.499327

returns the unscaled model parameters (see the generated quantities block. The last line
in the transformed data performs the rescaling of the data and is written in vectorised form,
as this is the fastest way to perform the rescaling [61,62].

In the parameters block, the (rescaled) parameters mu_, tau_ and sigma_ are declared, as well
as an auxiliary variable called eta, which is used for an efficient implementation of the hierar-
chical model. Sampling eta and then using it is more efficient than directly trying to obtain the
group means [65]. These group means are declared in the block transformed parameters.

The data for ethane are shown in table E4.6.1. Using traditional ANOVA, for the dataset of
ethane, the between-bottle homogeneity standard deviation is 3.19µmolmol−1 and the (pooled)
repeatability standard deviation is 10.88µmolmol−1 [64].

Experience from previous between-bottle homogeneity studies for ethane in natural gas has in-
dicated that the repeatability standard deviation for the amount fraction ethane is 0.10 % and
the specification for the between-bottle homogeneity is 0.4 %. The latter is interpreted as an
expanded uncertainty with coverage factor k = 2, thus τ0 = µ0 · 0.2 %. Running the model with
25 000 iterations and a warmup of 5000 iterations, using 4 chains [63, 64] on the dataset of
ethane yields the following output:

## Inference for Stan model: 3c7d78ea6604265a562e4008c783360f.
## 4 chains, each with iter=25000; warmup=5000; thin=1;
## post-warmup draws per chain=20000, total post-warmup draws=80000.
##
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## mu 3.49779 0 0.00022 3.49736 3.49823 60910 0.99997
## tau 0.00039 0 0.00026 0.00002 0.00099 25435 1.00010
## sig 0.00112 0 0.00012 0.00090 0.00139 52679 1.00002
## theta[1] 3.49751 0 0.00037 3.49668 3.49813 51074 1.00005
## theta[2] 3.49801 0 0.00035 3.49740 3.49880 58512 1.00002
## theta[3] 3.49776 0 0.00032 3.49710 3.49840 89856 1.00000
## theta[4] 3.49755 0 0.00036 3.49674 3.49816 54818 1.00004
## theta[5] 3.49769 0 0.00033 3.49699 3.49830 81013 1.00003
## theta[6] 3.49815 0 0.00040 3.49749 3.49905 42563 1.00003
## theta[7] 3.49783 0 0.00032 3.49719 3.49850 93936 0.99996
## theta[8] 3.49786 0 0.00032 3.49725 3.49855 85007 0.99999
## theta[9] 3.49762 0 0.00034 3.49686 3.49822 67517 0.99998
## theta[10] 3.49793 0 0.00033 3.49733 3.49867 74363 1.00001
##
## Samples were drawn using NUTS(diag_e) at Thu Aug 13 09:31:33 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
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Figure E4.6.1: Posterior densities for the mean, between-group and within-group standard devi-
ations for ethane

## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

The posterior PDFs for µ, τ, and σ computed from the dataset of ethane are shown in fig-
ure E4.6.1. From the output of the MCMC, also the shortest coverage intervals can be computed.
The following code, requiring the packages coda and HDIntervals performs the calculation:

fit.mcmc = As.mcmc.list(fit)
ethane.hpdi = hdi(fit.mcmc,credMass = 0.95)

The first line converts the output from Stan into the appropriate form [376]. Then the function
hdi is used to compute the highest posterior density intervals [377]. The lower (L) and upper
(H) limits of the 95 % highest posterior density intervals are shown in table E4.6.2. The lower
bound on the coverage interval for τ is 1.13× 10−10 cmol mol−1, which is very close to zero.

As the uncertainty evaluation in accordance with the GUM [2] and ISO Guide 35 [371] requires
only a point estimate, there are several ways to obtain such an estimate from the posterior prob-
ability density function. Candidates include the mean, the mode, and the median. If the proba-
bility density function is symmetric and unimodal, these candidates will all have the same value.

Given the skewness of the posterior of τ (see figure E4.6.1), these three options are not
equivalent. The mode is 3.22µmolmol−1, the median is 3.54µmolmol−1, and the mean is
3.89µmolmol−1.

Table E4.6.2: 95 % highest posterior density intervals for µ, τ and σ for ethane(expressed as
amount fractions, %)

Parameter L H

µ 3.49737 3.49823
τ 0.00000 0.00086
σ 0.00089 0.00137

The data for nitrogen are shown in table E4.6.3. Using traditional ANOVA for the dataset of
nitrogen, the between-bottle standard deviation is 0.00µmolmol−1 and the (pooled) repeatabil-
ity standard deviation is 7.00µmol mol−1 [64]. The zero value for the between-bottle standard
deviation is readily explained by considering that MSbetween = 3.249 × 10−7 is smaller than
MSwithin = 4.903× 10−7.
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Table E4.6.3: Amount-of-substance fraction of nitrogen (%) in the 10 mixtures

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5

D520472 0.424577 0.425167 0.425379 0.424522 0.424805
H95396 0.425572 0.425411 0.423638 0.425301 0.424527
VSL190663 0.424152 0.425517 0.425638 0.424207 0.425135
D520467 0.426320 0.424672 0.425211 0.425533 0.425864
D520834 0.424855 0.425079 0.425413 0.424729 0.424725
D520361 0.425104 0.424773 0.426424 0.424266 0.424632
D520270 0.425750 0.424917 0.424779 0.425086 0.425318
D520446 0.425547 0.426483 0.424631 0.425968 0.424620
VSL190485 0.426326 0.424646 0.425205 0.426302 0.425020
VSL190977 0.425968 0.424069 0.425988 0.425489 0.423936

Experience from previous between-bottle homogeneity studies for nitrogen in natural gas has the
repeatability standard deviation for the amount fraction nitrogen is 0.20 % and the specification
for the between-bottle homogeneity is 0.3 %. The latter is interpreted as an expanded uncertainty
with coverage factor k = 2. Running the model with 25000 iterations and a warmup of 5000
iterations, using 4 chains [63,64] on the dataset of nitrogen yields the following output:

## Inference for Stan model: 3c7d78ea6604265a562e4008c783360f.
## 4 chains, each with iter=25000; warmup=5000; thin=1;
## post-warmup draws per chain=20000, total post-warmup draws=80000.
##
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## mu 0.42514 0 0.00011 0.42492 0.42537 77137 1.00002
## tau 0.00014 0 0.00011 0.00001 0.00040 49866 1.00004
## sig 0.00069 0 0.00007 0.00056 0.00085 85493 0.99999
## theta[1] 0.42510 0 0.00017 0.42473 0.42540 81567 1.00000
## theta[2] 0.42510 0 0.00016 0.42474 0.42540 80768 1.00002
## theta[3] 0.42511 0 0.00016 0.42475 0.42541 85237 1.00003
## theta[4] 0.42521 0 0.00017 0.42492 0.42561 78431 0.99997
## theta[5] 0.42511 0 0.00016 0.42476 0.42541 87385 1.00004
## theta[6] 0.42512 0 0.00016 0.42479 0.42543 89116 1.00002
## theta[7] 0.42515 0 0.00016 0.42484 0.42547 90335 1.00002
## theta[8] 0.42520 0 0.00017 0.42490 0.42558 79099 0.99997
## theta[9] 0.42521 0 0.00017 0.42491 0.42560 78602 0.99999
## theta[10] 0.42513 0 0.00016 0.42480 0.42544 90610 0.99999
##
## Samples were drawn using NUTS(diag_e) at Thu Aug 13 09:33:22 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

The posterior PDFs for µ, τ, and σ computed from the dataset of nitrogen are shown in fig-
ure E4.6.2. Where traditional analysis of variance fails at quantifying the between-bottle homo-
geneity effect, the Bayesian counterpart provides a probability density function for τ, from which
the between-bottle standard deviation can be derived. The 95 % highest posterior density inter-
vals are given in table E4.6.4. The lower (L) and upper (H) limits of the 95 % highest posterior
density intervals are shown in table E4.6.4. The lower bound on the coverage interval for τ is
2.18× 10−9 cmolmol−1.
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Figure E4.6.2: Posterior densities for the mean, between-group and within-group standard devi-
ations for nitrogen

Table E4.6.4: 95 % highest posterior density intervals for µ, τ and σ for nitrogen(expressed as
amount fractions, %)

Parameter L H

µ 0.42493 0.42537
τ 0.00000 0.00034
σ 0.00056 0.00083

Just as in the case of ethane, also for the amount fraction nitrogen there are different options for
the between-bottle standard deviation τ. The mode of the posterior of τ is 0.27µmolmol−1, the
median is 1.12µmolmol−1, and the mean is 1.36µmolmol−1.

E4.6.7 Reporting the result

The prime result is the value for the between-bottle standard deviation τ. In a previous paper
[64], the mean was chosen as estimate for τ, which is the most cautious option (it leads to the
largest value for this uncertainty contribution). For datasets where the between-bottle variability
is larger, the differences between the three options become smaller. As also discussed in the cited
paper, the width of the posterior makes that several alternatives [370,378] also fall in the 95 %
coverage interval.

Alternatives to using the mean include the use of the median or mode of the posterior probability
density function for τ, and even τ = 0 could be justified, as the lower ends of the 95 % highest
posterior density intervals are for practical purposes indistinguishable from zero. The between-
bottle homogeneity effect in both datasets is small (that is why they were selected for this example
in the fist place).
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Flow meter calibration using the
master meter method
M. Čaušević, M.G. Cox, A.M.H. van der Veen

E4.7.1 Summary

This example demonstrates the calibration of a gas flow measuring instrument by the so-called
“master meter” method, i.e. by comparing the measured flow on a master meter (reference
standard) and the measured flow on the device under test. The measurements in this example
were performed by using three measurement standards with different measuring ranges and one
device under test in the “SARAJEVOGAS” Laboratory. The measurements were performed at 10
different flow rates, where each flow rate was measured three times, which gives in total 30
measurements of flow rate. As a result, this example gives the uncertainty of measurement of
the meter under test at each of ten flow rates within this set-up.

E4.7.2 Introduction of the application

The test facility operates on the so-called “master meter” principle where the meter under test
(MUT) is located downstream from the standard meter (figure E4.7.1). Ambient air is sucked by
a fan and the flow rate is adjusted by regulation of the fan and electromotive valve. The testing
procedure is controlled by software. The measurement of flow rate for this kind of set-up first

Figure E4.7.1: Set-up in the SARAJEVOGAS laboratory

starts with entering the desired flow rate into the flow computer. After the first recorded pulse
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from the MUT, the volume flow rate from the MUT and the reference measurement standard
(master meter or MM) are measured and recorded separately on the indicating devices of these
measuring instruments. After two or more MUT pulses (depending on the selected volume)
the measurement stops automatically. The volume flow rates from the MUT and the MM are
calculated by dividing the number of pulses by the pulse value for each measuring instrument.
Figure E4.7.1 shows the location of the master meter, the meter under test and the measuring
instruments for temperature and pressure measurements in the laboratory set-up.

E4.7.3 Specification of the measurand(s)

The measurement, which in this case was for calibration purposes, was performed at atmospheric
conditions with air temperature around 22 °C. The absolute pressure was measured directly with
the standard and the meter under test, while the temperatures were measured downstream.
Single tests lasted a minimum of 200s to reach a stable flow rate. The calibration was performed
with three standard/master meters with the following measuring ranges given in table E4.7.1.

Table E4.7.1: Volume flow rate ranges of the meters involved

G40 Rotary gas meter G250 Turbine gas meter G1000 Turbine gas meter

20 m3 h−1–50 m3 h−1 100 m3 h−1–350 m3 h−1 450 m3 h−1–1000 m3 h−1

E4.7.4 Measurement model

E4.7.4.1 Main effects

The basic procedure within this example differentiates between two types of quantities that in-
fluence the measurement uncertainty. The first type refers to the measurement error of the meter
under test and the second type to the measurement standard, repeatability of measurement as
well as any other additional influence quantity. The measurement error of the device under test
is considered to be the main effect since it includes measurement effects of pressure, temperature
and impulses.

The mathematical model for the measurement error of the MUT can be expressed as follows
[379]:

e =
VMUT − VREF

VREF
(E4.7.1)

=
VMUT

VREF
− 1, (E4.7.2)

where

e is the measurement error of the MUT,
VMUT is the volume of the gas flow that is measured with the MUT,
VREF is the reference volume, i.e. the volume of the gas flow measured with the MM.

The reference volume VREF is not the same as VMM, which is the volume of the gas flow measured
with the MM, because it is corrected for the reference conditions (temperature and pressure)
at the measurement point where the MUT is placed. VREF is calculated by using the the gas
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equation [380]

pV = ZRT, (E4.7.3)

where

p is the pressure of the gas,
V is the volume of the gas,
Z is the compressibility factor of the gas,
T is the absolute temperature of the gas,
R the ideal gas constant.

Z and R are considered to remain constant for both the measurement point of the MM and the
MUT [379]:

pMUTVREF

TMUT
=

pMMVMM

TMM
= ZR, (E4.7.4)

VREF = VMM
pMM

pMUT

TMUT

TMM
, (E4.7.5)

where

VMM is the volume of gas measured with the MM,
pMM is the gas pressure measured with the MM,
pMUT is the gas pressure measured with the MUT,
TMUT is the gas temperature measured with the MUT,
TMM is the gas temperature measured with the MM.

By substituting equation (E4.7.5) into equation (E4.7.2),

e =
VMUT

VMM

pMUT

pMM

TMM

TMUT
− 1. (E4.7.6)

By using a slightly different notation from that in [379] the volume of the measured gas can
be expressed in terms of the number of pulses and the K-factor (pulse value) of the measuring
instrument:

VMUT =
IMUT

KMUT
, (E4.7.7)

VMM =
IMM

KMM(1+ fMM)
, (E4.7.8)

where

IMUT is the number of pulses recorded on the MUT,
KMUT is the pulse value directly given on the label of the MUT (a constant value for the
individual measuring instrument),
IMM is the number of pulses recorded on the MM,
KMM is the pulse value directly given on the label of the MM (a constant value for the
individual measurement standard),
fMM is the MM error according to the calibration certificate.

After substitution, equation (E4.7.6) becomes

e =
IMUT

IMM

KMM(1+ fMM)
KMUT

pMUT

pMM

TMM

TMUT
− 1. (E4.7.9)
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E4.7.4.2 Other influencing factors

Other factors that influence the measurement results are considered to be related to the calibra-
tion of the MM, i.e. the measurement standard (QMM), repeatability of measurement (QREP) and
additional influencing quantities (QAUX). The additional influencing factors on the measuring
results are as follows:

MASTER METER

• Location of the MM (some MMs are located directly under the ceiling),
• Drift of the MM.

METER UNDER TEST

• Unknown characteristics.

LABORATORY

• Inadequate thermal insulation,
• For large flows, air is drawn from adjacent rooms whose temperature is different from that

in the laboratory,
• Low interconnecting room,
• Flow computer,
• Separated pressure and temperature probes from the related transmitters/converters (the

probes are on the test bench and the converters are remote and located in the control
cabinet).

The measurement model used for the evaluation of measurement uncertainty is obtained by
summing all influencing quantities on the measurement result as follows:

eflow = e+Q, (E4.7.10)

where Q denotes other influencing quantities and

Q =QMM +QREP +QAUX. (E4.7.11)

E4.7.5 Uncertainty propagation

Uncertainty propagation follows the procedure described within GUM [2] (although we validate
the results obtained using the propagation of distributions in section E4.7.7). The measure-
ment model used for the uncertainty propagation is described by equation (E4.7.10), where it
is assumed that the quantities QMM, QREP and QAUX have zero mean values and standard devi-
ations equal to the standard uncertainties that will be explained in the following subsections.
The standard uncertainty of eflow given in equation (E4.7.10) can be expressed using the law of
propagation of uncertainty [2] as follows:

u2(eflow) =

�

�

∂ eflow

∂ e
u(e)

�2

+
�

∂ eflow

∂Q
u(Q)

�2�

, (E4.7.12)

where

partial derivatives denote sensitivity coefficients of the measurement error (e) and other
influencing quantities Q,
u(e) is the standard uncertainty of the measurement error,
u(Q) is the standard uncertainty of other influencing quantities.
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E4.7.5.1 Standard measurement uncertainty u(e) of the measurement error of the
meter under test

The standard measurement uncertainty of the measurement error can be obtained from the math-
ematical model (E4.7.9), and can be expressed as follows:

u2(e) =
�

∂ e
∂ IMUT

u (IMUT)
�2

+
�

∂ e
∂ IMM

u (IMM)
�2

+
�

∂ e
∂ pMUT

u (pMUT)
�2

+
�

∂ e
∂ pMM

u (pMM)
�2

+
�

∂ e
∂ TMUT

u (TMUT)
�2

+
�

∂ e
∂ TMM

u (TMM)
�2

.

(E4.7.13)

The uncertainties of the pulse values (K) for the MM and the MUT, as well as the uncertainties
of the error of the MM in this example were considered negligible.

Using (E4.7.9), let

S = e+ 1=
IMUT

IMM

KMM(1+ fMM)
KMUT

pMUT

pMM

TMM

TMUT
.

Then, sensitivity coefficients are calculated from equation (E4.7.9) as follows:

∂ e
∂ IMUT

=
S

IMUT
, (E4.7.14)

∂ e
∂ IMM

= −
S

IMM
, (E4.7.15)

∂ e
∂ pMUT

=
S

pMUT
, (E4.7.16)

∂ e
∂ pMM

= −
S

pMM
, (E4.7.17)

∂ e
∂ TMM

=
S

TMM
, (E4.7.18)

∂ e
∂ TMUT

= −
S

TMUT
. (E4.7.19)

The standard measurement uncertainty of the following individual measurement quantities can
be determined as the standard deviations of the according rectangular probability distributions:

u(eni
) =

Lnip
3

, (E4.7.20)

u(epi
) =

Lpip
3

, (E4.7.21)

u(eTi
) =

LTip
3

, (E4.7.22)

where

– eni
is the presumed error due to reading the number of pulses on the measuring instru-

ment. According to [2] it is expected that the value of this error to lie within the interval
[ni−, ni+] = [−0.5,0.5] pulse with length Lni

= ni+ − ni− = 1 pulse,
– epi

is the presumed error due to measurement with pressure tubes, where, as in the previous
case for eni

, the length of the interval is Lpi
= 0.2 mbar,
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– eTi
is the presumed error due to measurement with temperature tubes, where again as for

eni
the length of the interval is for the MM LTMM

= 0.132K and for the MUT LTMUT
= 0.163 K.

Since the location of the pressure and temperature probes on the test bench can be changed, in
the measurement uncertainty budget two probes for each quantity and their combination on the
test bench are considered. In this way measurement uncertainty is slightly increased, but the
measurement uncertainty calculation is simplified and kept on the “safe side” (despite its being
not in keeping with the GUM, which recommends the use of realistic values).

The calculated values of the standard measurement uncertainty of individual quantities, accom-
panied by sensitivity coefficients, are used in equations (E4.7.14)–(E4.7.19).

E4.7.5.2 Standard measurement uncertainties of other influencing quantities QREP,
QMM, QAUX

Standard measurement uncertainty uREP of the mean value, obtained by a series of consec-
utive measurements — repeatability of the measurement

The method used for obtaining the standard deviation follows the principle described within the
GUM [2]. The repeatability of measurement is calculated using

uREP =
s
p

n
, (E4.7.23)

where s denotes the standard deviation of the series of n consecutive measurements.

Standard measurement uncertainty uMM of the standard used -– master meter

The standard measurement uncertainty of the MM is calculated by using the expanded mea-
surement uncertainty and a coverage factor, both obtained from the calibration certificate, i.e.

uMM =
UMM

k
, (E4.7.24)

where

UMM is the expanded measurement uncertainty of the MM during the calibration procedure,
k is the coverage factor (k = 2).

Standard measurement uncertainty uAUX of additional influence factors

When evaluating measurement uncertainty it is necessary to include additional factors, which
have influence on the measurement results and which influence is hard to quantify. The com-
bined standard measurement uncertainty of other influence factors can be calculated from the
estimated measurement error contribution, as well as from the assumption of rectangular distri-
bution for influence factors, i.e.

uAUX =
eAUXp

3
, (E4.7.25)

where eAUX is the estimated error, which is usually bounded by |eAUX| ≤ 0.1 %.

Since the sensitivity coefficients in equation (E4.7.12) have the value 1,

u(eflow) =
q

u2(e) + u2
REP + u2

MM + u2
AUX. (E4.7.26)
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E4.7.6 Reporting the result

The measurements were carried out according to the requirements set out in standards [381]
and [382] for turbine and rotary gas meters. During the calibration process the measurement
data presented in tables E4.7.2 and E4.7.3 were obtained.

Table E4.7.2: Data on flow, pressure and temperature parameters obtained by involving mea-
surement standards G1000, G250 in the calibration procedure

Standard G1000 G1000 G1000 G250 G250

Flow/(m3/h) 995.832 800.404 650.997 452.394 349.768
IMM 91 330.33 73804 59990 206280.67 159517.67
IMUT 25 379.67 20477.33 16625 11539.67 8907.6
KMM 1630.75 1630.75 1630.75 8100 8100
KMUT 450.238 450.238 450.238 450.238 450.238
fMM/% −0.0212 0.004962 0.0189 0.1300 0.1200
pMM/mbar 957.5 958.83 959.74 947.51 952.75
pMUT/mbar 954.6 956.93 958.48 942.43 949.59
TMM/K 295.010 294.920 294.980 294.970 295.000
TMUT/K 295.080 294.990 294.980 295.030 295.050

Table E4.7.3: Data on flow, pressure and temperature obtained by involving measurement stan-
dards G250, G40 in the calibration procedure

Standard G250 G250 G250 G40 G40

Flow/(m3 h−1) 251.649 159.545 100.092 50.232 20.015
IMM 115029.33 73059.67 45954 9452.33 7564
IMUT 6413.67 4066.67 2553.33 1277.67 1022
KMM 8100 8100 8100 3338.82 3338.82
KMUT 450.238 450.238 450.238 450.238 450.238
fMM/% 0.1171 0.1604 0.2796 0.1000 −0.0276
pMM/mbar 956.67 959.35 960.47 960.41 961.03
pMUT/mbar 954.96 958.67 960.23 958.31 960.79
TMM/K 295.060 295.12 295.20 295.370 295.470
TMUT/K 295.070 295.100 295.140 295.170 295.200

In tables E4.7.2 and E4.7.3 ‘Flow’ represents the mean value of three observations of flow rate.
One flow rate value was selected among the results in these tables in order to present step-by-step
calculation of measurement uncertainty in this example. The selected flow rate is 251.649 m3/h
and it was measured by turbine gas meter G250. The data used for calculation appear in Ta-
bles E4.7.2 and E4.7.3. The error of the measuring instrument for this measuring point can be
calculated according to equation (E4.7.9) as follows:

e =
�

6413.67
115 029.33

8100(1+ 0.1171/100)
450.238

954.96
956.67

295.06
295.07

− 1
�

× 100 % (E4.7.27)

= 0.2441 %. (E4.7.28)

The standard measurement uncertainty of the measurement error of the MUT can be calculated
from equation (E4.7.13). However, it is necessary first to calculate the sensitivity coefficients
of each influencing parameter, which can be carried out according to formulæ (E4.7.14) and
(E4.7.15). The value of S was calculated as 100.243.
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Sensitivity coefficients are calculated as follows:

∂ e
∂ IMUT

=
100.243
6413.67

= 0.0156, (E4.7.29)

∂ e
∂ IMM

= −
100.243

115 029.33
= −0.000871, (E4.7.30)

∂ e
∂ pMUT

=
100.243
954.96

= 0.14970, (E4.7.31)

∂ e
∂ pMM

= −
100.243
956.67

= −0.14780, (E4.7.32)

∂ e
∂ TMM

=
100.243
295.06

= 0.33974, (E4.7.33)

∂ e
∂ TMUT

= −
100.243
295.07

= −0.339729. (E4.7.34)

From equations (E4.7.20)–(E4.7.22) and information on errors given in subsection E4.7.5.1, we
obtain

u (Ii) =
1
p

3
= 0.5780, (E4.7.35)

u (pi) =
0.2
p

3
= 0.1156, (E4.7.36)

u (TMU T ) =
0.163
p

3
= 0.0942 (E4.7.37)

u (TM M ) =
0.132
p

3
= 0.0763. (E4.7.38)

Results (E4.7.35)–(E4.7.37) combined with equation (E4.7.13) give the standard uncertainty of
the measuring system measurement error:

u(e) = 0.045 %. (E4.7.39)

The relative standard deviation (s) of the measured values at this point is s = 0.0031 %, which
gives the relative standard uncertainty due to repeatability of measurements:

uREP = 0.0018%. (E4.7.40)

The standard measurement uncertainty uMM of the standard used -– master meter – is calculated
according to equation (E4.7.24), where the the expanded measurement uncertainty of the MM
(obtained from the calibration certificate) is UMM = 0.25%, giving

uMM =
0.25

2
(E4.7.41)

= 0.125 %. (E4.7.42)

The relative standard uncertainty uAUX of other influence factors can be calculated according
to equation (E4.7.25), where it is assumed the estimated error is eAUX = 0.1 % and to have a
rectangular probability distribution:

uAUX =
0.1
p

3
% (E4.7.43)

= 0.0578 % (E4.7.44)
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By substituting the uncertainty contributions obtained in (E4.7.40), (E4.7.42), (E4.7.39) and
(E4.7.44) into equation (E4.7.26), the combined relative standard uncertainty becomes

u(eflow) = (0.0452 + 0.00182 + 0.1252 + 0.05782)1/2 %, (E4.7.45)

u(eflow) = 0.1449%. (E4.7.46)

The expanded measurement uncertainty, with coverage factor k = 2 is

U = 2× u(eflow) (E4.7.47)

= 0.29 %. (E4.7.48)

The results for the uncertainty contributions at every flow rate, as well as the combined and
expanded measurement uncertainty (k = 2) are presented in table E4.7.4.

Table E4.7.4: Uncertainty contributions for individual flow rates

Standard uREP/% uMM/% u(e)/% uAUX/% u(eflow)/% U/%

G1000 0.044 65 0.125 0.000 25 0.057 73 0.144 74 0.29
G1000 0.044 67 0.125 0.000 87 0.057 73 0.144 76 0.29
G1000 0.044 69 0.125 0.001 50 0.057 73 0.144 77 0.29
G250 0.044 85 0.125 0.002 36 0.057 73 0.144 83 0.29
G250 0.045 01 0.125 0.000 39 0.057 73 0.144 86 0.29
G250 0.045 41 0.125 0.001 78 0.057 73 0.144 99 0.29
G250 0.046 68 0.125 0.005 42 0.057 73 0.145 48 0.29
G250 0.049 82 0.125 0.001 27 0.057 73 0.146 43 0.29
G40 0.063 70 0.125 0.001 82 0.057 73 0.151 72 0.30
G40 0.072 42 0.125 0.001 32 0.057 73 0.155 57 0.31

E4.7.7 Interpretation of results

The approach for uncertainty evaluation described within this example can be generally used for
calibration of gas flow meters by the ‘master meter’ method, when the meter under test is located
downstream of the master meter. Depending on the costumer needs, it can be decided earlier
how many flow rate points are necessary for the calculation of the measurement uncertainties.

In this example the uncertainties due to additional influence factors (uAUX), which were not
exactly known, were quantified. One way of improving this example would be to quantify other
uncertainty sources and include them to the overall uncertainty budget.

According to [2], if the measurement model is linear in the input quantities and the dominant
contributions have normal probability distributions, the GUF will provide reliable results. In
order to validate the GUF, the MCM, described in GUM-S1 [3] was used for the evaluation of
measurement uncertainty for the measurement model described by equation (E4.7.10). For this
method the number of Monte Carlo trials was prescribed to be 1 × 108. Values for the input
quantities, their associated standard uncertainties and their probability distributions remained
the same as described in section E4.7.6.

The results of the applied method are shown in table E4.7.5.
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Table E4.7.5: Results obtained by two approaches for measurement uncertainty evaluation:
GUF–GUM uncertainty framework, MCM–Monte Carlo method, CI–Coverage interval (lower
limit, higher limit)

Approach Estimate/% Std. unc./% CI (95%)/%

GUF 0.024 41 0.1449 (−0.0459, 0.5341)
MCM 0.02441 0.1402 (−0.0309, 0.5185)

Figure E4.7.2 shows the probability density functions as a result of the evaluation of uncertainty
by following the principles described within GUM and GUM Supplement 1 (Monte Carlo method)
[3]. It can be noticed, both in table E4.7.5 and from figure E4.7.2 that the obtained results for
the methods differ insignificantly. The 95% coverage interval for the MCM method is slightly
shorter than that obtained by the GUM method, while the estimates of the flow measurement
error are the same.

Figure E4.7.2: Probability density functions for Monte Carlo and GUM approach

Due to the sufficiently large number of Monte Carlo trials and even though the measurement
model was not linear in this example, the GUM method provided accurate results.

The GUM approach for evaluation of measurement uncertainty in terms of the measurement error
described in previous sections is followed by several national metrology institutes in Europe.
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Example E4.8

Pressure drop measurement

M. Čaušević, M.G. Cox, J. Greenwood

E4.8.1 Summary

This example demonstrates how correlations can sometimes be removed from an uncertainty
evaluation by modifying the measurement equation so that strongly correlated quantity esti-
mates do not appear together. This is demonstrated by an example considering the pressure
drop in a pressurised vessel, in which the effect of correlation between temperature measure-
ments is removed. In this example the uncertainty associated with an estimate of pressure drop
is appreciably smaller when correlation is taken into consideration.

E4.8.2 Introduction of the application

In every kind of measurements involving gases, it is necessary to have a controlled situation
in terms of gas temperature, pressure and volume. This example is derived from a real-world
test that involves the gas at a pressure up to 50 MPa trapped in a vessel having small volume
at standard temperature. Probes to measure the pressure and temperature were fixed inside
the sealed vessel. The aim of the test was to show that the uncertainty due to gas leakage, i.e.
the pressure drop in the vessel, can vary for two cases that involved the same measurement
results but different approaches of evaluation. All correlations within this example arise from
the application of the gas equation, which is a good approximation of the behaviour of many
gases under many conditions, although it has some limitations [383].

E4.8.3 Specification of the measurand(s)

The measurand is the pressure drop in a pressurised vessel and depends on several physical quan-
tities: pressure, temperature and time at the beginning and end of the test. Measured values of
these quantities and their associated standard uncertainties are based upon actual measurements.
The period over which the test was performed was 1800s. Measured values are corrected to a
standard temperature, that is, the reference temperature of 20 °C. The mathematical model for
pressure drop, which gives the relation between the measurand and all influence quantities is
explained in the following section.
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Example E4.8. Pressure drop measurement 398

The aim of the example is to show how the use of a temperature difference as opposed to the
temperature at the end of the test leads to a much smaller uncertainty.

E4.8.4 Measurement model

E4.8.4.1 Measurement principle

The measurement model in this example originates from the gas equation, which is the equation
of state of the ‘ideal’ gas [380]:

pV = nRT, (E4.8.1)

where

• p is the pressure in the vessel,
• V is the volume of the vessel,
• n is the number of moles of gas,
• R is the gas constant,
• T is the absolute temperature of the gas.

To obtain the pressure drop in the vessel during the period of the test, we observe quantities in
equation (E4.8.1) with respect to times t1 and t2 at the beginning and end of the test. Number
of moles, i.e amount of the gas at the start time (t1), can be expressed as

n1 =
V p1

RT1
(E4.8.2)

and accordingly the amount of gas at the end time (t2) is

n2 =
V p2

RT2
. (E4.8.3)

Loss of material in the form of gas escaping from the system is therefore provided by the difference

∆n= n2 − n1 =
V
R

�

p2

T2
−

p1

T1

�

. (E4.8.4)

Since pressure change is one of the best indicators of gas leakage in the sealed system it would be
useful to show the relation between the number of moles and the pressure change, i.e pressure
drop at some reference temperature Ts:

∆ps =∆n
R
V

Ts. (E4.8.5)

By substituting equation (E4.8.4) into (E4.8.5) we obtain

∆ps =
�

p2

T2
−

p1

T1

�

Ts. (E4.8.6)

The resulting change of pressure occurring over the period ∆t = t2 − t1 can be scaled to some
reference interval ∆ts; thus the equation (E4.8.6) becomes

∆ps =
�

p2

T2
−

p1

T1

�

Ts
∆ts

∆t
. (E4.8.7)
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For test items of a predefined volume, pressure change is often a sufficient measurand. Therefore,
expression (E4.8.7) is the measurement model we will consider.

In general, for arbitrary volumes, pressure change does not fully specify the size of a leak in the
way that loss of material ∆n does.

More commonly a leak-rate is evaluated in terms of rate of mass flow

Qm =
V

MR

�

p2

T2
−

p1

T1

�

1
∆t

, (E4.8.8)

where M represents the molar mass of the gas. Alternatively, a leak rate might be expressed in
terms of rate of change of volume for gas at a reference temperature Ts and pressure Ps:

Qv = V
�

p2

T2
−

p1

T1

�

Ts

ps
. (E4.8.9)

The arguments presented shortly apply equally well to flow rate measurement equations (E4.8.8)
and (E4.8.9).

E4.8.4.2 Correlations in the measurement model

Whenever estimates of a quantity are measured using a common process or common equipment
(such as in a comparison of values ‘before’ and ‘after’ some change) there is a possibility of
correlation between the estimates. In this example correlations could exist between the pressure
measurements, between the temperature measurements and between the time measurements.
These correlations could arise from a variety of sources such as common errors in traceability,
or from metrological effects such as the positioning of gauges, or from gradients in temperature
between the location of the measurement and the location of interest.

Where there are significant correlations present, the normal process is to follow the procedure
described in GUM Annex F.1.2. However, if the equation can be modified and expressed in such
a way that the correlation can be removed, then the more straightforward approach offered by
GUM equation (10) can be followed.

For example, if the same measuring instrument were used for obtaining two measured values,

y1 = x1 + s,

y2 = x2 + s,

where the yi denotes corrected values, the x i and s represent measured values and systematic
error, respectively. By differencing y1 and y2 the common systematic error s cancels.

In this example we concentrate on temperature correlation, since this is found to have the most
significant effect. Therefore it is worthwhile re-expressing (E4.8.7) in terms of T1 and the tem-
perature difference

∆T = T2 − T1, (E4.8.10)

in other words, to eliminate T2, which is strongly correlated with T1, from explicit considera-
tion. Such an approach prevents any common systematic error appearing multiple times in the
measurement equation. The standard uncertainty associated with the temperature difference is
much smaller than that associated with a single temperature, that is,

u(∆T )≪ u(T1). (E4.8.11)
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Making use of (E4.8.10) and (E4.8.11), expression (E4.8.7) becomes

∆ps =
�

T1p2 − T2p1

T2T1

�

Ts

∆t
∆ts (E4.8.12)

≈
�

p2 − p1

T1
−
∆T p1

T1
2

�

Ts

∆t
∆ts. (E4.8.13)

E4.8.5 Uncertainty propagation

E4.8.5.1 Law of propagation of uncertainty

For the measurement uncertainty evaluation, the GUM [2] law of propagation of uncertainty
(LPU) is applied for the two measurement equations (E4.8.7) and (E4.8.13). As described above,
the first equation takes no account of correlation, and the second accounts for correlation by ex-
pressing the second temperature term as the sum of the first temperature term and the difference
between the two terms. Use of equation (E4.8.13), knowing the standard uncertainty associated
with the difference, is shown to decrease significantly the measurement uncertainty associated
with the estimated pressure drop.

The mathematical models presented in equations (E4.8.7) and (E4.8.13) will be used as a starting
point for evaluation of uncertainties.

Both approaches distinguish between Type A (uA) and Type B (uB) uncertainty evaluations,
where Type A uncertainty is the standard deviation associated with repeatability of measure-
ments. Three consecutive measurements were performed with the same results used for both
approaches.

The probability distributions in this example are assigned based on knowledge concerning the
measurement.

E4.8.5.2 Ignoring temperature correlation

In this subsection correlation between temperature values is ignored, that is, it is taken as zero.
For model (E4.8.7) the sensitivity coefficients are
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The standard measurement uncertainty of individual measurement quantities can be determined
as the standard deviations of the according rectangular or normal probability distributions. It is
assumed that the expanded uncertainties, denoted by U , for pressure measurements are based
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on normal probability distributions. Expected values of temperature and time lie within inter-
vals whose lengths are denoted by 2aT and 2at , respectively, and rectangular distributions are
assumed for both quantities. The corresponding standard uncertainties are therefore

u(p1) =
U(p1)

2
, (E4.8.20)
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2
, (E4.8.21)
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3
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u(t1) =
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3
, (E4.8.24)

u(t2) =
atp

3
. (E4.8.25)

All the results obtained from equations (E4.8.14)–(E4.8.25) can be combined into a Type B mea-
surement uncertainty evaluation for the pressure drop in the vessel:
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(E4.8.26)

The combined measurement uncertainty uc for the pressure drop in the vessel is obtained from

u2
c = u2

A + u2
B. (E4.8.27)

E4.8.5.3 Accounting for temperature correlation

In this subsection correlation between temperature values is taken into consideration through
use of the model presented in equation (E4.8.13). The sensitivity coefficients are as follows:
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The standard measurement uncertainty of individual measurement quantities can be determined
as the standard deviations of the according rectangular, triangular or normal probability distri-
butions. As in the previous case, when the correlation between temperatures are not taken into
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account, it is assumed that pressure measurements have normal probability distributions and
temperature and time measurements have rectangular. In case of temperature difference, the
length of the interval in which ∆T is expected to lie is denoted by 2a∆T . It is assumed that the
temperature difference has a triangular distribution based on the earlier assumption of rectan-
gular distributions for T1 and T2. Hence,
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2
, (E4.8.34)
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All the values obtained from equations (E4.8.28)–(E4.8.39) can be combined into a Type B mea-
surement uncertainty evaluation for the pressure drop in the vessel:
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(E4.8.40)

The combined standard uncertainty for the pressure drop in the vessel is obtained from equation
(E4.8.27).

E4.8.6 Reporting the result

During the measurement the data in table E4.8.1 were obtained (values are given as provided).
Uncertainties of individual quantities are taken from uncertainty budgets for the use of the pres-
sure, temperature and time measuring equipment. The temperature uncertainty includes a dom-
inant contribution with limits of about 0.15 K for a common (for all such measurements) but
poorly understood systematic effect due to temperature gradients between the thermometer and
the gas in the vessel.

The results of the second approach are presented in table E4.8.2.

E4.8.7 Interpretation of results

It can be seen from the results in section E4.8.6 that both equations (E4.8.7) and (E4.8.13)
yield essentially the same normalized pressure drop (−0.06712 MPa and −0.06714 MPa). An
extra decimal digit is quoted beyond that for the associated standard uncertainties (0.0429 MPa
and 0.0049 MPa, respectively) to show the difference is two units in the fifth digit, some two
orders of magnitude smaller than these uncertainties. However, these standard uncertainties are
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Table E4.8.1: Measured values including values of the pressure drop, assigned probability density
functions and combined standard uncertainty based upon application of LPU to equation (E4.8.7)

Quantity Value Std. uncertainty PDF Sensitivity coefficient Variance

p1 50.001 MPa 0.0056 MPa norm. −1.0010 7.856× 10−6 MPa2

p2 49.951 MPa 0.0056 MPa norm. 1.0007 7.851× 10−6 MPa2

T1 292.850 K 0.15 K rect. 0.1709 MPa K−1 2.191× 10−4 MPa2

T2 292.950 K 0.15 K rect. −0.1706 MPaK−1 2.184× 10−4 MPa2

t1 1000 s 5 s rect. −3.73× 10−5 MPas−1 1.159× 10−8 MPa2

t2 2800 s 5 s rect. 3.73× 10−5 MPas−1 1.159× 10−8 MPa2

Ts 293.150 K
ts 1800 s
∆ps −0.06712 MPa

uA 0.0025 MPa norm. 1 0.0025 MPa
uc 0.0214 MPa
U(k = 2) 0.0429 MPa

Table E4.8.2: Measured values including values of the pressure drop, assigned probability den-
sity functions and combined standard uncertainty based upon application of LPU to equation
(E4.8.13)

Quantity Value Std. uncertainty PDF Sensitivity coefficient Variance

p1 50.001 MPa 0.0056 MPa norm. −1.0010 7.856× 10−6 MPa2

p2 49.951 MPa 0.0056 MPa norm. 1.0007 7.851× 10−6 MPa2

T1 292.850 K 0.15 K rect. 0.0030 MPa K−1 6.205× 10−10 MPa2

∆T 0.100 K 0.02 K trian. −0.1709 MPaK−1 1.947× 10−6 MPa2

t1 1000 s 5 s rect. −3.73× 10−5 MPa s−1 1.159× 10−8 MPa2

t2 2800 s 5 s rect. 3.73× 10−5 MPa s−1 1.159× 10−8 MPa2

Ts 293.150 K
ts 1800 s
∆ps −0.06714 MPa

uA 0.0025 MPa norm. 1 0.0025 MPa
uc 0.0049 MPa
U(k = 2) 0.0098 MPa

significantly different from each other, being a factor four smaller when correlation is taken into
account. Thus, on the basis of the data used, some means of treating the correlation is necessary
to establish a reliable measurement uncertainty.

The question may arise whether it is also necessary to take into account correlation between
pressures at the beginning and end of the test. In this example we decided to consider only the
correlation between temperature terms, since the uncertainty due to pressure measurements is
appreciably lower than that due to temperature measurements.

Besides the GUM approach [2], the MCM described in GUM-S1 [3] was also used for the eval-
uation of the measurement uncertainty for the measurement models described by equations
(E4.8.7) and (E4.8.13). GUM-S1 recommends application of the Monte Carlo method approach
to validate the use of the GUM uncertainty framework. In this example, in order to obtain an
estimate of the output quantity, a value for the associated standard uncertainty and endpoints of
the shortest coverage interval, the number of Monte Carlo trials used was 1×107. The MATLAB
programming language was used to perform the calculations for the Monte Carlo method.
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Input quantities, together with associated standard uncertainties and assumptions on the prob-
ability density function for each input quantity remained the same as listed in table E4.8.1 and
E4.8.2 in section E4.8.6. The results of the GUM uncertainty framework and the Monte Carlo
method are presented in tables E4.8.3 and E4.8.4. Table E4.8.3 shows results for the first ap-
proach in which the temperature correlation was ignored and table E4.8.4 shows results for the
second approach.

Table E4.8.3: Results obtained by the GUM uncertainty framework (GUF) and the Monte Carlo
method (MCM) not accounting for temperature correlation

Approach Estimate/bar Std. unc./bar CI (95%)/bar

GUF −0.067120 0.02143 (−0.10999, 0.02425)
MCM −0.067118 0.02143 (−0.10789, 0.02634)

Table E4.8.4: Results obtained by the GUM uncertainty framework (GUF) and the Monte Carlo
method (MCM) accounting for temperature correlation

Approach Estimate/bar Std. unc./bar CI (95%)/bar

GUF −0.067143 0.00489 (−0.07693, 0.05735)
MCM −0.067485 0.00471 (−0.07671,−0.00582)

Summary statistics obtained with GUM uncertainty framework and Monte Carlo method do not
differ greatly.

Further information can be obtained by considering the full PDF as shown in figures E4.8.1 and
E4.8.2 (note the different scales).

Figure E4.8.1: Probability density functions for pressure drop obtained by the GUM uncertainty
framework and the Monte Carlo method not accounting for temperature correlation
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Figure E4.8.2: Probability density functions for pressure drop obtained by the GUM uncertainty
framework and the Monte Carlo method accounting for temperature correlation (note the differ-
ent scale from figure E4.8.1)

Figures E4.8.1 and E4.8.2 show the Gaussian PDF for pressure drop (red line) resulting from the
GUM uncertainty framework. They also show the PDF for the pressure drop obtained as a result
of scaled frequency distribution of M = 1 × 107 Monte Carlo trials (blue line). The endpoints
of the probabilistically symmetric 95 % coverage interval provided by both methods and both
approaches are shown as horizontal lines. Probability density functions, coverage intervals and
pressure drop estimates are visually very similar. It can be noticed that the slope of the PDF on
figure E4.8.1 as a result of the Monte Carlo method is steeper than that of the GUM method. The
MCM curve agrees well with a triangular distribution. On the other hand, the shape of the PDFs
as result of both methods (GUM and MCM) in figure E4.8.2 show very good agreement. The
reason for this could be the correlation between the measured temperature at the beginning and
end of the test.

According to [2], if the measurement model is linear in the input quantities and the dominant
contributions have normal probability distributions, the GUM uncertainty framework (GUF) will
provide reliable results. Even though the measurement models for both approaches (ignoring and
accounting for the temperature correlation) were non-linear, both the MCM and GUM provided
similar results (see table E4.8.3 and table E4.8.4). The Monte Carlo method in this example was
used for the purpose of analysis of results and validation of the GUM uncertainty framework,
which was successfully achieved.
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Example E5.1

Effect of considering a 2D or 3D image
as a set of pixels or voxels on a
computed quantity

T. Caebergs, M.G. Cox

E5.1.1 Summary

Two examples are presented concerned with properties of a physical object extracted from a
raster image. With more pixels (or voxels) to reproduce the image, a better description of the
underlying physical object is generally obtained in terms of the estimate of the measurand and its
associated uncertainty. However, the consequent increase in image resolution has a cost under
different perspectives: time, money, susceptibility of image result to other instrumental effects.
In some cases, an increase in resolution does not lead to appreciable improvement of the global
result because of other uncertainty sources. A trade-off is often sought.

The first example relates to molecular radiotherapy where pixel size impacts on the area of a
2D section of an organ or tumour given by the delineation of a 2D image. Such a delineation is
made by an operator or an algorithm and constitutes one step in the estimation of the volume of
a 3D region (the ultimate measurand) corresponding to a reconstructed 3D image of a region of
interest (ROI) such as from a set of parallel planar sections.

The second example relates to nanoparticle size in waste water, daily life products, etc., where
AFM is used to measure nanoparticles deposited on a flat substrate. The size of a nanoparticle of
interest is assessed as the height of the highest pixel in the pixels identified as belonging to the
nanoparticle [175]. The example extends example E2.4, concerning the evaluation of measure-
ment uncertainty for nanoparticle height measurements, and uses results from it. The example
focuses on the model building and its interpretation by the practitioner for precise uncertainty
evaluation or to keep uncertainty from this source under control. A frequentist approach is fol-
lowed. The alternative use of a Bayesian treatment is briefly explained.

409



Example E5.1. 2D or 3D image as a set of pixels or voxels to compute a quantity 410

E5.1.2 Introduction of the first application: estimation of organ or
tumour mass

The estimation of organ or tumour mass necessitates some form of outlining of the organ on an
image. Under assumptions of homogeneity, organ mass is directly proportional to its volume and
so it can be obtained using suitable imaging. Various outlining or segmenting techniques are
used for this purpose [384].

The volume or mass of an organ or tumour is generally obtained from an ROI (region of interest)
outlined on anatomical imaging data in the form of an array of pixels or voxels [385]. Knowing
that outline, the corresponding volume of the ROI can be estimated. Approaches are considered
for evaluating a measure of the outlining uncertainty, and the use of that measure to evaluate
the uncertainty associated with estimated volume. The method used will depend largely on
the information and resources available at the time of outlining and the method employed by
the operator or operators to define the ROI. When determining volumes, an outline is typically
drawn manually by a single operator across all images that comprise the data set of concern.
Alternatively, automated methods are used to obtain the outlines.

In practice, a set of planar sections of the ROI, usually at a constant spacing, is considered,
from which the volume is determined. Here, we pay attention to a single section and, rather
than consider a volume, for simplicity of exposition consider an area as one step in the overall
process.

In general, segmentation methods can be divided into the following categories: manual methods,
threshold-based methods, boundary-based methods and stochastic- and machine learning-based
methods. More details of these categories are given in [386] and the references therein. We here
consider just boundary-based methods, such as gradient-based edge detection, which require
the user to define an initial region of interest (ROI) inside which an algorithm estimates object
boundaries [385].

E5.1.3 Specification of the measurand(s)

The ultimate measurand is the volume of the tumour or organ. As stated, a simpler measurand
is used here, the area of a section of the tumour or organ.

E5.1.4 Measurement model

Figure E5.1.1 shows an outline (a) of a tumour obtained from a pixellated image produced by
scanning equipment, which we will use to provide numerical results. It also shows the effect of
different pixel sizes (b) and (c). It is assumed that the actual outline of the tumour is contained
within the darker-shaded pixels. These pixels would be chosen by an operator or some boundary
detection algorithm. We take each pixel as of unit size (dimension 1× 1).

The measurement model is defined by the algorithm used to compute the volume of the tumour
or organ. Consistent with the specification of the measurand in section E5.1.3, a simpler mea-
surement model is used, the area of a section of the tumour or organ given by a formula or an
algorithm.
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(a) (b) (c)

Figure E5.1.1: Uncertainty in outline definition for different voxel sizes (acknowledgment [385])

The area depends on knowledge of the boundary of the tumour, specifically a mathematical
description of a curve representing the boundary for which we use a parametric representation:

x = F(t), y = G(t),

where the parameter t is ideally taken as the normalized distance along the curve from some
starting point. Since the curve is unknown a priori, we use instead cumulative chord length
based on the polygonal function joining successive data points as the parameter, as is common
practice when working with such representations.

The area could alternatively be computed as some average (such as the arithmetic mean) of two
extreme areas. One area would be obtained by taking the sum of the areas of the pixels shaded
light grey in figures E5.1.1 (b) and (c). The other area would be the sum of the first area and
the areas of all boundary pixels (dark grey). See section E5.1.5, which argues, with quantitative
support, in favour of representing the boundary by a smooth curve.

Various empirical functions such as periodic splines and Fourier series can be used for F and G to
form the profile. We select Fourier series based on our considerable experience [111, 387–389]
with their use for data analysis. For this purpose, we adapt some guidance in [110] concerned
with the determination and use of polynomial calibration functions. That standard gives advice
on determining the degree of polynomial that is most appropriate for the data by first constructing
polynomials of all degrees n from one up to some maximum nmax and then selecting a particular
degree. Here we determine Fourier series involving an increasing number of harmonics, choosing
the number we regard as suitable. By analogy with polynomials, we term the number of har-
monics, as in other publications (for instance, [390]), the degree. Degree n has 2n+ 1 defining
parameters: a constant term and n cosine terms and n sine terms for the x and y components,
respectively:

F(t) = b1 +
n
∑

r=1

(b2r cos 2πr t + b2r+1 sin2πr t), (E5.1.1)

G(t) = c1 +
n
∑

r=1

(c2r cos 2πr t + c2r+1 sin2πr t).

The data comprises a set of m ordered x , y points (xr , yr), r = 1, . . . , m. These points are re-
garded as values of the dependent variables x and y corresponding to an increasing set of values
of the independent variable t. The values of t used as data are the midpoints of successive pixels
containing the boundary. Fourier series in x and y , each having n = 1, 2, . . . , nmax harmonics,
are fitted to the data, the root-mean-square residual (RMSR) for each n being formed, where

RMSR(n) =

�

χ2
obs(n)

m− n− 1

�1/2

, (E5.1.2)
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which applies for n< m−1. Here χ2
obs(n), also referred to as S(n), is the residual sum of squares,

taken over all x- and y-components for degree n. We consider separate RMSR values for the x-
and y-components since we wish to determine whether there is any appreciable difference in the
ability of Fourier series to represent these components.

Typical behaviour is that RMSR values initially show a tendency to decrease with increasing
degree, saturating at some level indicative of a reasonable degree. As well as RMSR, various
model-selection criteria, specifically, Akaike’s Information Criterion (AIC), corrected AIC (AICc)
and the Bayesian Information Criterion (BIC) [391] can be useful in providing a balance between
goodness of fit and smoothness. For m data points and a polynomial model with n+1 parameters,
these criteria are

AIC(n) = S(n)+2(n+1), AICc(n) = AIC(n)+
2(n+ 1)(n+ 2)

m− n− 2
, BIC(n) = S(n)+(n+1) ln m.

All three criteria are designed to balance goodness of fit and simplicity of model in terms of
the number of parameters. Given a number of candidate models, here Fourier series of degrees
n = 1, . . . , nmax, the model having the smallest value of AIC (or AICc or BIC) would usually be
selected. According to [110], experience with polynomial calibration problems indicates that
the same degree of polynomial is often selected by all three criteria, although there are some
exceptions such as when the data set is small. On the other hand, it is difficult to automate the
process of selecting from the sequence of RMSR values an appropriate degree. Traditionally, a
degree is chosen, often by eye, when the above saturation takes place.

Account should of course be taken of uncertainties in the data. We know that the required curve
passes through the boundary pixels. As such, an evaluation can be made of the standard uncer-
tainties in the x- and y-coordinates of the centres of the pixels. Looking at pixels independently,
since the pixels are taken as unit squares, the errors in these coordinates lie between −1/2 and
1/2. If no other knowledge is available, it can be assumed that these errors follow rectangular
distributions R(−1/2, 1/2) having a standard deviation of 1/(2

p
3)≈ 0.29, which is used as the

according standard uncertainty. For the least-squares solution, weights all equal to the recipro-
cals of these standard uncertainties could be applied. Alternatively, an unweighted least-squares
solution could be sought, as here, and a comparison made of the resulting RMSR values to see
whether, for a suitable number of harmonics, the value of 0.29 is matched.

The area enclosed by the curve is computed using the expression derived in annex E5.1.A:

A= π
n
∑

r=1

r(b2r+1c2r − b2r c2r+1) (E5.1.3)

E5.1.5 Uncertainty propagation

We consider, as an instance, the profile of the section in figure E5.1.1(c), using x and y to denote
horizontal and vertical axes, respectively, with origin at the centre of the bottom-left pixel. The
midpoints of the boundary pixels, taken of unit size, are then given by the m = 38 coordinate
pairs

(4,2), (5,2), (6,2), (7,2), (7,3), (8,3), (8,4), . . . , (3, 3), (4, 3).

We consider approximations to this set of discrete data points by continuous profiles in the form
of curves represented by the parametric Fourier functions (E5.1.1). The values of t are taken as
cumulative chord length as in section E5.1.4. These t-values will have uncertainties associated
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with them due to the x- and y-values on which they based being uncertain. These uncertainties
are ignored at this stage. Their effect is taken into account when the Monte Carlo method is
applied

Fourier series (E5.1.3) with n = 1, 2, . . . , 15 harmonics were determined (see figure E5.1.2),
the corresponding sequence of values of area, RMSR, AIC, AICc and BIC being calculated (table
E5.1.1).

We wish to select an appropriate number of harmonics that gives a balance between accounting
for the data uncertainties and yielding an acceptably smooth representation of the profile.

Table E5.1.1: Tumour section area estimates, root-mean-square residuals and information criteria
for various numbers of harmonics in the case of a coarse pixelated image

x-variable y-variable

n Area RMSR AIC AICc BIC RMSR AIC AICc BIC

1 65.11 0.64 20 21 28 0.72 24 25 32
2 63.88 0.45 17 19 28 0.44 16 19 28
3 64.21 0.41 19 24 34 0.43 20 24 35
4 65.73 0.28 20 28 39 0.32 21 29 39
5 65.67 0.28 24 37 46 0.33 25 37 46

6 65.25 0.26 28 46 53 0.29 28 46 53
7 65.21 0.27 32 57 60 0.29 32 58 60
8 65.38 0.26 35 71 67 0.29 36 72 67
9 65.39 0.25 39 89 74 0.30 40 89 74

10 65.36 0.27 43 111 81 0.32 44 111 82
11 65.28 0.28 47 139 88 0.33 48 140 89
12 65.30 0.30 51 179 96 0.33 51 179 96
13 65.32 0.30 55 235 103 0.33 55 236 103
14 65.24 0.15 58 324 109 0.37 59 325 110
15 65.42 0.11 62 484 116 0.35 63 485 117

For the coarse pixelated image, the sequences of RMSR values for the x- and the y-variable
initially show a tendency to decrease to a minimum value of approximately 0.30 when n= 6 (six
harmonics). Then, the sequences saturate at about that level for a few degrees, subsequently
tending to behave erratically, particularly for the x-variable, for larger n due in part to the errors
in the data being followed too closely. The Fourier series of degree 6 was selected although a
case could be made for choosing degree 4 or 5 since to one significant digit the RMSR values
were identical to that for degree 6. Curiously, the three information criteria AIC, AICc and BIC
all exhibited minimum values for n = 2 (indicated by underlining in table E5.1.1) for which the
RMSR values are 0.45 and 0.44, whereas the choice of n= 6 gives RMS values of 0.26 and 0.29,
some 40 % lower. Moreover, the RMS values for n = 6 agree much more closely with the prior
standard uncertainty of 0.29.

This observation about the information criteria is not consistent with our experience of selecting
an appropriate degree in polynomial calibration studies. This choice of degree does not seem
particularly consistent with the data on which it was based: see the ‘2 harmonics’ sub-figure in
figure E5.1.2. In particular, the re-entrant features in the shape of the contour in the ‘north-east’
and ‘south-east’ regions of figure E5.1.1(a) are not reproduced. These features are increasingly
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Figure E5.1.2: Fourier representations with 1, 2, . . . , 15 harmonics of the profile of a section of
a tumour showing the according root-mean-square residuals in (non-dimensional) pixel units
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reproduced by Fourier series of degree four upwards. However, by the time degree 11 is reached
spurious effects are introduced in the curves of the Fourier series that are not apparent in the
contour of the tumour.

In general, the progress in capturing more closely the outline of the tumour in figure E5.1.1(a)
with successive degrees is shown in the sequence of sub-figures in figure E5.1.2. It would be
unwise to select too low a degree such as corresponding to one, two or three harmonics in figure
E5.1.2 since these Fourier series over-smooth the tumour outline. At the other extreme, the choice
of a large number of harmonics such as 13, 14 or 15 is dominated by the Fourier representations
following too closely the sequence of pixel midpoints specified by the data. An argument could be
made purely on visual grounds that any number of harmonics from four to 12 might be suitable.
Degree six was selected for the reasons above.

The corresponding area contained within the modelled curve is 65.2 pixel areas. This value
should be compared with the minimum and maximum values given by the inner and outer profile
of the boundary pixels, namely, 48 and 86, which have a mean of 67, tolerably close to the above
value of 65.2.

The RMSR value of 0.30 does not relate at all directly to the uncertainty associated with the
estimate of the area of the section of the tumour. To evaluate that uncertainty involves a com-
plicated calculation. However, a Monte Carlo calculation is relatively straightforward. For such
a calculation, we assume that the x- and y-coordinates of the midpoint of each boundary pixel
have rectangular distributions R(−1/2, 1/2) relative to that midpoint. Accordingly, by sampling
from these distributions, a new set of x y data can be created, a Fourier series with six harmonics
computed and the according area determined. Repetition of this calculation a large number of
times yields a distribution of values for the area from which the standard deviation, to be used
as the standard uncertainty associated with the area, can be deduced.

There is a further aspect that must be explained. The sequence of data t-values (cumulative
chord length) so generated will also have serial correlation associated with them since each
t-value (apart from the first) is calculated from the previous value and the distance between the
current point and the previous point. That aspect is automatically taken into consideration when
applying the Monte Carlo method. See section E5.1.7.2.

Carrying out this calculation for 105 Monte Carlo trials gave the probability density function for
the area in figure E5.1.3. This figure was obtained by sorting the 1× 105 Monte Carlo samples
into 40 bins of equal width between the smallest and largest sample area value, obtaining the
number of samples in each bin, assigning those numbers to bin centres, and joining the resulting
points by straight-line segments after normalizing the area to be unity. From the results, the
area estimate of 65.5 and its associated standard uncertainty of 1.6 were obtained. These values
were repeatable using different random number generator seeds to the number of decimal places
quoted. This estimate is close to that above of 65.2, indicating little bias in the process. This
standard uncertainty compares favourably with the value of 11.0 obtained by regarding 48 and
86 above as the limits of a rectangular distribution.

E5.1.6 Reporting the result

For the example presented in section E5.1.5, two estimates of the area a of the considered section
of the tumour and the associated standard uncertainties were provided. One result was

ba = 67, u(ba) = 11.0
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Figure E5.1.3: Probability density function for the cross-sectional area of the tumour provided
by Monte Carlo sampling
using the simple approach of taking the mean of the areas defined by the inner and outer perime-
ters of the shaded pixels in figure E5.1.1(c) and using a rectangularity assumption for the distri-
bution of possible values between those extremes.

The second result was

ba = 65.2, u(ba) = 1.6.

The estimate was obtained by modelling the centre points of the boundary pixels by a Fourier
series and selecting an appropriate degree for the series. Because of the complexity of propagat-
ing uncertainties through the measurement model, a Monte Carlo method (MCM) was applied
to determine the standard uncertainty of 1.6. The MCM delivered the estimate of 65.5.

To demonstrate stability of the results with respect to the model used, MCM results were also
obtained for neighbouring degrees. For n = 5, the estimate 65.8 and standard uncertainty 1.5
were obtained. For n= 7, the corresponding values were 65.4 and 1.6.

These various estimates are consistent with respect to their associated uncertainties.

E5.1.7 Interpretation of results

E5.1.7.1 General

The volume or mass of an organ or tumour is generally obtained from a region of interest (ROI)
outlined on anatomical imaging data [385]. It is therefore possible to estimate the outlining ac-
curacy from consideration of factors that affect delineation. The method used will depend largely
on the information and resources available at the time of outlining and the method employed by
the operator or algorithm to define the ROI.

The process in sections E5.1.4 and E5.1.5 is indicative of one approach, namely, the use of re-
gression techniques to fit the mid-points of an outline taking into account the knowledge that
the midpoints are a crude guide to points on the boundary.

For the given data, a Fourier series of degree six (six harmonics or 13 parameters) appears to
capture reasonably well the given outline bearing in mind that only data points representing the
midpoint of the boundary pixels are used.
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The importance of the principles used to select an appropriate degree cannot be over-emphasized.
RMSR or information criteria can be used but have their failings. In the NPL author’s considerable
experience with regression using polynomials, splines and other functions [111, 295, 392–396],
it has been found that identification of the point where the RMSR values start to saturate with
respect to degree is generally reliable. However, such identification is difficult to automate and
there is much value in having the user ‘in the loop’. Examination of RMSR values against degree
and assessing candidate fits to the data such as in figure E5.1.2 are valuable.

E5.1.7.2 Correlation

We would anticipate that the sequence of x-coordinates would have some correlation associated
with them because there is pattern in the arrangement of the corresponding pixels as a conse-
quence of expected underlying smoothness in the tumour boundary. A similar remark applies to
the y-residuals. Accordingly, we would expect to see pattern in the x-residuals di = x i − F(t i)
and in the y-residuals ei = x i − G(t i). To investigate, we examine residual plots for the cho-
sen degree: see figure E5.1.4. We observe what appears to be some oscillatory behaviour in the
residuals.

Figure E5.1.4: x- and (right) y-residuals for the Fourier-series representation of degree 6 (resid-
uals are joined by straight-line segments purely for visualization purposes)

Let g0 =
∑m

t=2 d2
t and g1 =

∑m
t=2 dt dt−1. The estimate of the first serial correlation coeffi-

cient rx for the x-data is rx = g1/g0. For the example, rx = −0.440. Similarly, for the y-data,
ry = −0.430. Since these estimates are so similar, we take their average r = −0.435 as applying
to both the x- and y-data.

The calculation is then repeated as one of generalized least squares with a covariance matrix
based on this observed correlation. The Fourier coefficients so calculated were close to those
obtained when no account was taken of correlation: the norm of the difference between the two
sets of Fourier coefficients relative to the norm of the coefficients computed by generalized least
squares was approximately 2× 10−3.

Applying the MCM as in section E5.1.5, but now to the generalized least squares formulation,
gave an area estimate of 65.5 with an associated standard uncertainty of 1.6, agreeing to the one
decimal place quoted with those when ordinary rather than generalized least squares was used.

Some experiments with taking higher-order serial correlation into consideration did not alter the
above results to the number of digits reported.
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E5.1.7.3 Analysis of the fine pixelated image

The whole exercise was repeated for the (m= 56) darkly shaded pixels in figure E5.1.1(b) using
again pixels of unit size. See table E5.1.2.

Table E5.1.2: Tumour section area estimates, root-mean-square residuals and information criteria
for various numbers of harmonics in the case of a fine pixelated image

x-variable y-variable

n Area RMSR AIC AICc BIC RMSR AIC AICc BIC

1 142.51 0.90 48 49 58 0.91 49 50 59
2 140.70 0.56 26 27 40 0.51 23 25 37
3 141.67 0.48 25 28 43 0.46 24 27 43
4 143.62 0.28 22 27 44 0.32 23 28 45
5 143.60 0.28 25 33 52 0.32 27 34 53

6 143.54 0.27 29 39 59 0.30 30 40 60
7 143.46 0.27 33 47 67 0.29 33 47 68
8 143.30 0.27 37 55 75 0.29 37 56 76
9 143.33 0.27 41 65 83 0.29 41 65 84

10 143.37 0.27 45 75 91 0.30 45 76 92
11 143.45 0.27 48 87 99 0.31 49 88 100
12 143.35 0.27 52 101 107 0.30 53 101 107
13 143.34 0.28 56 116 115 0.32 57 117 115
14 143.15 0.29 60 135 123 0.28 60 134 123
15 143.35 0.28 64 156 131 0.29 64 156 131

The RMSR residuals saturated essentially to the same level of 0.3 for n= 6 and again the degrees
that would have been selected by the three information criteria differed. The corresponding area
estimate, corrected by the factor (38/56)2, to take account of the numbers of pixels involved [see
sub-figures (b) and (c) in figure E5.1.1] was 66.1 (Monte Carlo gave 66.2) with an associated
standard uncertainty of 1.8.

E5.1.8 Introduction of the second application: nanoparticle sizing
by AFM

In the form of nanoparticles, materials can exhibit different properties than in their common
bulk form. These properties open the way to new technological applications, but also potential
hazards. In their characterization, the first parameter to be measured is thus their size, or, more
precisely, their size distribution. An explanation of the need for metrology in nanoparticle sizing
can be found in example in E2.4.

Size of nanoparticles can be measured by AFM, after deposition from a liquid dispersion onto
a flat substrate. AFM is a microscopy technique, and like other microscopy techniques, suffers
from the drawback of being time-consuming for the measurement of size distribution of the
nanoparticles. This application presents the influence of the choice of the pixel size (that is,
how refined the picture is) on the measurement of the size of a nanoparticle. This choice can
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in turn serve to optimize the imaging time (a coarser image can be acquired more quickly), by
minimizing it and keeping the resulting uncertainty from pixel size under control. This approach
can thus be useful in a laboratory.

A physical model of the measurement is first set up. Its application in the classical GUM frame-
work is explained, as well as a possible extension to a Bayesian framework. Real data on gold
nanoparticles illustrate some of the effects, which might seem counter-intuitive, but support the
model here presented.

E5.1.9 Specification of the measurand(s)

AFM belong to the class of methods termed Scanning Probe Microscopy (SPM) and produces a
topography of the specimen. In its classical use, the topography is measured by scanning the
surface by keeping a small tip in intermittent contact with the specimen. The feedback control
to keep this intermittent contact is used to make measurement of the vertical topography of
the substance. Assuming a spherical shape for small nanoparticles, the height at the top of the
nanoparticle with reference to the substrate is equal to the diameter of the spherical nanopar-
ticle, and acts as a measurand for it. An example of topography is presented in figure E5.1.5.
More details about the measurement and investigation of other influence factors can be found in
example in E2.4.

Figure E5.1.5: 3D view of AFM topography of a polystyrene 100 nm nanoparticle sample de-
posited on flat mica substrate

E5.1.10 Measurement model

For the height measurement, the topography is scanned in successive lines, as illustrated in figure
E5.1.6. It is a continuous sampling, and the pixel value (height) is extracted from electronics
readout in continuous time. It is the result of the average over the pixel by integration of the signal
representing the height (voltage applied to a piezoelectric crystal to move the tip vertically). The
flexture movement of the tip is monitored by movement of the spot of light reflected by the tip on
photodetectors. To keep the same intermittent contact of the tip probe, a feedback control – PID
– is applied continuously, with adjustable parameters. The signal is collected in two passes, the
“trace” and “retrace” signals, of which the retrace signal is used for measurement, as illustrated in
figure E5.1.6. With correct adjustment of feedback parameters, the “trace” and “retrace” signals
are almost identical. Other parameters also influence the measurement: the scan speed, set point
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amplitude, the type of tip, environmental conditions, and so on. Uncertainty evaluation example
E2.4 gives a more detailed presentation of statistical modelling of such measurement and the
associated uncertainty evaluation.

Figure E5.1.6: Scanning pattern of AFM measurement. The dashed line represents the acquisition
line of “Trace signal” and the plain line represents the “Retrace signal”. Measurement are usually
performed on the “Retrace signal”. Pixels are illustrated on the first line.

The real tip shape and size are neglected here, though a more realistic example would need
to consider these features. These intricacies of the problem are left for further consideration.
References [397,398], provide information on the description of the tip shape and effect on AFM
measurement. For application to the present case, interested readers are invited to contact the
authors of reference [399].

No full measurement model exists for such nanoparticle size measurement by an AFM, because of
the complex acquisition electronics and manual tuning. A global statistical model [175] and, in
parallel, an effect-per-effect investigation and modelling as building blocks can be introduced, as
in [400]. We adopt here the latter for the modelling of the pixel-size effect on the measurement
of the size of nanoparticles by an AFM.

To recapitulate, the effect of choosing a given pixel size is to change the average height recorded
by the system for the pixel of maximum height, which is the measurand for the nanoparticle
height. It is the pixel that contains the nanoparticle apex. By denoting the nanoparticle radius
by r and the size of one pixel edge by X , the measured height h will be

h=
1
X

∫ X/2

−X/2
ztip(x)dx (E5.1.4)

with ztip(x) being the continuously read measured height for the tip along the tip path (x coor-
dinate; retrace signal in figure E5.1.6). In the ideal case, the tip will pass through the apex of
the spherical nanoparticle along its path, as illustrated in figure E5.1.7a, which corresponds to
the configuration with maximal yielded size, where

ztip(x) =

¨

r +
p

r2 − x2, if x ≤ r,

0, elsewhere,
(E5.1.5)

and which corresponds to the red line in the figure. It can directly be noticed that the integration
along the x-axis (i.e., under the red curve) will always induce an underestimation of the real size
(2r, at the apex). Moreover, the smaller the nanoparticle is, the more its size is underestimated.
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r

r

X

X

(a) Centered (b) Off on one side (c) Most disadvantageous relative
position

Figure E5.1.7: Examples of different relative position between sampling grid (pixels) and the
nanoparticle. The line in red corresponds to the line of measurement
In a realistic case, the tip acquisition path is not necessarily aligned with the nanoparticle. A
nanoparticle can be completely missed if it is too far from the tip path, that is, the pixels are too
big (coarse). Figures E5.1.7a, E5.1.7b and E5.1.7c illustrate gradual underestimation by the only
fact of misalignement of the nanoparticle and the pixel grid, for the same nanoparticle size and
the same pixel size. If (∆x ,∆y) is the position of the apex of the nanoparticle in the pixel, with
y orthogonal to x ,

ztip(x) =

¨

r +
q

r2
eff − (x −∆x)2, if x −∆x ≤ reff and ∆y ≤ r,

0, elsewhere
(E5.1.6)

with reff =
p

r2 − (∆y)2 being the effective radius along the tip path (see figure E5.1.8). The
problem is now specified.

This problem is geometrical, and it can be quickly noticed that it is the relative scale of the
nanoparticle radius r and the pixel size X that is relevant. In other words, the problem can
be reformulated, independently of the unit system, by non-dimensionalizing to the nanoparticle
radius r. er = r/X and h/(2r) are thus introduced in the calculation. By scaling variables,
computations are now universal to all classes of the problem rather than just a specific case. The
measurement problem now involves the following equation:

h
2r
= f (er). (E5.1.7)

The ideal case — with perfect pixel size resolution — would be to measure h/(2r) as unity, which
is not achievable. Moreover equation (E5.1.7) is to be considered as a statistical relation and not
strictly as a function, as explained in section E5.1.10.1.

Several cases of integration exist, depending on the condition of equation (E5.1.4) met at the
integration borders of the pixel (at −X/2 and X/2): the pixel is fully inside the nanoparticle
(figure E5.1.7a is an example), only a part of the scanning path is touching the nanoparticle
(figure E5.1.7c, for example) or the nanoparticle is fully inside the pixel. In some extreme cases,
the nanoparticle is small with its apex in a corner of the pixel, and the tip is not touching the
nanoparticle at all along its path. The nanoparticle is missed. This corresponds to one part of
the probability, as a Dirac delta, for the h/(2r) value.

E5.1.10.1 Law of probability

The probability of a given relative measured height h/(2r) for a given relative pixel size er = r/X
is derived from the probability measure of the positions (∆x ,∆y). Because the nanoparticles
are randomly distributed over the substrate and the pixel grid is randomly set relatively to the
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(a) View of a full pixel, and inter-
nal symmetries of the problem
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∆y

∆x

(b) View of a nanoparticle and represen-
tation of variables, in a quarter of a pixel

Figure E5.1.8: Symmetry reduction for the position of the nanoparticle, illustrated as viewed
from the top. The thick line represents the integration line (scanning path between x = −X/2
and X/2)
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Figure E5.1.9: Iso-height contour plot of estimation of the relative height h/(2r) as a function of
the position (∆x ,∆y) of the nanoparticle apex
substrate, (∆x ,∆y) are taken as uniformly distributed over the pixel. By symmetry along the
∆x = 0 and ∆y = 0 axes, the integration domain can be reduced to a quarter of a pixel for
numerical computations, as shown in figure E5.1.8. In a more practical way, the probability of
h/(2r) given er is thus the length of a iso-height line contour of the graph of height as a function
of (∆x ,∆y) (with parameter er fixed; see figure E5.1.9 with layout from figure E5.1.8b), and
taking into account the Jacobian factor. It can also be seen, from a probabilistic point of view, as
a change of variables:

P(h|er) dh= P(h(∆x ,∆y)|er)d(∆x)d(∆y). (E5.1.8)

The probability density is computed for several fixed values of er, as profiles, and as illustrated
in figure E5.1.10. Including the probability of missing the nanoparticle by the mean of a Dirac
delta (for null h/2r) and expressing in terms of reduced variables, the PDF takes the following
mathematical form

P
�

h
2r

�

�

�

�

er
�

+ (1− 2er) δ
�

h
2r

�

. (E5.1.9)

Examples of evaluating measurement uncertainty First edition



Example E5.1. 2D or 3D image as a set of pixels or voxels to compute a quantity 423

0.90 0.92 0.94 0.96 0.98

0
5

10
15

20

h/(2 r)

(a) er = 1.305

0.75 0.80 0.85 0.90 0.95

0
2

4
6

8
10

12

h/(2 r)

(b) er = 1.005

0.5 0.6 0.7 0.8 0.9

0
1

2
3

4
5

6

h/(2 r)

(c) er = 0.787

Figure E5.1.10: Probability density function of height measurement (h/(2r)) at fixed er = r/X
Collating all the computed profiles results in the two-dimensional graphical representation of the
parametric PDF in figure E5.1.11.
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Figure E5.1.11: Probability of height measurement h/(2r), as a function of the er = r/X param-
eter

E5.1.10.2 Confronting the model with real data

After setting up a model, it is valuable to verify its predictions or features in typical conditions
that are already well known by other means or previous experience. The reference material
RM 8012 [187] was used as a nanoparticle sample for confronting the model to the pixel size
effect for real data. It is a suspension of gold nanoparticles in ultrapure water, with citrate salt for
stabilizing the dispersion, of a certified mean size of 24.9±1.1 nm (k = 2, 95 % coverage probabil-
ity). As a consequence of the production process of nanoparticle samples, different nanoparticles
within the sample have different sizes, but only the central size value is certified. The actual size
of each individual nanoparticle is thus not precisely known. On the other hand, confronting AFM
measurement with another technique for each nanoparticle will likely not improve the present
analysis, if possible at all (by another SPM technique; such an example is presented in [401]).
Difficulties arising from the comparison of techniques will affect the comparison by instrumental
effect from the other technique. The pixel-size effect can be observed relatively by comparing
the measurements of the same nanoparticle substrate deposition (same area), by the same AFM
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instrument and by identifying the same nanoparticles on two images. It is not possible to scan
exactly the same area because of limitations of the instrument. A slight shift in (x , y) is present,
from image to image and a matching of nanoparticles had to be carried out by a dedicated algo-
rithm.

Figure E5.1.12 present several images, applying the above methodology. Nanoparticle identifica-
tion numbers do not necessarily match between the pictures. An animation is provided in [31].
It is noticed that the pictures with lower resolution are generally darker, meaning that the mean
measured height is smaller. This is in agreement with the model.

(a) 160 px (b) 256 px

(c) 512 px (d) 1024 px

Figure E5.1.12: Images of the same 5µm× 5µm area with the same nanoparticles. The height
scale is common. The colour of the number identifying the nanoparticle corresponds to the
measurand, the maximum height pixel

The probabilistic effect is visible in figure E5.1.12. Nanoparticles number 269, 281 and 325 on
respectively, figures E5.1.12a, E5.1.12b, E5.1.12d illustrate this peculiar effect for the same real
nanoparticle (identified by green boxes). The height is greater for nanoparticle 269 (14.8 nm on
figure E5.1.12a) than nanoparticle 281 (14.1 nm on figure E5.1.12b). This can be seen from the
colour of the label, which is a slightly darker for the smaller nanoparticle. This is an observation
going in the opposite direction of the global tendency of lower measured height with lower
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resolution, but for individual nanoparticles, showing the probabilistic effect. This effect is also
visible on the animation, as scintillation (changes to higher and lower measured size, randomly)
of the individual nanoparticles when increasing resolution. The same nanoparticle is measured
21.4 nm on figure E5.1.12d. This value is already closer to the certified mean size of the sample
(24.9± 1.1 nm [187]).

Interested readers are invited to contact the authors for more information about the validation
of the model. Comparison of data across several resolutions has been carried out, using the
same nanoparticles, identified on all the images. Unfortunately, a thorough validation of the
model PDF would imply the collection of an enormous quantity of data, which is unrealistic with
current means. Natural limits (edges of the coloured zone on figures E5.1.11 and E5.1.13) of
the values of the model induce extreme bands that delimit measurements from both resolutions.
The probabilistic fluctuations illustrated above are allowed within these bands. All data points
actually lie within these bands. It is important to keep in mind that the shape of the tip also has
an indirect effect on the measurement of validation data, an aspect that was neglected here for
readability.

E5.1.11 Interpretation of results

E5.1.11.1 Correction factor and uncertainty evaluation in the GUM framework

The obtained PDF can be exploited by reducing it to a correction value and a given standard
uncertainty, as the corresponding mean and standard deviation, therefore making a normal ap-
proximation of the PDF, obviously not exact from figure E5.1.10. The size correction would be
estimated a posteriori from the mean measured size, because of dependence of the model on the
er = r/X parameter (where 2r is the true size). This information can then be used when follow-
ing the GUM approach, as one of the contributions of an uncertainty budget. This approximate
approach can be considered as a first step of the analysis of the problem. In a second step, a
Monte Carlo approach (GUM-S1) would yield the correction and uncertainty evaluation at the
same time, and provide more valid results. This can easily be understood from the obviously
non-Gaussian PDF, as shown in figure E5.1.10.

Mean and one-standard-deviation bands are drawn on figure E5.1.13, as a function of er = r/X .
The black curve considers only the non-null measured heights, while the brown curves take into
account undetected (missed) nanoparticles: the Dirac delta part in equation (E5.1.9). Having
two means certainly seem unexpected. If a single particle is measured and one would like the
effect of the pixel size to be considered, the black curve should be used: the nanoparticle was
measured and its own true size is to be estimated. However, when considering the population as
a whole, the brown curve is to be used for correction, in order to take into account the missed
(invisible) nanoparticles.

E5.1.11.2 Experimental optimization in the GUM framework

The present model can also be used as a basis for obtaining a first approximation to the uncer-
tainty associated with imaging pixel size, sufficient for deciding whether this source of uncertainty
is negligible or not. For example, choosing a resolution of er = r/X ≈ 1.4 should be sufficient
to underestimate the size by at most 5 % (grey line) with a probability of at most 16 % (with
one-sided 1σ – one standard deviation – band), as illustrated by the intersection of the grey
line and brown (or black) band in figure E5.1.13. This choice of resolution leads to advantages
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in the imaging processing. By reducing the resolution and keeping the same imaging area, the
imaging time (and the associated cost) is reduced. Imaging time is often cited as one of the main
disadvantages of AFM, and could thus be optimized for this application by this technique. Seen
another way, the imaged area can be increased in such a way to match the minimal er = r/X
allowed by the target uncertainty on size underestimation. With this approach, the number of
nanoparticles on a single image is optimized. The greater is the number of nanoparticles the bet-
ter is the PDF description of the sample (its size distribution). Only a subset of the sample can be
realisticly imaged. Representativeness of the nanoparticle sample is another common criticism
about AFM, also optimized by this method. The precision of the measurement here comes from
the combined effects of the number of nanoparticles measured (scanned area) and the precision
on the measurement of the size of a single nanoparticle). The choice of optimization of one
compared to the other is a strategy choice of the laboratory.
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Figure E5.1.13: Probability of height measurement (h/(2r)). The brown 1σ band considers all
existing nanoparticles, the black only considers nanoparticle for which a (non-null) measurement
exists. The solid curves are the mean value as a function of er, surrounded by their 1σ bands
(dashed).

A good strategy for a calibration service on nanoparticle samples could be to perform a screen-
ing measurement to have an indication of the order of magnitude of the sample size and then
to design the analysis (for example, choice of pixel size) to reach the optimal trade-off to the
calibration laboratory: precision vs. measurement time. This is a different approach from the
simple uncertainty evaluation approach.

This strategy is easily applicable to mono-disperse samples. A mono-disperse sample contains a
population of nanoparticles all of similar size. On the contrary, a poly-disperse sample is made of
a population covering a wide range of sizes. Conditions that are adapted to a given size, by the
optimization explained here above, are only suitable for that size and not necessarily for other
sizes. With this model approach, one can evaluate uncertainties for smaller and bigger sizes,
quantitatively.
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E5.1.11.3 Scope for further work: interpretation in Bayesian framework

Another exploitation of the model can be to extract an estimate of the true radius from the
experimental data by inversion. Up to now, we have given a description of the measurements h,
where the true size of the nanoparticle was a parameter (r). The data of the experiment modelled
here can be synthetically summarized by: h is a measured value, X is an experimental parameter
and r is the “true value”. h/X is thus data of sole experimental nature (no a priori knowledge of
the sample, r, is included in it), of which the experimenters would like to extract the true value
of the size r.

In the model, a constant h/X corresponds to constant h/(2r)×2× r/X , that is, a hyperbolic line
in the graph of figure E5.1.11. By extracting the probability along this line, one has access to
the probability distribution of r, given the measurement of the nanoparticle h/X : P(r|h/X ). A
Bayesian inversion algorithm can thus be applied in order to estimate the true r distribution of
the sample, where this model acts as a transfer function. This inversion can only be carried out
numerically, by Monte Carlo methods. The final uncertainty will be derived from the obtained
numerical distribution. The correction and uncertainty are directly determined from experimen-
tal data, without any need for a model parameter to be estimated posterior to measurement.
This is a much better approach than the previously explained GUM approaches, where a priori
knowledge of r was needed for the estimation of r (since it was based on h/(2r) and er = r/X ).
r was acting on an a priori knowledge parameter and being the estimated value at the same
time an iterative estimation would be needed. This new approach is thus also more natural and
rigorous.

It is also observed that a smaller pixel size X would tend to higher h/X and a reduced uncertainty:
the associated hyperbola is more to the top-right corner in figure E5.1.11 (hyperbola not drawn
on the figure).

E5.1.12 Conclusion

A model approach to uncertainty evaluation for a single source has been presented: it describes
the effect of the choice of the pixel size for the measurement of the nanoparticle size distribution
by AFM. The model shows an intrinsic probabilistic nature of the measurement. Several uses
of the same model are here presented, targeting different applications and different refinement
levels. A classical GUM approach to the pixel size uncertainty evaluation is first presented, with
application for process optimization. Correction for the effect is also presented, for individual
nanoparticles and the population. For the latter, some items under measurement can be missed
but nevertheless corrected for by the model. Following a Bayesian approach, the pixel size effect
can be corrected for and the uncertainty evaluated simultaneously by applying Bayesian inversion
from purely experimental data (no a priori knowledge of the size of the sample needed). The
latter approach will certainly appear more natural and rigorous to the reader than the frequentist
approach.

E5.1.A Area enclosed by a Fourier curve

The area enclosed by the Fourier curve (E5.1.1) is

A=

∫ β

α

xdy =

∫ 1

0

F(t)G′(t)dt,

Examples of evaluating measurement uncertainty First edition



Example E5.1. 2D or 3D image as a set of pixels or voxels to compute a quantity 428

where α and β are the limits of the variable x .

Use of the basic trigonometric identities

cos P cosQ =
1
2
[cos(P +Q) + cos(P −Q)],

sin P cosQ =
1
2
[sin(P +Q) + sin(P −Q)],

sin P sinQ = −
1
2
[cos(P +Q)− cos(P −Q)]

together with the algebraic form for the derivative G′(t) gives, after some lines of tedious algebra,
expression (E5.1.3).

The correctness of expression (E5.1.3) was checked for degrees from 1 to 15 by in each case
evaluating the Fourier series at 1000 uniformly spaced values of t and calculating the area of the
polygon so formed. For all 15 degrees the areas agreed to better than 1 part in 105.
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Magnetic resonance-based electric
properties tomography
A. Arduino, F. Pennecchi, L. Zilberti, U. Katscher, M.G. Cox

E5.2.1 Summary

The present example shows the uncertainty evaluation, under repeatability conditions, of a tech-
nique for Electric Properties Tomography (EPT), a quantitative imaging method based on Mag-
netic Resonance Imaging (MRI). Repeated acquisitions of MRI scans of a homogeneous cylindrical
phantom are analysed with appropriate statistical techniques to evaluate the variance-covariance
matrix of the EPT input. The latter is then propagated through the EPT technique according to
the law of propagation of uncertainty (LPU) as described in the GUM [2,4].

E5.2.2 Introduction of the application

EPT is a quantitative imaging method that, by elaborating maps acquired with an MRI scan-
ner, provides an estimate of the spatial distribution of the electric properties within the human
body [402, 403]. Amongst the different EPT techniques proposed in the literature, the phase-
based Helmholtz-EPT [403,404] is investigated here, because of its prevalence.

Biological tissues are dispersive media, which means that they exhibit electric properties varying
with the frequency of the electromagnetic radiation which impinges on them. EPT estimates the
spatial distribution of the electric properties only at a certain frequency, namely at the Larmor
frequency of the used MRI scanner. Typical values of the Larmor frequency for clinical scanners
are 64 MHz and 128 MHz, which correspond to the resonance frequency of hydrogen nuclei
within 1.5 T and 3 T scanners, respectively.

A metrologically rigorous application of EPT would benefit the biomedical field. Indeed, it would
allow the determination of the physiological values of the electric properties of in vivo tissues,
which could differ from the values measured ex vivo on excised samples [405]. Moreover, it could
allow to monitor the course of diseases (and therapies) that alter the electric properties, like for
some kind of tumours [405].

The present example aims at evaluating the uncertainty in the EPT results under repeatability
conditions. To this end, a two step approach is followed:
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1. The quantification of uncertainties and covariances in the input data is achieved by
analysing a dataset of experimental input maps acquired under repeatability conditions
with a 3 T MRI scanner.

2. The propagation of the input variance-covariance matrix through the EPT technique
is performed by LPU. Since the adopted EPT technique is linear, the use of the LPU is not
an approximation.

E5.2.3 Specification of the measurand(s)

The phase-based Helmholtz-EPT provides an estimate of the spatial distribution of the electric
conductivity σ by elaborating the phase distribution ϕ+ of the complex positively rotating com-
ponent B+1 of the radiofrequency magnetic field generated by the MRI scanner [403,404]. If the
magnitude |B+1 | is provided as an additional input, then the accuracy of the estimate of σ can be
improved and an estimate of the permittivity ϵ can be obtained as well.

The present example is focused on the estimation of the electric conductivity σ of a homoge-
neous cylindrical phantom filled with a solution of 3.75 gL−1 NaCl in distilled water, which has
a nominal (provided with no associated uncertainty) electric conductivity equal to 0.56 Sm−1 at
128 MHz and for which no independent experimental characterization was available.

Since Helmholtz-EPT handles three-dimensional images, the elementary unit of its input and
output is the voxel, namely the three-dimensional extension of the pixel. Each voxel is an ele-
mentary cuboid, whose dimensions correspond to the spatial resolution of the maps. The value
of σ estimated by the EPT technique in each voxel is a distinct result of a measurement, possibly
correlated to the estimates in the other voxels. Since the phantom is homogeneous, the spatial
average σ of the estimated electric conductivity is computed, together with the associated un-
certainty, and compared to the nominal electric conductivity. The choice of the spatial average
as a representative value for the estimated electric conductivity of the phantom is corroborated
by the fact that it is the least squares approximation of the collection of estimates. Moreover, the
systematic error in the recovering of σ, typical of any phase-based EPT technique, is estimated
by comparing the result with that obtained by using |B+1 | as an additional input.

Also the (generalized) weighted average σw of the conductivity values in the several voxels is
investigated as a further estimator of the phantom electric conductivity, since it accounts for the
covariance matrix of the involved quantities and it is the minimum variance unbiased estimator
of their expected value [366].

In order to avoid some well-known errors of Helmholtz-EPT at the boundary of the phantom,
and to reduce the dimensionality of the problem, only a sphere of radius 30 mm centred in the
middle of the phantom is considered in the present analysis.

E5.2.4 Measurement model

Helmholtz-EPT is based on the Maxwell equations, that describe the electromagnetic phenomenon.
Precisely, given the frequency f of the electromagnetic radiation, the relevant time-harmonic
Maxwell equations for a passive medium are

(

∇× B = iωµ0

�

ϵ − i
σ

ω

�

E ,

∇× E = −iωB ,
(E5.2.1)
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where i is the imaginary unit, B is the magnetic flux density, E is the electric field, ω = 2π f is
the angular frequency and µ0 is the magnetic permeability of the vacuum. The two equations
can be combined to obtain, under the assumption of spatially homogeneous electric properties
σ and ϵ, the Helmholtz equation for the magnetic flux density. The algebraic inversion of the
Helmholtz equation leads to the reference equation of Helmholtz-EPT

ϵ − i
σ

ω
= −
∇2B+1
ω2µ0B+1

, (E5.2.2)

which relates explicitly the unknown electric properties to the measurable component B+1 of the
magnetic flux density.

By looking only at the imaginary part of equation (E5.2.2), the explicit relation for the electric
conductivity σ is found to be

σ =
∇2ϕ+

ωµ0
+ 2
∇|B+1 | · ∇ϕ

+

ωµ0|B+1 |
, (E5.2.3)

being B+1 = |B
+
1 |e

iϕ+ . Finally, under the assumption of a spatially homogeneous |B+1 |, as this is
often the case for 1.5 T and 3 T scanners, the reference equation of the phase-based Helmholtz-
EPT reduces to

σ =
∇2ϕ+

ωµ0
. (E5.2.4)

The measurement model applied in this example is a discrete approximation of equation (E5.2.4).
Indeed, it is a linear application, defined by the matrix A, that elaborates a discrete three-
dimensional image of ϕ+, defined by the vector x , and produces a discrete three-dimensional
image of σ, defined by the vector y , according to

y = Ax . (E5.2.5)

Each component of the vectors x and y is associated through a one-by-one relation to a voxel of
the three-dimensional images. Matrix A approximates the linear differential operator (ωµ0)−1∇2,
therefore it is in general a sparse matrix. In particular, each row of A is a local approximation
of the differential operator and is completely defined by the set of voxels, called kernel, used to
compute the approximation. In the following p denotes the dimension of vector x , namely the
number of voxels in which the measured phase is provided; whereas N denotes the dimension
of vector y , namely the number of voxels in which the electric conductivity is estimated.

The kernel is characterised by its shape and its size. Three shapes are analysed in this example:
the cross, the sphere and the cube. They are represented in Figure E5.2.1. For each shape, a
size ranging from n = 1 up to n = 5 has been considered, where n has the meaning depicted in
Figure E5.2.1. The number of voxels in each kernel shape and size is depicted in Table E5.2.1.
The values of the components of A are determined in each row from the Savitzky-Golay filter
with the selected kernel [406]. In this example, the same selected kernel is used for each row of
A. The implementation of phase-based Helmholtz EPT collected in the open-source C++ library
EPTlib 0.1.1 [407] has been adopted.

Finally, since the phantom is homogeneous, the spatial average of the estimated electric conduc-
tivity is computed as

σ =
1
N

N
∑

i=1

yi . (E5.2.6)
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Figure E5.2.1: Considered shapes of the kernel of matrix A. For all the shapes, the size n = 5 is
depicted.

Table E5.2.1: Number of voxels in each kernel shape and size.

n Cross Sphere Cube

1 7 7 27
2 13 33 125
3 19 123 343
4 25 257 729
5 31 515 1331

As an alternative estimator of the phantom electrical conductivity, also the (generalized) weighted
average [408] of the yi values is investigated. Such estimator is a well-known kind of average
that takes into account the variance-covariance matrix of the involved quantities, its analytical
expression being

σw =
�

WTΣ(y)−1W
�−1

WTΣ(y)−1y , (E5.2.7)

where W is a (N × 1) column vector of ones and Σ(y) is given in (E5.2.8).

E5.2.4.1 Uncertainty quantification in the input data

Experimental data

The input data to the EPT technique are the ϕ+ values measured in the voxels of a three-
dimensional image of a homogeneous cylindrical phantom. 25 scans of the phantom have been
acquired, in groups of five, with a 3 T MRI scanner using a steady-state free precession (SSFP)
sequence with isotropic resolution of 2 mm. The adopted MRI scanner is a 3 T Ingenia TX (Philips
Healthcare, Best, The Netherlands) and a 32-channel RF receive head-coil has been used. The
five scans of a given group have been acquired one after the other, without breaks, whereas the
acquisitions were interrupted for a few minutes between different groups. During the entire pro-
cedure, the phantom was never moved. Therefore, the input data (25 ϕ+ values for each voxel)
were acquired under repeatabilty conditions.

The phase of the complex images acquired with the SSFP sequence provides a good estimate
of 2ϕ+, so the measurement of the EPT input is practically direct [402]. Moreover, because of
the cylindrical shape of the phantom, the magnitude of the complex images approximates well
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|B+1 |
2 [409]. The magnitude |B+1 | can be used to improve the accuracy of Helmholtz-EPT, so its

measured value is used here to evaluate the systematic error introduced by performing EPT only
on the phase data.

An example of the acquired phase and magnitude maps is reported in Figure E5.2.2. All the
acquired data, restricted to the sphere of radius 30 mm centred in the middle of the phantom,
are available in the repository [32].

Figure E5.2.2: Three sections of a measured map proportional to the magnitude |B+1 | (top) and of
a measured map of the phase ϕ+ (bottom). The sections of the central sphere of voxels analysed
in this example is pictured by the black circles.

It is worth saying that a constant difference in two acquired maps of ϕ+ can appear. Indeed,
for each voxel this phase corresponds to the direction of the local magnetic flux density vector,
which rotates periodically around the MRI static field axis. Since the rotation takes place at
a constant angular frequency (corresponding to the Larmor frequency), the absolute values of
the measured phases depend on the time instant selected for the acquisition, while the phase-
shift among voxels keeps the same. Hence, this constant variation of ϕ+ does not affect the
estimation of the electric conductivity by the Helmholtz-EPT method, since only the gradient of
ϕ+ is involved in equations (E5.2.2) and (E5.2.4). Nonetheless, in order to avoid an effect of
sham correlation between phase values in different voxels due to this constant variation, each
map of ϕ+ has been translated in such a way to guarantee a null spatial average within the
sphere under analysis. After this filtering of the average value, at a visual inspection the phase
patterns of the 25 acquisitions appear almost identical, suggesting that the experiment has a high
level of repeatability. In particular, throughout the 25 acquisitions, the phase of each single voxel
exhibits fluctuations within ± 5 mrad (i.e., within ± 0.3°). Since the phase provides the direction
of the rotating magnetic flux density vector (whose period, at the Larmor frequency of 128 MHz,
is about 7.8 ns) at the acquisition instant, these data indicate that the timing of the 25 repetitions
has a maximum error around 6.2 ps.

Finally, the averages of the 25 (translated) values of ϕ+ were calculated, voxel-by-voxel, and
provided as input to the EPT method.
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Uncertainties and covariances in the input data

Since the number p of voxels in the considered sphere was larger than ten thousand but only
25 scans were available, that is, the number of repeated measurements was smaller than the
number p of quantities to be estimated, the variance-covariance matrix associated with the mean
value of the measured ϕ+ could not be evaluated by the usual experimental variance-covariance
matrix, which had at most rank 24.

In order to handle properly the dimension of the problem, a shrinkage estimator of the variance-
covariance matrix has been applied, by means of the cov.shrink function of the R package
corpcor [410]. It implements a James–Stein-type shrinkage estimator for the variance-covariance
matrix, with separate shrinkage for the variances and the correlations according to the methods
in [411] and [412], respectively.

The obtained input variance-covariance matrix was positive definite and well conditioned. All
its terms were hence divided by 25, i.e. the number of repeated measurements, in order to get
the variance-covariance matrix associated with the mean phases. The standard uncertainty in
the mean phase measurement evaluated in each voxel varies from 0.3 mrad up to 1.1 mrad (the
corresponding squared values, i.e. the variances, are on the matrix diagonal). The correlations
are both positive and negative and are spatially arranged as shown in Figure E5.2.3 for a selection
of reference voxels. Such patterns can be ascribed to a non-ideal response of the receiving coil
that embraces the phantom and is used to detect the phase in each voxel. Being composed of
a discrete number of annular loops, its response may be slightly anisotropic with respect to the
instantaneous direction of the rotating magnetic flux density. As already discussed, the latter is
highly stable throughout the repetitions, but inevitably suffers some minor fluctuation.

Figure E5.2.3: Spatial distributions of correlations in the input phases with respect to the central
voxel (first row), a voxel 15 mm towards the negative z (second row) and a voxel on the sphere
boundary (third row).

In the following, x and Σ(x ) indicate the vector of dimension p of the voxel-by-voxel mean
phases and the associated p× p variance-covariance matrix, respectively.
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E5.2.5 Uncertainty propagation

The LPU as described in [4] has been applied to propagate the uncertainty through the model.

First, the variance-covariance matrix Σ(y) of the estimated electric conductivity distribution is
obtained by propagating the variance-covariance matrix Σ(x ) of the phase maps through equa-
tion (E5.2.5). This is accomplished according to [4, Eq. 3]:

Σ(y) = AΣ(x )AT . (E5.2.8)

Then, the output variance-covariance matrix is propagated through the averaging procedures (E5.2.6)
and (E5.2.7) to evaluate the standard uncertainty u(σ) and u(σw), associated with the corre-
sponding electric conductivity estimates:

u(σ) =
1
N

√

√

√

√

N
∑

i=1

N
∑

j=1

�

Σ(y)
�

i, j , (E5.2.9)

u(σw) =
r

�

WTΣ(y)−1W
�−1

. (E5.2.10)

The homogeneity of the phantom justifies the choice of a spatial average of yi values as an estima-
tor of the electrical conductivity in the phantom. It is worth noting that the covariances between
yi values in the different voxels prevent the uncertainty in equation (E5.2.9) from vanishing
when N increases.

E5.2.6 Reporting the result

The propagation of the variance-covariance matrix Σ(x ) of the input phases through the phase-
based Helmholtz-EPT method, computed according to equation (E5.2.8), leads to different re-
sults depending on the adopted kernel shape and size, as shown in Figure E5.2.4. In particular,
larger variances can be seen when the kernel size is small or the shape involves few voxels.
The variances are reduced by enlarging the kernel size. Significant covariances are present in
the output. It is worth noting that the number N of voxels in which the electric conductivity is
computed depends on the kernel adopted, because, in case a kernel partially falls outside the
investigated sphere, the EPT reconstruction is not performed. For this reason, the number of
rows and columns of the output variance-covariance matrices decreases by increasing the kernel
size.

The variances collected in Figure E5.2.4 suggest that the standard uncertainty of the electric con-
ductivity estimated in each voxel ranges from 1.8 mSm−1 to 0.4 Sm−1, depending on the kernel
adopted. However, despite the homogeneity of the phantom used, there is a significant spatial
variability in the estimated electric conductivity that cannot be explained only by means of such
small uncertainties. No regular geometrical pattern can be identified in the spatial distribution of
the estimated electric conductivity, which varies irregularly in the domain. For any kernel shape
and size, the collection of the electric conductivity values estimated within the sphere shows a
symmetric distribution whose dispersion is reduced by increasing the kernel size, as summarised
in the boxplots of Figure E5.2.5. The observed reduction does not scale linearly with the number
of voxels in the kernel, which is reported in Table E5.2.1, suggesting that the degree to which
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Figure E5.2.4: Visual representation of the variance-covariance matrices Σ(y) of the output y
computed with kernels of different shapes and sizes.

each voxel in the kernel contributes to the overall homogeneity is not constant and depends on
the kernel shape. The spatial variability of the estimated electric conductivity is a local error
inherent to the Helmholtz-EPT method that can be reduced by changing the kernel shape and
size. Such an error changes irregularly from point to point within the domain, so that it has the
appearance of a random error when looking at the whole population of estimated conductivity
values. Moreover, another systematic error is due to the phase-based approximation and can be
corrected by providing the magnitude |B+1 | to the Helmholtz-EPT method as an additional input.
Indeed, with the complete input, the average value (corresponding to the median for symmetric
distributions) of the collection of the estimated electric conductivity values moves towards the
nominal value, despite the spatial variability remains the same (cf. Figure E5.2.5).

By comparison with the nominal value, the boxplots of Figure E5.2.5 suggest that the spatial
average σ of the electric conductivity estimated in the several voxels is a good estimate of the
electric conductivity of the homogeneous phantom. The phase-based approximation introduces
a systematic error in σ, estimated between 3 % and 8 % of the nominal value, depending on
the kernel adopted. The standard uncertainty u(σ) under repeatability conditions, obtained
through equation (E5.2.9), is very low, with a relative uncertainty of about 0.2 %. The computed
values of σ and their uncertainties are collected in Table E5.2.2 for all the kernel shapes and
sizes. It is worth noting that the uncertainty reported here does not take into account the spatial
variability of the estimates; it expresses only the repeatability of the measurement. Thus, for a
homogeneous phantom, the spatial average of the output of phase-based Helmholtz-EPT appears
to be very precise, from the repeatability point of view, and to have an accuracy affected by an
error smaller than 10 % due to the phase-based approximation.

Table E5.2.2 reports also the standard uncertainty of σ that would have been obtained by ne-
glecting the correlations in the input phases. Its value, denoted by ũ(σ), is always smaller than
the actual standard uncertainty u(σ), highlighting the importance of taking into account the
correlations between the input quantities. Moreover, it is worth noting that the uncertainties
propagated through the cross-shaped and the spherical kernels are quite similar to each other
and different from the values obtained with the cubic kernel. This difference is only partially
reflected by the kernel volumes collected in Table E5.2.1.
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Figure E5.2.5: Boxplots of the electric conductivities y estimated in all the voxels of the analysed
sphere, computed with kernels of different shapes and sizes. The dashed horizontal line denotes
the nominal electric conductivity of the phantom. The result of the phase-based Helmholtz-EPT
method (top) is compared with the result of the complete Helmholtz-EPT method (bottom).

In Table E5.2.2, the σw estimates and the associated uncertainties are shown as well. The former
are closer to the nominal value with respect toσ values (and more stable among shapes and sizes
of the kernels); the latter are smaller than the uncertainties associated with σ values of about
one order of magnitude, hence leading to a relative uncertainty of about 0.01 %.

E5.2.7 Interpretation of results

In this case study, the estimate of the electric conductivity obtained by the phase-based Helmholtz-
EPT method in each voxel of the imaged phantom can be interpreted as a set of measurements
of different measurands, which, by virtue of the a priori information on the homogeneity of the
phantom, should ideally exhibit the same numerical value. Therefore, the values of the elec-
tric conductivity estimated in the voxels were compared to assess the spatial dispersion of the
voxel-by-voxel estimates. Such variability proved to be reduced by increasing the kernel size
(cf. Figure E5.2.5). Indeed, large kernels approximate the derivatives by averaging more in-
put data, hence increasing the repeatability precision of the estimates and reducing their spatial
variability. On the other hand, kernels too large could introduce significant numerical errors in
the approximation of the derivatives and, especially in heterogeneous domains, could worse the
estimation.

Moreover, in this example, it has been seen that the spatial average of the collection of the
electric conductivity values estimated in the sphere was a stable estimate of the nominal value,
weakly affected by the choice of the kernel and with a significantly small standard uncertainty
under repeatability conditions (cf. Table E5.2.2). A systematic error in the average of less than
10 % with respect to the nominal value was due to the phase-based approximation and was
almost completely corrected by the introduction of the magnitude |B+1 | as an additional input
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Table E5.2.2: Average (σ) and weighted average (σw) of the electric conductivity values obtained
by the phase-based Helmholtz EPT and their standard uncertainties. The standard uncertainty
(ũ(σ)) computed neglecting the input covariances is reported as well for the average. All data
are provided for kernels with different shapes and sizes.

n 1 2 3 4 5

σ / mSm−1 605.102 600.247 595.509 592.737 590.278
u(σ) / mSm−1 0.980 0.683 0.725 0.778 0.797
ũ(σ) / mSm−1 0.963 0.287 0.171 0.126 0.105
σw / mSm−1 586.238 586.609 586.788 586.666 586.765

Cross

u(σw) / mSm−1 0.051 0.052 0.056 0.064 0.071

σ / mSm−1 605.102 599.126 592.654 590.074 586.656
u(σ) / mSm−1 0.980 0.669 0.712 0.801 0.862
ũ(σ) / mSm−1 0.963 0.283 0.162 0.126 0.104
σw / mSm−1 586.238 586.811 585.451 586.550 584.741

Sphere

u(σw) / mSm−1 0.051 0.054 0.057 0.062 0.067

σ / mSm−1 600.452 592.570 586.605 582.032 578.445
u(σ) / mSm−1 0.645 0.709 0.819 0.949 1.101
ũ(σ) / mSm−1 0.351 0.143 0.103 0.097 0.118
σw / mSm−1 586.239 585.582 585.287 582.176 580.104

Cube

u(σw) / mSm−1 0.051 0.056 0.062 0.077 0.098

(cf. Figure E5.2.5). An even more accurate and precise estimate was provided by the weighted
average σw (cf. Table E5.2.2), which gave more importance to the voxel values with a smaller
uncertainty by using the inverse of the variance-covariance matrix Σ(y) as the weight.

The results collected here suggest that the output maps of Helmholtz-EPT could be significantly
improved by post-processing. In particular, for each voxel, a sphere of voxels around it can be
selected and the average (or rather the weighted average, whenever possible) of the electric
conductivity values estimated there can be assigned to that voxel. This operation would improve
the local accuracy and the precision of the Helmholtz-EPT. Post-processing filters analogous to
the one described here are already applied to Helmholtz-EPT results, for instance the median
filter adopted in the clinical investigation conducted in [405]. Actually, when applied in vivo,
being the domain heterogeneous, the sphere of voxels could be deformed into a volume locally
adapted to the anatomy, in order to not cross the tissue boundaries.
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Example E5.3

Quantifying uncertainty when
comparing measurement methods –
Haemoglobin concentration as an
example of correlation in straight-line
regression
S. Martens, K. Klauenberg, J. Neukammer, S. Cowen, S.L.R. Ellison, C. Elster

E5.3.1 Summary

In metrology, often two methods measuring the same quantity are to be judged whether or not
they are in agreement. For measurements across a whole range of values, this can be done by
comparing their straight-line fit to the identity line. Such a comparison is only meaningful, when
uncertainties are available. Furthermore, the estimates of the straight-line fit and their uncertain-
ties are only reliable when all sources of uncertainty have been accounted for. In particular, the
measurements of both methods in a comparison are usually uncertain, and common instruments
or standards cause correlation among or between them.

When fitting a straight-line relation, the weighted total least-squares method (WTLS) accounts
for correlation and uncertainties in both variables. This example focuses on WTLS and defines
a measurement model from it to propagate all uncertainties and correlations through to the es-
timate of the slope and intercept, and associate uncertainties with them according to the GUM.
Using the example of two high-accuracy methods measuring the total haemoglobin concentra-
tion in blood, i.e., the cyanmethaemoglobin and alkaline haematin method, we indicate how
correlations can be inferred, demonstrate how they can be accounted for and show their impact
on the regression. The results are discussed and recommendations are given.

E5.3.2 Introduction of the application

The total haemoglobin (Hb) concentration in blood is one of the most frequently measured ana-
lytes in clinical medicine because of its significance for evaluating the state of health of a human.
The medical need for this analyte and the different spectrophotometric methods applied are
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summarized in Appendix E5.3.A. For external quality assurance of routine laboratories, inter-
laboratory comparisons are performed in which the deviation from the reference value may not
exceed 6 % [413]. To evaluate such round robin tests, ideally reference or “higher order” mea-
surement procedures allowing for standard uncertainties smaller than 0.6 % (an order of mag-
nitude below the allowable deviations) are required. The cyanmethaemoglobin (HiCN) method
is the internationally accepted, spectrophotometric reference method [414–416] to determine
the total Hb concentration. Critical issues of the HiCN method are the toxicity of the potassium
cyanide involved and that it is not traceable to the International System of Units. An alternative
spectrophotometric procedure for the determination of reference values for this quantity is the
non-cyanide, alkaline haematin (AHD) method. Among other advantages, the AHD method has
the potential as a primary method [417,418] since a primary calibrator exists.

Previous comparisons of the HiCN and the AHD methods with high-accuracy procedures [417,
419] demonstrate a good agreement, but are limited to only one blood sample with a Hb con-
centration in the normal range, i.e. a healthy person. Studies based on protocols for routine
diagnostics1 also show a good agreement between both methods (see [420–422] and references
therein) and rely, among others, on the regression of a straight-line relationship. However, these
comparisons do not consider the uncertainty of measurements. Estimates of regression param-
eters will usually differ when all uncertainties are accounted for. In addition, these comparison
studies do not provide an uncertainty for the regression estimates. It is thus difficult to compare
the results of these studies and to quantitatively judge the agreement between the reference and
the alternative AHD method.

This example demonstrates how the uncertainties of HiCN and AHD measurements, including
correlation, can be propagated to give the uncertainty of their straight-line relation. The total Hb
concentrations are used, which PTB measured with both the HiCN and the AHD method for P =
104 blood samples over the past 10 years. The data cover the whole range from 60 g L−1 to 190
g L−1 relevant in clinical diagnosis and include pathologically low as well as pathologically high
Hb concentrations. These measurements and their associated uncertainties, say xp, u(xp) and
yp, u(yp), are displayed in figure E5.3.1 and can be found online in repository [33]. Derivation
of the total Hb concentration involves quantities common to both methods and all samples (cf.
Appendix E5.3.B for background information). Some of these common quantities contribute
significantly to the uncertainty of the Hb concentration [417, 419]. Therefore, it is reasonable
to suspect significant correlation among the HiCN as well as among the AHD method (cf. clause
5.2.4 in [2]).

Also beyond method comparison, uncertainty in all variables of a regression and correlation
among or between them is prevalent in metrology. For example in calibrations, the reference
and the device under test usually both display uncertainty. Additionally, measurements over the
range of use are often performed with the same measuring instrument or physical standard which
often contribute a considerable amount of uncertainty.

This example focusses on a measurement model that is based on the WTLS. The measurement
model allows for uncertainty evaluation following the GUM. The WTLS accounts for uncertainties
in both variables of a regression, as well as, for correlation among and between them. WTLS is
recommended by multiple standards [77,110] and applied in metrology (e.g. Refs. [423–425]).

1In routine applications only one value for the absorbance is measured, while reference procedures include dilution
series, repeat measurements and centrifugation to reduce uncertainties.
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Figure E5.3.1: Left: Visualization of haemoglobin concentration measurements xp, yp performed
at PTB on P = 104 blood samples by the two methods HiCN and AHD.
Right: Standard uncertainties u(xp) and u(yp) for both methods and all samples. These measure-
ment results are available online in repository [33]. In both panels, the dashed line represents
the identity y = x and the markers are drawn as transparent; thus, overlayed markers appear
darker.

E5.3.3 Specification of the measurand

Let X denote the total Hb concentrations obtained by HiCN and Y the corresponding quantity
measured by the AHD method. The straight-line relation

Y = β0 + β1X (E5.3.1)

is assumed to model the relationship between the measured values of both methods, and is
supported by previous studies comparing the HiCN and the AHD methods (see [420–422] and
references therein). The measurands are the intercept parameter β0 and slope parameter β1 of
the straight-line model (E5.3.1). If both methods measure the same, uniquely defined quantity,
one usually obtains estimates close to bβ0 = 0 and bβ1 = 1.

The input quantities influencing the measurands are the P pairs (Xp, Yp). Estimates of these in-
puts are the Hb concentration measurements of each method, xp and yp. Standard uncertainties
u(xp) and u(yp) of these inputs are of the same magnitude (cf. figure E5.3.1). In addition, any
two inputs Xp, Xq are correlated due to the use of common standards in their measurement,
especially of the same molar extinction coefficient ε and corrections C0, C1 (as detailed in Ap-
pendix E5.3.B). The covariance matrix U x shall contain these correlations as well as the standard
uncertainties u(xp). Likewise, the covariance matrix U y contains the correlations and standard
uncertainties u(yp) for the inputs Yp. (For the definition of a covariance matrix, we refer to clause
3.11 in the Supplement 1 to the GUM [3].)
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E5.3.4 Measurement model

The measurement model for straight-line regression can be constructed from the appropriate
least-squares method. The frequently applied ordinary least-squares method (OLS) and weighted
least-squares method (WLS) are inappropriate here because they assume that the measured val-
ues of one method are exact. Notably, regressing one method over the other will generally result
in different estimates than the other way around; especially, when the uncertainties of both
methods are similar and non-negligible – as for HiCN and AHD. The measurand would thus be
ambiguous. Also Deming regression [310] and Passing-Bablok regression [426], two common
methods for method comparison, are not appropriate for this data set. First, the uncertainties
u(yp) cannot be expressed as a common multiple of u(xp) as Deming regression requires (see
right panel in figure E5.3.1); second, it is important to take account of applicable uncertainty and
covariance information where possible and Passing-Bablok regression does not use information
on uncertainties.

WTLS is the method recommended by multiple standards [77,110] when the uncertainty associ-
ated with the measured values xp and yp are both non-negligible. It also addresses correlation.
The WTLS is based on minimizing the generalized sum of squares

Q =
�

x − eξ
�⊤

U −1
x

�

x − eξ
�

+
�

y − (eβ0 + eβ1
eξ)
�⊤

U −1
y

�

y − (eβ0 + eβ1
eξ)
�

(E5.3.2)

with respect to eβ0, eβ1 and the unknown, “true” values of x called eξ. Here, the vector x contains
the elements x = (x1, . . . , xP)⊤ and the vectors y and eξ are likewise defined. The minimizer

of (E5.3.2) defines the solution (bβ0, bβ1,bξ
⊤
) of the WTLS.

The measurement model is then defined by replacing the estimates x and y in the minimization
of Q by the underlying quantities X = (X1, . . . , XP)⊤ and Y = (Y1, . . . , YP)⊤, respectively. That is,

(β0,β1,ξ⊤)⊤ = arg min
eβ0,eβ1,eξ

n
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U −1
x

�

X − eξ
�

+
�

Y − (eβ0 + eβ1
eξ)
�⊤

U −1
y

�

Y − (eβ0 + eβ1
eξ)
�

o

,

(E5.3.3)

where only (β0,β1) define the measurand.

E5.3.5 Estimation and uncertainty evaluation

Following the GUM [2, 4], estimates bβ0 and bβ1 of the measurands are obtained by evaluating
measurement model (E5.3.3) at the estimates x and y of the input quantities X and Y . The
uncertainties associated with (bβ0, bβ1) result from propagating the uncertainties in U x and U y
associated with the estimates of the input quantities through this measurement model.

Measurement model (E5.3.3) is implicit, multivariate, non-linear and usually no closed form is
available for its solution. An iterative scheme for deriving estimates and their associated uncer-
tainties is described in clause 10 of the standard [77]. This simple scheme also provides correla-
tions between β0 and β1, and is valid for any covariance matrices U x and U y whose eigenvalues
are all positive.

Assuming a Gaussian distribution2, a 95 % coverage interval for each measurand βi with i = 0,1
is given by

�

bβi − 1.96 u
�

bβi

�

, bβi + 1.96 u
�

bβi

��

.

2Cf. section 10.2.3 in [77] for the approximate validity of this Normality assumption.
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A two-dimensional, joint 95 % coverage region can be calculated following clause 6.5.2 in [4].

In order to estimate the slope and intercept of a straight-line relation as well as valid uncertain-
ties and/or coverage intervals, the full covariance matrices U x ,U y and possible cross-correlation
between X and Y need to be known. Annex D in [77] describes how these covariances can be
calculated for common, simple measurement models. For more involved measurement models,
like for HiCN and AHD measurements, we recommend the Monte Carlo method [4], where dis-
tributions for all input quantities are propagated through a joint measurement model to arrive
at the 2P-dimensional, joint distribution for the outputs X and Y .

The uncertainty in HiCN and in AHD measurements is dominated by a common quantity, namely
the molar extinction coefficient ε (see [417,419]). We thus suspect that the covariance matrices
U x and U y are governed by a common correlation coefficient ρ. That is, we set their elements
U x ,pq = ρu(xp)u(xq) and U y,pq = ρu(yp)u(yq) for all p ̸= q. The diagonal elements contain the
variances, i.e. U x ,pp = u2(xp) and U y,pp = u2(yp). Further details are given in Appendix E5.3.C.
First Monte Carlo evaluations of the joint uncertainty budget showed that correlation coefficients
up to ρ = 0.8 may be realistic. Details on how to jointly evaluate the correlation, uncertainties
and estimates for the input quantities of least-squares methods applying the Monte Carlo method
are illustrated in [350]. The correlation between HiCN and AHD is dominated by two common
quantities, viz., the cuvettes’ absorption length d and the mean molar mass M(Hb). According
to [417], the amount of cross-correlation is much smaller compared to correlation between the
estimates xp and xq as well as between the estimates yp and yq. We assume zero cross-correlation
throughout this example. Note that the results reported below are conditional on the plausibility
of this correlation structure. The real correlation structure and amount could be different and is
to be inferred from the quite complex measurement model described in Appendix E5.3.B.

E5.3.6 Reporting the result

Let us now apply the measurement model (E5.3.3) to the estimates and uncertainties presented
in figure E5.3.1 and to the above covariance structures U x and U y . For selected correlation
coefficients ρ, the results are listed in table E5.3.1. The estimate, associated standard uncertainty
and the covariance for the measurands β0 and β1 are obtained by the algorithm in clause 10
of [77] and application of the law of propagation of uncertainty [2]. R Markdown [356] code
for this algorithm is available online in repository [33]. Figure E5.3.2 depicts the estimates bβ0
and bβ1 and the corresponding 95 % coverage interval.

Table E5.3.1: Results obtained by weighted total least-squares with uncertainty evaluation ac-
cording to the GUM for varying correlation coefficients ρ. Listed are the estimates and uncer-
tainties for slope and intercept.

Correlation bβ0 u(bβ0) bβ1 u(bβ1) cov(bβ0,bβ1)
a.u. g L−1 gL−1 a.u. a.u. 10−3 a.u.

ρ = 0.0 -0.488 6 0.166 7 0.998 4 0.001 6 -0.24
ρ = 0.6 -0.489 4 0.105 5 0.998 6 0.001 2 -0.10
ρ = 0.8 -0.489 4 0.074 6 0.998 6 0.000 9 -0.05

Nearly identical results have been obtained by applying the Monte Carlo method [4] to the mea-
surement model (E5.3.3) and the algorithm in Ref. [77]. The non-linearity of (E5.3.3) could
cause differences; however, this was not observed. Software is available that implements WTLS
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Figure E5.3.2: Displayed are the estimates bβ0 and bβ1 (dots) and their 95 % coverage intervals
for the weighted total least-squares regression results listed in table E5.3.1.
and propagates uncertainties. For example, the CALIBRATION CURVE COMPUTING Software
provided by INRIM [424] also produces the results in table E5.3.1, although a slightly different
algorithm is implemented (which relies on an implicit set of normal equations).

Before interpreting the results of a regression, the data as well as the assumptions contributing
to the analysis should be assessed critically. For instance, graphically analysing the (weighted)
residuals did not indicate a violation of the straight-line assumption (E5.3.1), since no system-
atic behaviour of these residuals were observed. A significant outcome of the χ2 test, whose
application is recommended in standard [77], does not necessarily indicate departures from the
linearity assumption. The χ2 test assesses, whether the (weighted) residuals are independently
normally distributed – an assumption which is not required for WTLS estimation and measure-
ment model (E5.3.3). Any observed test statistics which exceed the 95 % quantile of the χ2-
distribution, are suspected to be due to non-normally distributed residuals rather than a violation
of the straight-line assumption (E5.3.1). The former does not contradict the assumptions of our
analysis.

E5.3.7 Discussion and conclusion

This example demonstrates how two measurement methods can be compared to judge whether
both measure the same quantity over a defined measurement range. If the uncertainties of both
methods are non-negligible, OLS and WLS are inappropriate. Instead, WTLS is a suitable method
which allows for an uncertainty propagation when embedded in a measurement model in line
with the GUM.

Using the example of measuring the total haemoglobin concentration in blood, it is reasoned that
correlation among and possibly between two measurement methods is not unusual, and likely to
be rather frequent in metrology in general. We indicate how these correlations can be inferred
and select a common correlation structure for this example.

The reader observes a small but significant offset between the HiCN and AHD method for mea-
suring haemoglobin – irrespective of the amount of correlation. The slope of the linear relation
between both methods is compatible with unity for all reasonable values of correlation, but would
be significantly smaller than one for higher correlations ρ ≥ 0.9. For the assumed correlation
structure, the estimates of the linear relation vary little with the amount of correlation. However,

Examples of evaluating measurement uncertainty First edition



Example E5.3. Method comparison: Haemoglobin as example of correlation in regression 445

their uncertainty changes by the factor
p

1−ρ, i.e. it reduces to two thirds for a correlation co-
efficient of ρ = 0.6 and to a half for ρ = 0.8, compared to WTLS estimation without correlation.
Also the covariance between bβ0 and bβ1 scales with 1 − ρ. In addition, the estimates change
with varying correlation coefficient when fewer observations are available. These relationships
are detailed in Appendix E5.3.C. Other correlation structures, for instance when the correlation
within one method is much larger than within the other method, will also change the estimates.

Our analyses show that the HiCN method leads to slightly higher Hb concentrations than the
AHD method, if the correlation structure and the amount of correlation are realistic. This has
been observed before ( [427] and references therein) and may be caused by a background due
to bilirubin. However, the differences between the HiCN and the AHD method are sufficiently
small. If the correlation assumptions can be confirmed in future, both methods could be applied
to determine higher order measurement values to evaluate round robin tests for external quality
assurance in laboratory medicine.

We conclude that only stating the uncertainty of a fitted (linear) relation allows for a quantitative
comparison of two methods over their measurement range. To derive these uncertainties reliably
and to give valid estimates, it is important to account for correlation among and between the
measurement methods. Otherwise, the conclusions drawn from such a comparison study could
differ and become unreliable.

E5.3.A Haemoglobin concentration: Importance and determination

The total haemoglobin (Hb) concentration in blood is part of the complete blood count, which is
one of the most frequently measured analytes in clinical medicine. For example, Hb concentra-
tions are needed for screening blood donors to protect their health and to guarantee the quality
of the blood product [428]. Deviations of the Hb concentration from the normal range (137 gL−1

– 162 g L−1 for men and 123 gL−1 – 145 g L−1 for women; c.f. [429, table 4, p. 190]) are observed
for various diseases. Further diagnostics are initiated to identify the origin of such an anomaly.
Iron deficiency could be caused by bleeding in the gastrointestinal tract [430], malaria [431]
or thalassemia, the most common genetic disorder worldwide [432]. In addition, haemoglobin
concentration is relevant to manage iron deficiency in pregnant women [433].

Total haemoglobin concentration is determined by a variety of methods [434], depending on the
specific medical application. In countries where anaemia is widespread, portable instruments
are used to estimate haemoglobin concentration using capillary blood for analysis [435]. Mea-
surements with higher precision and accuracy compared to such point-of-care instruments are
routinely performed in laboratory medicine and require venous blood and chemical conversion
of the different haemoglobin variants to a stable end product, which is subsequently spectropho-
tometrically analysed. Conversion to cyanmethaemoglobin (HiCN), first applied by Drabkin and
Austin [436], has been considered as a gold standard for routine applications [434] and is also in-
ternationally accepted as higher-order method [414–416] to determine reference measurement
values in external quality assurance of medical laboratories [413]. However, because of the tox-
icity of the potassium cyanide involved, the HiCN method is not allowed in most countries and
has been replaced by the sodium lauryl sulfate (SLS) procedure [437,438].

Typically, in laboratory medicine accuracies below 6 % shall be reached for Hb concentration
measurements. This value is stated in the guideline of the German Medical Association for Qual-
ity Assurance in Medical Laboratory Examinations [413] and indicates the maximum allowable
deviation to pass the ring trials mandatory in Germany. To evaluate such external quality as-
surance schemes, so-called “higher-order measurement methods” or reference procedures are
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required providing results with expanded uncertainties (95 % confidence level) possibly smaller
than 1.5 %. This requirement is specified in DIN 58931 [416, p. 18] and was met in comparison
experiments [417, 419]. For such higher-order procedures the same reagents may be used to
convert the different Hb variants to a stable end product. Lower uncertainties are achieved by
gravimetrical preparation of dilution series and centrifugation to suppress the scattering of resid-
ual white blood cells or agglomerates of membranes of erythrocytes. In addition, high-accuracy
absorbance measurements are required, traceable to a national standard [416]. Although the
HiCN method is frequently used as a reference method for comparison when evaluating new
procedures for the determination of the total Hb concentration, it is presently not traceable to
the International System of Units. In particular, material suited as primary calibrator is not avail-
able, it is known that verdoglobin is not converted to HiCN and that background due to bilirubin
can cause systematic deviations towards higher concentrations. It follows that according to the
ISO standard 17511 on metrological traceability [418] the HiCN method can be characterised
as an international conventional reference measurement procedure. An alternative spectropho-
tometric procedure for the determination of total Hb concentration is the non-cyanide, alkaline
haematin (AHD) method. In contrast to the HiCN procedure, when applying the AHD method
verdoglobin is converted to the end product chlorohaemin and the sensitivity against bilirubin
perturbations is much smaller. In addition, the globin protein is destructed and solutions of the
end product, the well-defined molecule chlorohaemin, might serve as primary calibrator. Hence,
the AHD method may have the potential as a primary method [417,418].

E5.3.B Details of the measurement methods for haemoglobin con-
centration

The HiCN and the AHD method both rely on the measurement of the spectral absorbance. The
photometrical traceability is established by correcting the measured absorbance values3 ak

i,p using

the linear relationship C0,k+C1,kak
i,p for k ∈ {HiCN,AHD}, blood sample p = 1, . . . , P and dilution

i (cf. [419]). As recommended in DIN 58931:2010 [416], at least four dilutions φi of each blood
sample are prepared and the associated Hb mass fractions wk

i,p are calculated according to

wk
i,p =

�

Ck
0 + Ck

1 ak
i,p

�

M(Hb)

dεkφi
. (E5.3.4)

Here, d represents the absorption length of the rectangular spectrophotometric cuvette, εk is the
molar decadic absorption coefficient of the reaction product and M(Hb) is the mean molar mass
of one Hb subunit. The estimates and associated uncertainties for the input quantities in (E5.3.4)
can be found in [419]. The final reported total Hb concentration for each sample and method,
xp and yp, are determined by a weighted average of the Hb mass fractions wk

i,p over the dilutions
i. The associated uncertainties are discussed in detail in Ref. [419].

E5.3.C Influence of correlation for a common structure

If the covariance matrix for the HiCN method is given by

U x = (1−ρ)diag(u2
x) +ρu x u⊤x

3Each absorbance value ak
i,p in turn is based on a series of repeated measurements and its uncertainty is evaluated

following the GUM.
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with u x = (u(x1), . . . , u(xP))⊤, as described in section E5.3.5, the inverse of U x is determined by

U −1
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1
1−ρ

�

diag
�

1
u2(x1)
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The inverse U −1
y can be determined by analogy. Then, the generalized sum of squares (E5.3.2)

simplifies to

Q =
1

1−ρ

 

P
∑
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(xp − ξp)2

u2(xp)
+
(yp − β0 − β1ξp)2
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!!

.

The factor 1/(1 − ρ) is irrelevant for the optimization of Q and thus does not influence the
estimates bβ0 and bβ1. At the same time it influences the uncertainties u(bβi) and the covariance
cov(bβ0,bβ1) when the number of observations P is large, which change approximately by the
factor

p

1−ρ and 1−ρ, respectively, compared to a correlation coefficient of ρ = 0.

For a small number of observations, table E5.3.2 shows the influence of the correlation coefficient
on the estimates (assuming the same, above correlation structure). In particular, the table lists
for a subset of size P = 20 of the data in figure E5.3.1 the estimates and uncertainties for bβ0, bβ1
and for ρ = 0, ρ = 0.8. The reader observes, that compared to no correlation, the estimate for
the slope changes by almost half of the uncertainty (i.e. bβcorr

1 − bβ1 ≈ u(bβ1)/2) and at the same
time the uncertainty reduces considerably.

Table E5.3.2: Results obtained by weighted total least-squares with uncertainty evaluation ac-
cording to the GUM for a subset of size P = 20 of the data in figure E5.3.1. Listed are the
estimates and uncertainties for slope and intercept.

Correlation bβ0 u(bβ0) bβ1 u(bβ1)
a.u. g L−1 g L−1 a.u. a.u.

ρ = 0.0 0.153 3 0.458 8 0.994 5 0.004 2
ρ = 0.8 0.176 1 0.206 1 0.996 5 0.002 4
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Example E5.4

Suitability of a Monte Carlo approach
for uncertainty evaluation in rheology
problems

J.A. Sousa, A. Furtado, J. Pereira, M.G. Cox, A.S. Ribeiro, M. Reader-Harris, A.M.H. van
der Veen

E5.4.1 Summary

This example presents a method for the calibration of rheometers and evaluates the measure-
ment uncertainty associated with the expression of viscosity derived for a rotational rheometer
equipment using an alternative method from that in the GUM. This method is the Monte Carlo
implementation of the propagation of distributions from GUM Supplement 1 (GUM-S1) 1, which
can treat measurement models having any degree of non-linearity and possibly large input un-
certainties. It is therefore particularly suited to handling the complexity of the applicable mea-
surement model. The Monte Carlo method is used to validate the more commonly-used GUM
approach, identifying conditions in which the application of the GUM might be acceptable and
some difficulties associated with its implementation.

E5.4.2 Introduction of the application

This study is partly based on an accepted extended abstract [439], aiming at specifying general
methods for the calibration of rheometers and, additionally, covers the uncertainty budget of vis-
cosity measurements performed by rotational methods, since the complexity of the measurement
model raises doubts on the validity of the GUM approach. The main quantity to be evaluated is
the dynamic viscosity, expressed in Pa s.

In order to relate the measurement results obtained by viscosity sensors, specifically rotational
rheometers, to SI base units, the following sequence of steps needs to be accomplished:

1. calibration of the standard rotational rheometer traceable to SI units;
2. use of Certified Reference Materials (CRMs) for viscosity (by tracing flow and viscosity

curves);

449



Example E5.4. Suitability of a Monte Carlo approach in rheology 450

3. calibration of a laboratory rheometer (each of the following quantities needs to be cali-
brated independently: viscosity by using a CRM; shear rate (indirectly through rotational
velocity) and shear stress (indirectly through torque calibration)); temperature; dimen-
sions of the measuring geometries, including gap geometry;

4. production of a reference material (RM) with specified viscosities by a standardised method
and subsequent determination of its viscosities at specified shear rates by using the labo-
ratory rheometer calibrated in step 3;

5. calibration of the viscosity sensors by using the RM from step 4.

Uncertainty necessarily increases with every step in this sequence. Steps 1 and 2 would be carried
out by an national metrology institute (NMI) and steps 3-5 by the laboratory itself.

Input quantities, namely, those on which the required dynamic viscosity depends, are specific to
a given measurement principle. The main quantities considered significant when determining
the viscosity of non-Newtonian liquids by using a rotational rheometer are torque; rotational
speed; temperature (due to the increase in uncertainty at high shear rates generated by frictional
heating); dimensions (radii, lengths, angles, measuring gap); end effect correction [440–443]
measurement model (choice of representative location, “narrow gap” approximation); measure-
ment time (affects temperature via frictional heating and laminar flow field establishment within
the gap) [444]; repeatability; reproducibility; sample shear history. These quantities influence
the evaluation of the uncertainty of the viscosity of a CRM and represent parameters that must
be controlled carefully when applying the CRM to the subsequent calibration of rheometers.

Alternative approaches are discussed, drawing attention to shortcomings of the GUM uncertainty
framework (GUF) [2] and the advantages of the propagation of distributions approach, imple-
mented using a Monte Carlo method [3].

E5.4.3 Specification of the measurand(s)

The measurand is the dynamic viscosity η at reference temperature Tref , which, according to
standards ISO 3219 (1993) [445] and DIN 53019-2 (2001) [446], is determined by

η(Tref) =
M
h
�

Ra
Ri

�2
− 1

i

8π21nLR2
i cL

�

Ra

Ri

�2 [1− βT(T − Tref)] (E5.4.1)

based on the fundamental equation that defines the dynamic viscosity as the ratio between shear
stress τ and shear rate γ̇:

η=
τ

γ̇
(E5.4.2)

where the (input) quantities on which η depends are:

M torque in N m,
Ra outer radius of the gap in m,
Ri inner radius of the gap in m,
n number of rotations per time unit in s−1

L length of the cylinder mantle in m,
cL end-effect correction factor,
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βT linear coefficient of change of viscosity with temperature in °C−1

T measurement temperature in °C, and
Tref reference temperature in °C

The measurement model (E5.4.1) is clearly non-linear and thus may depart from the conditions
envisaged for the application of the GUM. Moreover, it has a degree of complexity that makes
the analytical calculation of partial derivatives a cumbersome task that is error-prone.

E5.4.4 Measurement model

The calibration method considered here and expressed in section E5.4.1, corresponds to a direct
method, where all the measured input quantities, i.e. torque, angular velocity, temperature and
geometric dimensions are compared with reference values.

To be used as an example in this study, the direct method for calibration of a rotational viscometer
or a rheometer requires a separate calibration of the torque and the angular velocity of the mea-
suring geometry. Additionally, the dimensions (diameters and angles) of the measuring geometry
and the temperature should also be calibrated by adequate means. The direct method is described
in standard documents such as DIN 53019-2 (2001) [446]; ASTM E2510-07 (2013) [447] (for
torque calibration) and ASTM E2509-14 (2014) [448] (for temperature calibration). Expression
(E5.4.1) will be the measurement model used in this study for the evaluation of measurement
uncertainty together with the data of table E5.4.1.

Table E5.4.1: Example of an uncertainty budget of the measurement of a Newtonian oil using
a rheometer with a concentric cylinder system according to DIN 53019 standard [446] (and
reference temperature 20 °C) using the GUM uncertainty framework (GUF).

Quantity and Symbol Estimate x i PDF u(x i) ∂ η/∂ x i urel,i(y)

Torque M 5.7938× 10−5 N m R 2.89× 10−7 1.88248 29.5 %
Number of rotations per
time unit n

0.012 8985 N−1 G 5.00× 10−7 N−1 −0.00846 0.2 %

Outer gap radius Ra 0.014 458 m R 2.89× 10−6 m 0.085 49 13.4 %
Inner gap radius Ri 0.013329 5 m R 2.89× 10−7 m −0.10909 1.7 %
Cylinder mantle length L 0.040 009 m R 2.89× 10−7 m −0.00272
End effect correction factor
cL

1.1 R 5.77× 10−3 −0.00010 31.0 %

Measurement temperature
T

20 °C G 5× 10−2 °C −0.00001 20.2 %

Reference temperature Tref 19.99 °C G 1× 10−2 °C 0.000 01 4.0 %
Temperature coefficient of
viscosity βT

0.0683 K−1 R 5.77× 10−5 K−1 −0.00000

Viscosity η 1.091 u(y) = 0.009 U95% = 0.018

E5.4.5 Uncertainty propagation

Measurement uncertainty evaluation includes components arising from random and systematic
effects, such as components associated with corrections and the assigned quantity values of mea-
surement standards, as well as definitional uncertainty. In practice, systematic effects, which
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Table E5.4.2: Example of an uncertainty budget of the measurement of a Newtonian oil using
a rheometer with a concentric cylinder system according to DIN 53019 standard [446] (and
reference temperature 20 °C) using the Monte Carlo method (MCM).

Quantity X i Unit Estimate x i PDF u(x i) ∂ η/∂ x i urel,i(y)/%

M N m 5.7938 × 10−5 R 2.89× 10−7 1.882 48 29.5
n N−1 0.012 8985 G 5.00× 10−7 −0.008 46 0.2
Ra m 0.014 458 R 2.89× 10−6 0.085 49 13.4
Ri m 0.013 3295 R 2.89× 10−7 −0.109 09 1.7
L m 0.040 009 R 2.89× 10−7 −0.002 72
cL 1 1.1 R 5.77× 10−3 −0.000 10 31.0
T °C 20.00 G 5 × 10−2 −0.000 01 20.2

Tref °C 19.99 G 1 × 10−2 0.000 01 4.0
βT K−1 0.0683 R 5.77× 10−5 −0.000 00

η Pa s 1.091 u(η) = 0.009
U95 %(η) = 0.018

are treated here, are often overlooked with a consequent optimistic uncertainty for η. Defini-
tional uncertainty is the uncertainty resulting from the specification of the measurand and is a
very difficult uncertainty to treat in general because of its conceptual overtones. Here we can
say that the measurement model and measurand are specified in an international and a national
standard and so working correctly with those definitions ensures adherence to those standards.
Two approaches for the evaluation of uncertainty are considered: the GUF, based on the law of
propagation of uncertainty (LPU) [2], and the propagation of distributions of GUM-S1 based on
the Monte Carlo method (MCM) [3].

Both approaches depend on knowledge of the PDFs for the input quantities, but whereas the GUF
uses summary information – estimates and associated standard uncertainties – obtained from the
PDFs, the propagation of distributions uses the PDFs themselves. The simplification inherent in
the GUM approach, however, imposes limitations on its applicability, which are irrelevant to
the GUM-S1 approach, making the latter more reliable and which should be used for validation
purposes when the conditions for the use of the GUM approach, as given in [3] clause 5.8, are
not fully met.

E5.4.5.1 GUM Uncertainty Framework

The GUF requires the calculation of sensitivity coefficients ci , the first partial derivatives of the
viscosity η measurement function (the right side of expression (E5.4.1)) with respect to the in-
put quantities, evaluated at the estimates of those quantities. As for many complicated models,
determining the required partial derivatives algebraically is not always practical and a numerical
approach is recommended [449]. It is often a complicated step, which is completely avoided by
the GUM-S1 approach. That approach, however, is computationally expensive for very compli-
cated models.

The GUM method applied to a univariate model relates a single output quantity Y to input quan-
tities X = [X1, . . . , XN ]⊤ by a functional relationship f , here in the form of expression (E5.4.1).
The estimate of the output quantity is taken as y = f (X), evaluated at X = x , the estimate of X .
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The associated standard uncertainty u(y) is evaluated from the LPU:

u2(y) =
N
∑

i=1

N
∑

j=1

ciu(x i , x j)c j , (E5.4.3)

given in the GUM, where ci is the partial derivative of f with respect to X , evaluated at X = x ,
and is known as the ith sensitivity coefficient. The evaluation of the ci require care since analytic
expressions for the partial derivatives of the measurement function are often difficult to obtain.
The usual approach uses a numerical method to approximate these derivatives. We recommend
the complex-step method [449] based on the Taylor expansion of a function of a complex variable
for this purpose: it is numerically extremely accurate, avoiding subtractive cancellation.

By defining the covariance matrix

U x =





u(x1, x2) · · · u(x1, xN )
...

. . .
...

u(xN , x1) · · · u(xN , xN )





of dimension N ×N , containing the covariances u(x i , x j), and the (row) vector c⊤ = [c1, . . . , cN ]
of dimension 1×N, containing the sensitivity coefficients, a compact way of writing expression
(E5.4.3) is

u2(y) = c⊤U x c. (E5.4.4)

For independent input quantities, a simpler formulation is often used, where the variance u2(y)
can be viewed as a sum of terms u2(x i), so that each input quantity contributes to the final value
of the squared standard uncertainty (variance). In this case, expression (E5.4.3) can written as

u2(y) =
N
∑

i=1

[ciu(x i)]
2 =

N
∑

i=1

u2
i (y)

with the various ui(y) in the uncertainty budget often being used to give a measure of the im-
portance of each input quantity.

Given a coverage probability p, a 100p% coverage interval for Y is defined as y ± Up with ex-
panded uncertainty Up = kpu(y) and coverage factor kp. In metrology it is common to take
p = 0.95, yielding a value of kp = 2 for a normal distribution (a scaled and shifted t distribution
is used in some cases to determine kp [3]).

E5.4.5.2 Propagation of distributions

A MCM is an implementation of the propagation of distributions and is generally considered
a very reliable approach for uncertainty propagation. The PDFs for the input quantities are
propagated through the measurement model to provide the PDF for the output quantity, with
no restriction in relation to shape or symmetry of the input PDFs. The expectation (mean) of the
resulting PDF is used as the best estimate of the quantity and the standard deviation of the PDF
is used as the standard uncertainty associated with that estimate.

Appropriate use of MCMs will provide valid results when the applicability of the GUF is question-
able. Aspects to be carefully considered include the number of samples taken of the model input
quantities, and the related numerical accuracy of the results obtained. Guidance is provided in
GUM-S1 [3].
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From the PDF for the output quantity Y , a coverage interval for Y for any coverage probabil-
ity p (usually taken as 0.95) can be obtained. Such an interval contains the value of Y with
probability p. A coverage interval is not unique: a shortest 95 % coverage interval will provide
values with the highest density, whereas for a symmetrical unimodal PDF the percentiles 0.025
and 0.975 should be used.

An advantage of this approach is that it provides a PDF for Y that is consistent with the input
PDFs. The assumption in the GUM that the PDF for Y is Gaussian (or a scaled and shifted t-
distribution) is not required. A further advantage is that the sensitivity coefficients (and thus the
partial derivatives of the measurement function) required by the GUF are not required. It is only
necessary to evaluate the measurement function itself.

E5.4.6 Reporting the result

Table 1 shows the input quantities for the viscosity model, the PDFs (with R = rectangular or
G = Gaussian) associated with each of them, and their estimates and associated standard un-
certainties. Most input quantities are experimental, except for the end-effect correction and the
linear coefficient of change of viscosity with temperature, for which estimates and associated
uncertainties were obtained from references [446–448]. The sensitivity coefficients were also
calculated and listed in the table and were used together with the standard uncertainties associ-
ated with each quantity to estimate the relative contribution of each one of them. The application
of LPU produced the results given in the last row of the same table for the measurand.

GUM Methodology. Consider the analysis of a measurement of a Newtonian oil, at 20 °C, using
a rheometer with a concentric cylinder system, according to DIN 53019 [446], at a shear rate
value of 1 s−1, using the input quantities indicated in table E5.4.1 and the measurement model
(E5.4.1). The result is a viscosity of 1.091 Pa s with an associated expanded uncertainty (for 95 %
confidence) of 0.018 Pa s. The partial derivatives required as sensitivity coefficients were formed
analytically and their values checked by the complex step method.

The results in table E5.4.1 show that 31 % of the standard uncertainty associated with the cal-
culated viscosity originates from the end effect correction factor, 30 % from torque, 20 % from
temperature stability and 13 % from Ra. These numbers can change drastically according to the
measurement conditions: any conclusions drawn are only valid for these specific conditions. At
lower shear rates, for example, the measured torque will be smaller, but its absolute uncertainty
is constant, which increases its share in the viscosity uncertainty. Conversely, at higher shear
rates, because the temperature stability becomes questionable due to frictional heating, the vis-
cosity uncertainty will increase considerably and be dominated by temperature uncertainty. Also,
as it will be shown in this study, there are input quantities which when having their uncertain-
ties increased may change dramatically the output PDF: the Monte Carlo method reveals such
features.

This example refers only to Newtonian fluids, and the measurement model is unlikely to cover
all input quantities but is a first approach to give an impression of the complexity associated with
the treatment of uncertainty in rheology. In the more complex cases of non-Newtonian fluids,
cases exist where an appropriate measurement model does not yet exist, uncertainty evaluation
relying mostly on interlaboratory comparisons or other experimental means. Additionally, it
demonstrates that uncertainty evaluation needs to be supported by real measurements.

Monte Carlo propagation of distributions. Using the same input values of table E5.4.1, the results
given by the MCM are displayed in table E5.4.2 and the output PDF in the form of a scaled his-
togram is shown in figure E5.4.1. Although there is considerable similarity to a Gaussian PDF,
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the GUM overstates the uncertainty by some 4 %, which is hinted at by the graph and is not sur-
prising because of the model non-linearity and the key input quantities with rectangular PDFs.
The GUM assumes the approximate applicability of the central limit theorem, that is, the PDF for
the output quantity will be approximately Gaussian when the input quantities are independent
and the output standard uncertainty is much larger than that of any single input quantity with a
non-Gaussian PDF. In a case such as the current example, validation should be mandatory, even
though the difference may be acceptable for many applications. It should be pointed out, nev-
ertheless, that in decision-making situations this difference may prove significant. Moreover, the
difficulty in applying GUM because of the above assumption and entailed by the determination
of the sensitivity coefficients can be avoided by using the MCM.

Table E5.4.3: Comparison between GUM and Monte Carlo method with data from table E5.4.1
(expanded uncertainties are displayed with an additional decimal digit to highlight differences)

Quantity Estimate u(y)/Pas U95%(y)/Pas

GUM 1.091 0.0091 0.0182
Monte Carlo 1.091 0.0088 0.0175

Figure E5.4.1: Output quantity PDF for the model (E5.4.2) using the GUM (continuous curve)
and a Monte Carlo approach (scaled histogram).

For a very different set of conditions, a completely different result would have been obtained.
Table E5.4.3 and figure E5.4.2 show the results for a hypothetical situation where the uncertainty
associated with the input quantity Ri is increased by a factor of 103 (all other input quantities
are unchanged). In this case, the use of the GUM approach would more visibly be totally inade-
quate for the evaluation of measurement uncertainty, in this instance overstating the expanded
uncertainty by about 22 %. Similar results would be obtained if the standard deviations of the
Gaussian distributions, particularly that for Tref were reduced.
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Table E5.4.4: Comparison between GUM and MC method with increased uncertainty associated
with Ri

Quantity Estimate u(y)/Pas U95%(y)/Pas

GUM 1.091 0.315 0.63
Monte Carlo 1.101 0.260 0.52

Figure E5.4.2: Output quantity PDF for the model (E5.4.2) using the GUM (continuous curve)
and a Monte Carlo approach (scaled histogram), with a greatly increased uncertainty assigned
to Ri .

E5.4.7 Interpretation of results

This study showed the complexity associated with measurement in the field of rheology. Even
for the least complicated case, as is the case presented here for Newtonian liquids, there may be
influencing quantities not reflected in the existing measurement models. However, for more com-
plicated cases encountered for non-Newtonian liquids, sometimes there is no available “closed”
measurement model. In such cases, proficiency testing data can be used to provide a realistic
evaluation of measurement uncertainty [42] (sometimes called a “top-down” approach to mea-
surement uncertainty evaluation as opposed to the “bottom-up” GUM approach). Proficiency
tests and other forms of interlaboratory comparisons are a good external quality control measure
of results in all cases.

The case studies presented have shown it is important to apply adequate statistical tools to eval-
uate measurement uncertainty. The advantages of MCM over GUF are apparent in this applica-
tion, where the use of conventional recipes might bring erroneous results which, depending on
the circumstances, can have serious implications, e.g., in the oil and mine industries or in health
applications. Moreover, in the field of rheology there are decision-making situations, e.g., related
to global trade in goods, especially involving liquids, where the accuracy and quality of results
are of paramount importance [450].

Both the GUM and MCM approaches depend on knowledge of the PDFs for the input quantities,
but whereas the GUF uses summary information – estimates and associated standard uncertain-
ties – obtained from the PDFs, the propagation of distributions uses the PDFs themselves. The
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simplification inherent in the GUM approach, however, imposes limitations on its applicability,
which are irrelevant to the GUM-S1 approach, making the latter more reliable and which should
be used for validation when the conditions for the use of the GUM approach are not fully met.
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Example E5.5

Uncertainty calculation methodologies
in microflow measurements:
comparison of GUM, GUM-S1 and
Bayesian approach
J.A. Sousa, E. Batista, S. Demeyer, N. Fischer, O. Pellegrino, A.S. Ribeiro, L.L. Martins,
M. Reader-Harris, A.M.H. van der Veen, M.G. Cox

E5.5.1 Summary

The importance of measurement quality cannot be overemphasised in medical applications, as
one is dealing with life issues and the well-being of society, from oncology to new-borns, and
more recently to patients of the Covid-19 pandemic. In these dire situations the accuracy of fluid
delivered according to a prescribed dose can be critical. Microflow applications are growing in
importance for a wide variety of scientific fields, namely drug development and administration,
Organ-on-a-Chip, or bioanalysis, but accurate and reliable measurements are a tough challenge
for very small flow rates, from 1000µL h−1 down to 1µLh−1. Several sources of error have been
established such as the mass measurement, the fluid evaporation dependent on the gravimetric
methodology implemented and the repeatability, believed to be closely related to the operating
mode of the stepper motor and drive screw pitch of a syringe pump. In addition, the difficulty in
dealing with microflow applications extends to the evaluation of measurement uncertainty, which
will quantify the quality of measurement. This difficulty is due to the conditions entailed when
measuring very small values, close to zero, of a quantity such as flow rate, which is inherently
positive. Alternative methods able to handle these features were developed and implemented,
and their suitability will be discussed.

E5.5.2 Introduction of the application

The most used form of therapy in health care at hospitals is infusion therapy [451], which implies
that drug delivery devices are very important instruments in this sector. Due to the widespread
applications in critical health care, infusion errors are often made, with reported dramatic ef-
fects in different applications in the health sector. There are instances where adverse incidents,
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morbidity and mortality, can be traced back to poor or inaccurate dosing [452] [453]. Important
examples can be found in chemotherapy, oncology, anaesthesia, the operating theatre and nurs-
ery wards, especially for newborns. This situation is even more critical at very small flow rates,
such as in neonatology, where small variations in the normal infusion procedure can lead to very
large errors.

Furthermore, the unprecedented conditions that Public Health Institutions experience due to the
COVID-19 pandemic crisis has forced hospital administrations to take measures beyond usual
work practices, such as postponing maintenance and calibration deadlines in instruments with
critical use, for example, to cope with shortage of equipment or the use of drug-delivery devices
outside the patient room. These practices, if not performed under very controlled conditions, can
lead to large dosing errors [454]. Therefore, any attempt to prevent adverse events by improv-
ing the knowledge of actual doses can make an enormous difference for the individual patient,
especially new-born babies, and has a significant impact on the health sector. Measurement un-
certainty plays a vital role in this situation since a reliable uncertainty evaluation will lead to an
improved confidence in the actual prescribed and delivered dose.

In the EMPIR project “Metrology for Drug Delivery – MeDD II”, metrological tools were developed
and improved to assure the traceability of clinical data, allowing the metrological comparability
of diagnostic and treatment information for flow rates from 30 nLh−1 to 60 nL h−1, targeting a
relative expanded uncertainty of 1 % (95 % confidence level). The project delivered calibration
methods to enable SI traceable flow rate measurements with high accuracy, which means that the
uncertainty calculation should be properly implemented. This example interrelates the efforts
in MeDD II and EMUE (Examples of measurement uncertainty evaluation), thus connecting the
developed flow rate standard with best practices in the evaluation of measurement uncertainty.

The objective of this work is to compare uncertainty evaluation methodologies for very small
flow rates, close to zero, during calibration. To exemplify the mathematical treatment of the
uncertainty evaluation, experimental values arising from a syringe pump calibration will be used
to assess the viability and advantage of using alternative methods to the traditional GUM ap-
proach (law of propagation of uncertainty), namely, Monte Carlo and Bayesian methods, to
quantify measurement uncertainty when the conditions for the applicability of the GUM uncer-
tainty framework [2] are not met. Such conditions relate to the extent of the non-linearity of the
model, the number and magnitude of quantities with non-normal distributions and the ability
to produce meaningful results for a specific application. Validation should always by attempted
whenever the application of the GUM is questionable [3].

Here, due to the conditions entailed when measuring very small values, close to zero, of a quantity
such as the flow rate, which is inherently positive, negative flow rate estimates may be made when
inappropriate uncertainty evaluation methods are employed. This comparison work shows that,
depending on the proportion of negative values obtained during calibration, alternative Bayesian
uncertainty evaluation methods are preferred.

E5.5.3 Specification of the measurand

The measurand is volumetric flow rate Q in a syringe pump used under defined conditions.
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E5.5.4 Measurement model

The measurement model associated with the syringe pump experiment can be described by [455]

Q =
mF −mI

tF − tI

�

1−
�

Dtube

Dtank

�2
�

1
ρW −ρA

�

1−
ρA

ρB

�

[1− γ(T − 20)] +Qevap + δQrep,

(E5.5.1)

relating the measurand (volumetric flow rate) Q to mass measurements (initial mass mI and
final mass mF), densities of water ρW, air ρA and mass pieces ρB, evaporation rate Qevap, water
temperature T , time (initial time tI and final time tF), expansion coefficient γ, diameter D, and
measurement repeatability δQrep.

The model (E5.5.1) is non-linear and thus may depart from the conditions prescribed for the
application of the GUM. Moreover, relating to the remarks in section E5.5.2, this study considers
the treatment of flow rates close to zero, as is typical of microflow applications, for which readings
may result in negative values. This problem is one of measurement close to a physical limit, that
can also be found in other areas, such as length (for example, roughness measurements) or
chemistry (for example, measurement of the purity of a very pure substance), requiring to be
properly handled to avoid erroneous results.

E5.5.5 Uncertainty propagation

E5.5.5.1 General

A typical uncertainty budget of a flow measurement is illustrated in table E5.5.1, resulting from a
real experiment with a syringe pump calibrated by the gravimetric method at 2.77×10−7 mLs−1.
It relies on weighing the mass of the working fluid delivered by the instrument under test at a set
time, which is then converted to volume at a reference temperature [456]. The volumetric flow
rate Q is determined by the quotient of the volume of the reference liquid and the time interval,
including the corrections indicated in equation (E5.5.1) [455]. The calibration procedure is
conducted in a climate-controlled room insulated from vibration (reference temperature of 20 °C,
above 50 % relative humidity). The syringe pump (that has a 1 mL glass removable syringe) is
connected to stainless steel tubing of 0.16 cm (1/16′′) diameter and the tube ending is immersed
in the weighing vessel of the balance used, to prevent flow oscillations due to droplet detachment.
A LabVIEW application is used for data acquisition, validation, online visualization of measured
data and flow rate calculation [457]. Data acquisition starts approximately 10 min after steady
flow is reached. Two tests were carried out, with 35 readings and 76 readings, for different sets
of conditions. The test duration and number of acquisition points were increased to improve the
knowledge of the experiment.

The experiments with the syringe pumps have highlighted two different patterns that may occur
when dealing with measurements close to the physical limit of a quantity. Depending on the
properties of the measuring instrument (for example, precision, accuracy), the conditions of the
experiment (for example, temperature, operator, fluid), and the nominal flow rate targeted, the
readings may show a proportion of negative values since in microflow experiments the range of
values is very close to zero for the reasons given in section E5.5.4.

Thus, three different approaches will be applied using the data in table E5.5.1 for the measure-
ment model (E5.5.1), one of which (the Bayesian approach) handles the situation where readings
may be negative, and their suitability assessed. First a comparison will be made between the GUM
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Table E5.5.1: Uncertainty budget for the syringe pump (case study 1); probability density func-
tion (PDF): N = normal, C = combined, R = rectangular. The unit of each element in the sensi-
tivity coefficient column is that of the measurand, flow rate, divided by that of the corresponding
input quantity

Best estimate Standard Sensitivity ui(Q) =
Quantity/unit x i PDF uncertainty coefficient |ci |u(x i)

u(x i) ci

tI/s 2.65 × 102 Normal 7.00× 10−4 1.15× 10−10 8.03× 10−14

mI/g 3.799544 Combined 2.86× 10−5 6.93× 10−4 1.97× 10−8

ρW/g mL−1 0.997 615 Combined 6.26× 10−4 −1.67× 10−7 1.04× 10−10

ρA/g mL−1 0.001 181 Rectangular 2.89× 10−6 1.46× 10−7 4.21× 10−13

ρB/gmL−1 8.00 Normal 2.50× 10−3 3.07× 10−12 7.67× 10−15

t/°C 2.27 × 101 Combined 5.17× 10−1 −1.66× 10−12 8.60× 10−13

γ/°C−1 1.00 × 10−5 Rectangular 2.89× 10−7 −4.42× 10−7 1.28× 10−13

Qevap/mLs−1 1.04 × 10−7 Rectangular 1.47× 10−8 1.00 1.47× 10−8

Dtube/cm 0.09 Normal 0.001 −1.62× 10−8 1.62× 10−11

Dtank/cm 1.36 Normal 0.001 1.07× 10−9 1.07× 10−12

δQrep/mLs−1 2.13 × 10−7 Normal 3.29× 10−8 1.00 3.29× 10−8

mF/g 3.799785 Combined 2.86× 10−5 −6.93× 10−4 1.97× 10−8

tF/s 1.71 × 103 Normal 7.00× 10−4 −1.15× 10−10 8.03× 10−14

Flow rate 2.70 × 10−7 Combined 4.56× 10−8

Q/mL s−1 standard
uncertainty

u(Q)

(GUM uncertainty framework (GUF)) and GUM-S1 (propagation of distributions) when “normal”
data are available, to assess whether the departure from ideal conditions for the application of
the GUF will be a problem in this case. This is the situation when most data are positive (as a
flow rate is expected to be). The second comparison will be drawn between these methods for
uncertainty propagation and a Bayesian approach for the remaining case when the number of
negative readings is significant, to assess which approach handles best this situation.

Both the GUF and MCM approaches depend on knowledge of the probability density functions
(PDFs) for the input quantities, but whereas the GUF uses summary information — estimates
and associated standard uncertainties -– obtained from the PDFs, the propagation of distributions
uses the PDFs themselves. The simplification inherent in the GUM approach, however, imposes
limitations on its applicability, which are irrelevant to the MCM approach, making the latter
generally more reliable and which should be used for validation purposes when the conditions
for the use of the GUM approach, as given in [3] clause 5.8, are not fully met.

E5.5.5.2 GUM uncertainty framework

The GUF is based on the application of the law of propagation of uncertainty (LPU) [2, clause 5]
and assuming a normal or Student t distribution for the PDF of the measurand [2,3]. Application
of the LPU requires the calculation of sensitivity coefficients ci , the first partial derivatives of the
volumetric flow rate Q [the measurement function specified as the right-hand side of expression
(E5.5.1)] with respect to the input quantities, evaluated at the estimates of those quantities. For
full details of the GUF, see [2].
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E5.5.5.3 Propagation of distributions

An MCM is an implementation of the propagation of distributions and is generally considered
a very reliable approach for uncertainty propagation. Appropriate PDFs assigned to the input
quantities are propagated through the measurement model to provide the PDF for the output
quantity, with no restriction in relation to shape or symmetry of the input PDFs. The expecta-
tion (mean) of the resulting PDF is used as the best estimate of the quantity and the standard
deviation of the PDF is used as the standard uncertainty associated with that estimate. When the
applicability of the GUF is questionable, appropriate use of Monte Carlo methods will provide a
PDF for Y that is consistent with the input PDFs. Full details of the method are given in [3].

E5.5.5.4 Bayesian evaluation

A Bayesian evaluation [65] determines a posterior distribution for the measurand (and any ad-
ditional parameters) given observations and prior information on the measurand (and the addi-
tional parameters, if any). For linear measurement models and so-called non-informative prior
distributions, the posterior distribution coincides with the GUM-S1 PDF. Here, the Bayesian ap-
proach is used to impose a positivity constraint on the measurand in the presence of a proportion
of negative flow rates readings obtained during calibration (for reasons mentioned earlier).

According to table E5.5.1, we use the following “error-in-variables” formulation to represent the
random variables MF = mF + ζMF

, MI = mI + ζMI
, TF = tF + ζTF

and TI = tI + ζTI
, where (mF,

mI, tF, tI) are the measurements of the final mass, the initial mass, the final time and the initial
time, respectively (given in the column “Best estimate” of table E5.5.1) and (ζMF

, ζMI
, ζTF

, ζTI
)

are centered, normally distributed error terms.

Let qobs denote the observed flowrate computed from measurements (ζMF
, ζMI

, ζTF
, ζTI

):

qobs =
mF −mI

tF − tI

and Qobs the associated random variable defined by

Qobs =
MF −MI

TF − TI
∼ N(qobs, u2

qobs
).

We show with Monte Carlo sampling from the distributions for (MF, MI, TF, TI) that Qobs is
normally distributed, with parameter values displayed in the Appendix for case study 1 and case
study 2. The corresponding error-in-variables formulation writes

Qobs = qobs +η with η∼ N(0, u2
qobs
).

Replacing Qobs in the measurement model gives

Q =Qobs

�

1−
�

Dtube

Dtank

�2
�

1
ρW −ρA

�

1−
ρA

ρB

�

[1− γ(T − 20)] +Qevap. (E5.5.2)

The statistical model explaining the measurement Qobs is obtained by introducing a repeatability
term δQrep ∼ N(0, s2/n) defined in section 3:

Qobs =
Q−Qevap

C(θ )
+ δQrep,
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where

C(θ ) =

�

1−
�

Dtube

Dtank

�2
�

1
ρW −ρA

�

1−
ρA

ρB

�

[1− γ(T − 20)]

and

θ = (Dtube, Dtank,ρW,ρA,ρB,γ, t).

By replacing the left-hand term, we obtain

qobs +η=
Q−Qevap

C(θ )
+ δQrep.

The statistical model associated with the measurement model is

qobs =
Q−Qevap

C(θ )
+ ζ+ δQrep (with ζ= −η), ζ∼ N(0, u2

qobs
), δQrep ∼ N(0, s2/n).

The quantity of interest is π(Q|qobs) obtained from the joint posterior distribution

π(Q,θ |qobs)∝ l(qobs|Q,θ )π(Q)π(θ ),

where l(qobs|Q,θ ) is the likelihood of the data, π(Q) is the prior distribution for the measurand
and π(θ ) is the joint distribution of the vector θ given by the PDFs marked Rectangular (and
Combined) associated with the uncertainty sources in table E5.5.1.

To impose the non-negativity of the measurand, the prior distribution should have a support
excluding negative values such as π(Q) ∼ R(0,∞), where R(a, b) denotes the rectangular PDF
with limits a and b.

Since the posterior distribution has no closed form, Markov Chain Monte Carlo methods are em-
ployed to sample from the posterior distribution [458–460]. These methods construct a sequence
of dependent values that form a Markov chain with stationary distribution equal to the sought
distribution. The Metropolis-Hastings algorithm constitutes a popular class of MCMC methods
as it only requires knowing the sensitivity coefficients and the uncertainties (and covariances, as
appropriate) of the input quantities to sample from the posterior distribution. The sequence of
values is usually considered only after a first period of “burn-in”, and often the chains are thinned
(that is, only each 10th value is used, say) to reduce the correlation between successive values.
Various criteria have been suggested for assessing the convergence of MCMC methods.

We refer to [459] for a general introduction to these methods and to [460] for an introduc-
tory example in metrology. In this work, results are obtained with Python 3 using probabilistic
programing with PyMC3 [461].

E5.5.6 Reporting the result

A typical set of uncertainty contributions, used for case study 1, is illustrated in Table E5.5.1
from which the best estimate and standard uncertainties can be used to evaluate the measure-
ment uncertainty. A second set of data, for smaller values of Q was also used. In here, as for
most situations, repeatability is treated as having a centred normal distribution (with mean 0),
assuming that data can be well represented by the corresponding mean value and standard devi-
ation [3]. The associated uncertainty is taken as the standard deviation of the mean. The model
is mildly non-linear and there is no non-normal dominant source of uncertainty.
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Experimental data from two case studies

The experiments with the syringe pumps have highlighted two different patterns that may occur
when dealing with measurements close to the physical limit of a quantity. Depending on the
measuring instrument (e.g., precision, accuracy), the conditions of the experiment (e.g., temper-
ature, operator, fluid), and the nominal flow rate targeted, the readings may show a proportion
of negative values since in microflow experiments the range of values is very close to zero.

Data from the first case study is displayed in figure E5.5.1, where most readings are of very small
flow rates, as expected, but only a very small proportion of them are negative. The first 7 readings
were ignored since the stabilization time mentioned above was only partially observed. The
example of figure E5.5.1, though, represents a good response of a syringe pump with relatively
small repeatability.

However, in the second case study illustrated in figure E5.5.2, there is a clear increase in the pro-
portion of negative values, and a higher dispersion of values, which indicates a poorer response
of the syringe pump used and thus should entail a different type of problem in the evaluation
of measurement uncertainty, as it will be seen in section 6. It is important to point out that the
negative values of flow rate are the result of working very close to the physical limit of a system
and as a consequence the intrinsic noise and lack of precision will, in some instances, provide
negative values for quantities that are inherently positive.

Figure E5.5.1: Flow rate for case study 1 when most readings are positive

For case study 1, the GUM is expected to perform well, whereas for case study 2, the conditions
for the applicability of the GUM uncertainty framework are not met since part of the data is not
meaningful. For each case study, the GUM, GUM-S1 (Monte Carlo) and Bayesian approach will
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be compared to ascertain which of them can better handle the presence of a significant number
of negative values in the readings and, as a consequence provide a more reliable estimate of the
flow rate and associated standard uncertainty.

Figure E5.5.2: Flow rate readings for case study 2 with a significant number of negative readings

Case study 1

A comparison between the GUM and the Monte Carlo method from GUM-S1 is illustrated in
figure E5.5.3 and results are provided in Table E5.5.2. For most purposes it would be reasonable
to conclude that the GUM conventional approach is acceptable, which was expected since there
is only a mild non linearity in the model (E5.5.1), and there is not a dominant normal source
of uncertainty in Table E5.5.2 (in conformity assessment, these differences should be taken into
account).

Table E5.5.2: GUM, Monte Carlo and Bayesian flow rate results (case study 1 – Gravimetric)

Approach Best Standard 95 % coverage interval
estimate uncertainty
Q/mL s−1 u(Q)/mL s−1

GUM 2.6975× 10−7 5.0924× 10−8 1.6791× 10−7 to 3.7160× 10−7

Monte Carlo 2.6972× 10−7 5.0906× 10−8 1.6898× 10−7 to 3.6815× 10−7

Bayes (Q > 0) 2.6996× 10−7 5.1009× 10−8 1.7180× 10−7 to 3.6970× 10−7
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Figure E5.5.3: GUM and Monte Carlo for case study 1
It is important to underline that the conclusions drawn are only valid for the specific set of con-
ditions defined in Table E5.5.2. Just for exemplifying purposes, in the case study 1, increasing
by a factor of 5 the uncertainty associated with the evaporation quantity will change the output
considerably and the suitability of the GUM may now be questionable, as illustrated in figure
E5.5.4.

Figure E5.5.4: GUM and Monte Carlo comparison for an increased percentage of the rectangular
distribution associated with Qevap

Results obtained with the Bayesian method under the hypothesis that Q is positive are displayed
in Table E5.5.3. The Bayesian approach provides results similar to those obtained by the other
two methods.

Figure E5.5.5 groups together the GUM, the GUM-S1 and the Bayesian method, for the baseline
conditions. It is apparent that for the conditions of this case study all different approaches provide
similar results and therefore the GUF can be safely used for nominal flows of 2.7× 10−7 mL s−1

in these conditions.

Case study 2

A different situation arises when faced with data as depicted in figure E5.5.2. In this case, the
number of negative values is significant, which means that negative values are expected to be
found in the 95 % coverage interval as computed using the GUM uncertainty framework, which
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Figure E5.5.5: Measurand PDF for all approaches applied to case study 1

is a problem. The Monte Carlo method could deal with this situation by replacing negative values
by zero, but this would distort the PDF for the measurand. Therefore, neither the GUM nor the
MC method will be adequate to describe the latter situation, in terms of naturally representing the
probability density function for the measurand. The Bayesian method, however, rather concerns
the probability density of the measurand, considering the data produced by the measurement and
possible prior information. Indeed, this method should handle well with this situation, where the
distribution of values is truncated at zero (prior knowledge), and thus redistributes the values
over the rest of the integral domain.

A comparison between the GUM, the Monte Carlo method from GUM-S1 and the Bayesian ap-
proach under the hypothesis that Q is positive is given in Table E5.5.3 and illustrated in figure
E5.5.6.

Table E5.5.3: GUM, Monte Carlo and Bayesian flow rate results (case study 2)

Approach Best Standard 95 % coverage interval
estimate uncertainty
Q/mLs−1 u(Q)/mL s−1

GUM 2.5325× 10−8 3.6951× 10−8 −4.8577× 10−8 to 9.9227× 10−8

Monte Carlo 2.5392× 10−8 3.6937× 10−8 −4.6647× 10−8 to 9.7517× 10−8

Bayes (Q > 0) 4.1893× 10−8 2.7728× 10−8 1.1994× 10−12 to 9.3596× 10−8

The result of the simulation using the Bayesian method with the positivity constraint indicated
above proves the advantage of the Bayesian approach in limit-of-detection problems. The Bayesian
posterior, as expected, is very much like a truncated normal.
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Figure E5.5.6: Measurand PDF for all approaches applied to case study 2

As hinted before, the MCM does not handle particularly well problems “close-to-the-physical-
limit” as are micro flow rates or nano volumes which are widely used in health applications. It
is therefore important to characterize errors and be able to qualify all measurements in this area
through the correct evaluation of the measurement uncertainty.

E5.5.7 Interpretation of results

The aim of this work is to provide guidance on method selection with respect to the evaluation
of measurement uncertainty. Clearly the choice of method depends on the problem under evalu-
ation and no blind recipe should be used. Depending on the conditions of the problem, the GUM
uncertainty evaluation may prove to be adequate, whereas in other circumstances alternative
approaches should be applied instead, e.g., the MCM or the Bayesian method. What this study
indicates is that the MCM approach is a convenient alternative to the GUM uncertainty evaluation
approach for cases where the number of negative values is not significant, with the advantage of
often having a simpler application, despite requiring a software implementation.

However, this robust alternative method may also prove inadequate in other circumstances, e.g.,
in cases too close to the physical limit of a system when out of bound values are significant. In the
latter class of problems, the constraints imposed to the measurand by the use of a prior fits well
to the Bayesian approach and is clearly a better method to evaluate measurement uncertainty in
a number of similar problems where that evaluation is not a trivial matter.

For the budget in table E5.5.1, only four of the input quantities make meaningful contributions
to the combined standard uncertainty. Those quantities are the initial time tI, final time tF,
evaporation rate Qevap and measurement repeatability δQrep. All other contributions are two or
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more orders of magnitude smaller. A conclusion that can be drawn is that for data sets that are
not too dissimilar from that considered here, the measurement model (E5.5.1) can be replaced
by the much simpler model

Q = K(mF −mI) +Qevap + δQrep, (E5.5.3)

where, for purposes of uncertainty propagation,

K =
1

tF − tI

�
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�

Dtube

Dtank

�2
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1
ρW −ρA
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1−
ρA

ρB

�

[1− γ(T − 20)],

regarded as a constant evaluated at the estimates of the input quantities. Since the measurement
model (E5.5.3) is linear in its input quantities, LPU applied to it will give acceptable results in
situations, as explained in section E5.5.6, when the bulk of the flow rate readings are positive.
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Example E5.6

The role and use of measurement
uncertainty in addressing specification
requirements: medical temperature
examples

J. Greenwood, M.G. Cox

E5.6.1 Summary

Measurement guides and standards are an essential source of information in most areas of test-
ing. However the terminology used to describe technical requirements in terms of measurement
results is often inadequate in situations where conformity decisions must be made that are con-
sistent with the Guide to the expression of Uncertainty in Measurement (GUM), or with the
requirements of standards used to support accreditation such as ISO/IEC 17025 and ISO 15189.
This example illustrates the issue in terms of two highly regarded guidance documents from the
healthcare sector.

E5.6.2 Introduction

Guidance documents, requirements and standards are found in all areas of testing and mea-
surement. They are written by experts in the technical field with the aim of ensuring consistent
and comparable results in the particular activity for which specifications are provided. Unfortu-
nately, it is often not possible to establish whether these requirements are being met in a metro-
logically robust fashion as, for example, is required for accreditation to ISO/IEC 17025 [7] or
ISO 15189 [39].

In the worst cases this difficulty occurs because there is no requirement for the evaluation (or even
awareness) of measurement uncertainty and requirements are expressed in qualitative terms,
such as ‘accuracy’. This practice creates an immediate problem since the GUM [2] and stan-
dards such as ISO/IEC 17025 and ISO 15189 are generally concerned with uncertainty, not ac-
curacy. These are fundamentally different concepts and, as is stated in the International Vocabu-
lary of Metrology (VIM) [89] (in annotations to the html version [462]), there is no established
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methodology for assigning a numerical value to measurement accuracy. Often the only approach
that can be taken is to agree an ad hoc interpretation of the requirement, or to supplement the
stated requirements with additional requirements such as limits in terms of measurement uncer-
tainty [194].

Here, two examples are developed in order to illustrate how such guidance and standards re-
quirements might be interpreted. These have not been selected as ‘bad’ examples; rather, they
are chosen because they show that even in otherwise authoritative and carefully drafted guid-
ance there can still be issues of interpretation left to resolve. The aim is to support drafting of
future revisions and also to indicate options when working with the existing versions.

The first example concerns the decontamination of medical devices by steam sterilization. In this
case, allowable limits on measurement uncertainty are defined. The only issue is to establish or
formalise a clear and unambiguous rule to explain the role that measurement uncertainty must
take in the decision process. The second example emerges during the mapping and monitoring
of cold storage systems for blood products, where temperature is measured in order to decide
whether an alarm condition is met. In this example, what at first may seem to be a clear ‘accuracy’
requirement is shown to be incomplete, requiring further information or assumptions before
conformity can be decided.

The discussion and approach in both examples are equally applicable to other guidance and
standards documents and to measurements of other quantities.

The document begins with a recapitulation of what ‘measurement uncertainty’ actually represents
and how it relates to conformity decisions.

E5.6.3 Background: recapitulation on measurement uncertainty and
its role in making conformity decisions

It is important to recognise that in most physical measurement scenarios the measured value y
is only an estimate of the true value of the quantity of interest Y (the measurand). The measure-
ment result comprises the estimated value and the associated standard measurement uncertainty
u. In the LPU approach to uncertainty evaluation the standard measurement uncertainty corre-
sponds to the standard deviation of a probability density function (PDF), which in many cases
is approximately Gaussian. This PDF can be interpreted in terms of the relative likelihood of
possible true values (of the measurand), given the measurement result.

Specifications generally relate to requirements concerning the measurand, for example ‘the sam-
ple temperature Y must not exceed an upper limit SU ’; rather than to measured values for which
separate ‘acceptance criteria’ need to be established. Therefore, any test of a specification based
upon a measurement result is by its very nature a test in which probability must play a role.
Consequently, when a conformity decision is made that is based upon the location of the mea-
sured value relative to a specification limit there is a finite risk of making a false decision. See
figure E5.6.1.

In figure E5.6.1 the shaded region of the PDF corresponds to non-conforming values that, given
the observed measured value, could reasonably be attributed to the measurand. Assuming that
conformity has been accepted, it represents the probability of false acceptance [6], i.e., the risk
that an incorrect decision has been made. Conversely, the unshaded region represents the con-
formance probability, i.e., the probability that given the measured value, the true value of the
measurand lies within the specification interval.
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Figure E5.6.1: Measured value y and standard uncertainty u in relation to an upper specification
limit SU

The probabilities can be calculated from knowledge of the PDF. For those PDFs with a Gaussian
or t distribution the probability represented by the various regions under the PDF can be readily
calculated, e.g., using Excel cell functions [194]. For other PDFs, a numerical approach such as
a Monte Carlo method (MCM) can be used [3].

The risk of making an incorrect decision can be minimised by restricting the range of measured
values that will be accepted, for example by establishing an acceptance limit in terms of the
specification limit and some guard band w [6]. For example, an acceptance limit AU could be set
to

AU = SU −w.

w is often chosen to be some multiple of the standard uncertainty u that defines the worst-case
risk, which occurs when the value of y equals the acceptance limit (e.g., y = AU). See Figure
E5.6.2.

Figure E5.6.2: Measured value y and standard uncertainty u in relation to an upper specification
limit SU, a guard band w and upper acceptance limit AU

AU is the largest measured value to be accepted as indicating conformity.

E5.6.4 Example 1: Sterilisation temperature

As might be expected for such an important area of activity, there are numerous guidance docu-
ments relating to best or required practices in health services. For example, in the United King-
dom the requirements for decontamination of medical devices in a central decontamination unit
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are set out in various National Health Service documents such as SHTM 01-01 Part C [463] (cov-
ering Scotland) and broadly equivalent documents covering England and Wales. SHTM 01-01
Part C2.12 defines the required time–temperature relationships for sterilization by steam. In this
case, measurement uncertainty requirements are also stated within a related document SHTM
01-01 Part B [464] (clause 2.33 states that ‘the uncertainty of measurement . . . should be no more
than ±0.5 °C’, which is interpreted as describing a 95 % coverage interval that in this case, for a
Gaussian PDF, corresponds to a standard uncertainty of 0.25 °C).

In this example, a basic model for measurement uncertainty is presented. This is followed by
a consideration of how a correctly evaluated measurement uncertainty might be used to test
whether a measured value indicates conformity with a specification.

As has previously been stated, this example is not chosen as illustrating particularly ‘poor’ prac-
tice (it is actually one of the better guidance documents found); nevertheless it can be used to
illustrate the difficulties around ‘inadequately’ defined requirements. The following points have
general applicability: the intention here is to indicate how current requirement might be inter-
preted and how future requirements might be written in such a manner that ‘interpretation’ is
not required.

E5.6.4.1 Measurand

The measurand, i.e., the quantity of interest, is the temperature achieved at the location of the
item being sterilized.

E5.6.4.2 Model

The best estimate of the measurand is the measured temperature T , which is related to the
indicated probe temperature To by a calibration correction and various metrological effects. A
typical measurement model might involve an additive calibration correction. For example,

T = To +∆To + δTD + δTx + δT,

where

To is the indicated probe temperature,

∆To is the calibration correction corresponding to indication To,

δTD is the error due to drift of the probe behaviour since it was calibrated, i.e., drift in ∆To,

δTx is the error due to installation and contact effects,

δT is the error due to errors of precision (such as measurement repeatability).

It is assumed that the terms in the measurement model are independent of each other, i.e., there
is no correlation to include in the uncertainty evaluation. The δ ‘error’ terms represent unknown
or unknowable quantities for which the best estimate of the value is zero; however, they have
non-zero uncertainty.
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E5.6.4.3 Uncertainty propagation

The LPU approach gives the standard uncertainty uT associated with T :

u2
T = u2(T ) = u2(To) + u2(∆To) + u2(δTD) + u2(δTx) + u2(δT ),

where, in this example,
u(To) is associated with the finite resolution of the indication,
u(∆To) is taken from the calibration certificate for the probe,
u(δTD) is evaluated from historical data,
u(δTx) is evaluated on the basis of physical data,
u(δT ) is the standard deviation for repeated measurements of T .

No covariance term is required as there are no correlated quantities in the model.

E5.6.4.4 Reporting measurement results

The measurement result can be reported in the conventional ‘coverage interval’ format

T ± U ,

where T here denotes the measured value. Assuming that the underlying PDF is Gaussian, U =
2uT is the expanded uncertainty providing a coverage probability of approximately 95 %.

E5.6.4.5 Interpretation

The SHTM-C guidelines [464, clause 2.33] define an upper allowable limit of measurement un-
certainty (although the equivalent earlier-dated English and Welsh versions do not yet do so).
Although SHTM-C does not provide an explicit decision rule or mention a guard band, it can per-
haps reasonably be assumed that the intended rule has acceptance limits set by so-called ‘Simple
Acceptance’ criteria, i.e., AL = SL and AU = SU with a decision rule of the form (where t denotes
the minimum duration of the test in minutes as stipulated in [464]):

PASS: if AL ≤ T ≤ AU for a duration exceeding t minutes AND uncertainty limits
apply as detailed in SMTM 01-01 Part B, where T is the measured value, and AL and
AU are lower and upper acceptance limits.

FAIL: Otherwise.

For a PASS the maximum probability of false acceptance with Simple Acceptance criteria is (usu-
ally) 50 %, corresponding to T = SL or T = SU. This risk reduces for values within the acceptance
interval to a minimum at the central value. These ‘risk-consequences’ of Simple Acceptance cri-
teria are undefinable if the measurement uncertainty (or at least some limit upon its value) is not
incorporated in the decision process.

Note that in situations where a ‘significant’ portion of the PDF overlaps both limits of a double-
sided specification, the risk will be higher than 50 %. The concept of equal ‘shared risk’ must
therefore be used with caution and cannot be used without some consideration of measurement
uncertainty).
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E5.6.4.6 Alternative interpretation

Suppose instead that the intention of the guide writers had been that the worst case probability of
false acceptance should be no more than 2.5 % (rather than 50 %), i.e., conformance probability
should be at least 97.5 %. This intention could be achieved by defining a ‘stringent’ guard band
w with corresponding acceptance limits defined by

AL = SL +w,

AU = SU −w.

For a Gaussian PDF, in those situations where a ‘significant’ portion of the PDF can only overlap
one or other of the limits, i.e., when the uncertainty is small compared with the acceptance
interval, the limit of 2.5 % is achieved with w= 2uT.

(Note: the figure of 2.5 % corresponds (approximately) to the area in each tail of a Gaussian
PDF, where a ‘tail’ is located beyond a limit two standard deviations from the central value,
corresponding to 2uT in this case.)

For example, suppose that SL = 121 °C, SU = 124 °C and the standard uncertainty associated with
T is uT = 0.25 °C. These values give acceptance limits

AL = SL + 0.5 °C= 121.5 °C,

AU = SU − 0.5 °C= 123.5 °C.

The associated decision rule could be written as (where t denotes the minimum duration of the
test in minutes):

PASS: when the measured temperature is within the acceptance interval (at or) be-
tween the acceptance limits AL and AU for a duration exceeding t minutes. The
worst-case risk of a false pass is less than about 2.5 %, which occurs for a measured
value at an acceptance limit, and decreases rapidly for conforming values away from
the acceptance limits.

FAIL: Otherwise.

Note that SHTM-C requires that expanded (95 %) uncertainty is not allowed to exceed Umax =
0.5 °C. This uncertainty defines the maximum guard band (i.e., narrowest acceptance interval)
consistent with the worst case risk limit. If the prevailing uncertainty is smaller than Umax then,
for the same maximum specific risk, a narrower guard band and consequently wider acceptance
interval can be established.

E5.6.5 Example 2: Storage of blood products

This second example is presented in terms of another highly respected guidance document,
namely, the ‘PHSS Guidance Document for Cold Storage Temperature Monitoring and Mapping
for Blood Products’ [465].

As was the case for the previous example, this example is representative of many, otherwise
authoritative, guides and standards in which conformity requirements are defined in such a way
that it is not possible to test them in terms of the GUM infrastructure.
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In this measurement scenario, temperature measurement is part of a wider process in which
decisions such as whether to commission a storage device or raise an alarm for an operating
storage unit are based upon independent temperature measurements.

PHSS provides extensive and clear guidance on where to measure and on what process to apply
when an alarm condition is met. It embodies a conformity test (‘Is an alarm condition met?’)
that is based upon specified limits for measured values of the measurand. It does not, however,
provide a decision rule, i.e., it does not say how measurement uncertainty is to be taken into
account when making such a decision. This omission means that the risk associated with such a
decision and therefore the risk associated with subsequent actions is not immediately definable.

In general terms the PHSS process can be depicted schematically as shown in Figure E5.6.3.
Two decisions need to be made, the first of these corresponding to a decision on whether, based
upon the measured temperature, an alarm condition has been met. This particular decision is
the subject of example 2. The second decision, concerning delay time, can be treated in a similar
fashion.

Figure E5.6.3: Alarm process for blood storage devices

E5.6.5.1 Measurand and model

As in example 1, the measurand, i.e., the quantity of interest, is the temperature prevailing at
a location of interest either in air or within a sample such as a bag of fluid). Temperature is
measured (monitored) by an alarm system when the store is in use.

A measurement model similar to that in example 1 could easily apply for the temperature mea-
surements that are made. Consequently, the propagation and reporting of uncertainty would also
be similar.

Where the examples differ significantly is that the PHSS guidance provides no information con-
cerning measurement uncertainty or its role in the decision process. Instead it only refers to an
‘accuracy’ requirement.

E5.6.5.2 The problem with ‘accuracy’

The term ‘accuracy’ is probably intended by authors to describe the expected quality of a mea-
surement value. Unfortunately, however, its use creates immediate problems. Most obviously,
difficulties arise due to the various meanings attached in common practice to the word ‘accuracy’.
Sometimes the intended use can be inferred from the context in which it is used, but often the
meaning is ambiguous. For example if a requirement states that a weighing instrument ‘should
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be capable of measuring loads up to 4 kg with an accuracy of 0.1 kg’ this requirement might com-
monly be interpreted as referring to the size of the measurement error, to the resolution of the
display, or to the measurement uncertainty.

More fundamentally, from a metrological (GUM) standpoint, uncertainty and accuracy are en-
tirely different concepts. This distinction is clear from the definitions, notes and annotations of
the International Vocabulary of Metrology (VIM) [89] in which accuracy is described as a quali-
tative concept. For example, in the HTML version of the VIM [462] it is stated that:

‘Historically, the term ‘measurement accuracy’ has been used in related but slightly
different ways. Sometimes a single measured value is considered to be accurate
(as in the VIM definition), when the measurement error is assumed to be small (in
magnitude). In other cases, a set of measured values is considered to be accurate
when both the measurement trueness and the measurement precision are assumed
to be good. Sometimes a measuring instrument or measuring system is considered to
be accurate, in the sense that it provides accurate indications. Care must therefore be
taken in explaining in which sense the term ‘measurement accuracy’ is being used.
In no case is there an established methodology for assigning a numerical value to
measurement accuracy.’

The above matter is not simply a hypothetical problem or an issue of semantics — the GUM
framework [2,6] and standards such as ISO/IEC 17025 [7], ISO 15189 [39] are concerned with
measurement uncertainty, not accuracy.

Faced with this situation in practice, the ideal approach is to obtain further information, such as
formal clarification from the publishers of the guidance or standard on how ‘accuracy’ is to be
interpreted and, if not also stated, how uncertainty is to be taken into account when specifications
are tested using measured values. Unfortunately, this approach is often not feasible.

In such cases all that remains is for assumptions to be made and stated transparently, and for
interpretations and additional requirements to be agreed between the testing body and its cus-
tomer.

E5.6.5.3 Possible interpretations of the ‘accuracy’ requirement: metrologist

A metrologist might perhaps take a view that the term ‘accuracy’ should be interpreted as a
misnaming of ‘expanded uncertainty’ — perhaps intended to provide a more ‘familiar’ language
to less experienced users of a guide or standard. That interpretation might seem reasonable on
the grounds that best practice involves making corrections for all know systematic effects (such
as calibration errors), so it might be reasoned (by a metrologist) that the ‘accuracy’ requirement
cannot be referring to calibration errors if best practice is to be followed. This assumption (that
corrections have been made for all known systematic effects) is not unreasonable — it is made
in all authoritative guidance documents on the subject of evaluating measurement uncertainty.

In this case an ‘accuracy’ requirement of say ‘±0.5 °C’ [465, Clause 7.5.1] might then be inter-
preted as a requirement that (corrected) measured values of temperature should have an ex-
panded uncertainty of no larger than Umax = 0.5 °C, where we might suppose that the standard
uncertainty has been expanded by a factor k = 2 (for a 95 % coverage interval).

The PHSS guidance does not explain how to take account of measurement uncertainty in deciding
whether an alarm condition is met whilst the system is in use. Various Decision Rules are possible,
as was seen in example 1. For example a rule based upon Simple Acceptance criteria might be
adopted, in which the acceptance limit (for measured values) equates to a limit specified in the
guidance, as at [465, clause 8.1.4]

Examples of evaluating measurement uncertainty First edition



Example E5.6. Specification requirements of temperature in medical applications 479

Alarm condition not met: if AL ≤ T ≤ AU AND U ≤ Umax

Alarm condition met: Otherwise

Alternatively a guard band might be applied for the given limit, defined in terms of the measure-
ment uncertainty

E5.6.5.4 Possible interpretations of the ‘accuracy’ requirement: practitioner

In the context of this example the metrologist’s interpretation of the intended meaning of ‘accu-
racy’ is perhaps less likely to be correct. Practitioners might take a view that making a correction
for the calibration error∆To was not expected by the authors of the guidance, nor it is feasible to
do so on a routine basis. They might further choose to interpret the term ‘accuracy’ as describing
a limit, say ∆Tmax, to the maximum allowable measurement error [89, Clause 2.16].

This relatively common interpretation of ‘accuracy’ leaves open the question of measurement
uncertainty, and the role it must have in subsequent decisions.

As has already been stated, best practice dictates that correction should be made for all known
biases to establish a measurement result — albeit common practice often ignores this. Often
instead, an ‘uncorrected error’ (such as an unused calibration correction) is incorporated into
the uncertainty evaluation. Various approaches and rationales for this practice have been pro-
posed [154], although strictly speaking these approaches do not usually establish a measurement
uncertainty that is consistent with the principles within the GUM uncertainty framework [157]
and can lead to significant unforeseen consequences [167].

However, in situations where the only (recognised) knowledge of calibration error ∆To is that
its value is within some limiting value, ∆Tmax and that its standard uncertainty is u(∆To), this
information can be incorporated into a measurement model as two independent terms [168] .
Thus

T = To + δT∆T + δTD + δTx + δT,

where the squared standard uncertainty can be evaluated from

u2(T ) = u2(To) + [u
2(∆Tmax) + u2(∆To)] + u2(δTD) + u2(δTx) + u2(δT ).

Here δT∆T represents the ‘poorly known’ calibration correction whose value is known to be within
an interval [−∆Tmax,∆Tmax]. The ‘best estimate’ of δT∆T is therefore taken as zero.

Given the measurement uncertainty and the specification, Decision Rules can now be established,
such as the rules based upon Simple Acceptance criteria or guard bands described above. These
rules assume that the PDF associated with T remains Gaussian. If this assumption does not hold
then other approaches, such as the use of a Monte Carlo method [3], can be applied to evaluate
conformance probability, risk or acceptance limits.

E5.6.6 Conclusions

The examples here have demonstrated some of the difficulties that are routinely faced when
attempting to test for conformity against requirements described in guidance documents and
standards. The documents cited here were not selected because they are particularly poor ex-
amples — they are in fact representative of the vast majority which, in other respects, provide
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invaluable information to users. These examples show that, in order to make conformity deci-
sions that are consistent with the GUM and with requirements for accreditation, some additional
information, clarification or interpretation is often required.

Such a situation can be avoided in future guidance and standards by (i) suitably defining the
role of measurement uncertainty, (ii) avoiding the use of the term ‘accuracy’, and (iii) ensuring
correction is made for any bias in the measurement. Point (i) can be achieved, for example,
‘indirectly’, as a prerequisite for applying Simple Acceptance criteria, or ‘directly’ through its role
in defining a guard band. Point (ii) can be addressed by using a quantitative concept such as
measurement error or expanded uncertainty (for a given coverage probability such as 95 %) in
place of the term ‘accuracy’. Point (iii) can be handled by making a correction for any systematic
effect and incorporating an uncertainty associated with the correction.
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Example E6.1

Measurement uncertainty evaluation
for turbofan nozzle thrust derived from
non-intrusive flow measurements
M.G. Cox, J. Dawkins, J. Gillespie, T. Lowe, W. Ng, J. Roberts

E6.1.1 Summary

The estimation of nozzle thrust and the evaluation of the associated uncertainty in a turbofan jet
engine is considered given information derived from acoustic sensors. There are two scenarios:
the first is uniform or homogeneous flow, and the second non-uniform flow. The first scenario is
entertained here, whereas the second lies beyond the scope of the current study.

Although nozzle thrust is the primary measurand, several other measurands — jet velocity, speed
of sound, nozzle exit Mach number and exhaust temperature — are considered. For one exper-
imental configuration, formulæ are given for these measurands in terms of (input) quantities
defining the geometry of the set-up, acoustic times of flight and properties of the medium. Ex-
pressions are developed for the uncertainties associated with estimates of these quantities in
accordance with the internationally acknowledged Guide to the expression of Uncertainty in
Measurement (GUM) published by the Joint Committee on Guides in Metrology (JCGM).

For data representative of an actual engine test, estimates of nozzle thrust and the other four
measurands, along with evaluations of their associated uncertainties, are provided.

Possibilities are considered for adapting the experimental configuration to yield reduced uncer-
tainties associated with estimates of the measurands. These possibilities are illustrated by redoing
the calculations for a simple change in the geometry of the set-up. Even though this change is
not optimized, a reduction in the relative standard uncertainty in nozzle thrust of some 60 % is
achieved, with corresponding reductions for the other measurands.

E6.1.2 Introduction of the application

The thrust of a turbofan engine is a key parameter to understanding both the performance of a
new or improved propulsion system design, and to ensuring that an engine returning to service
after repair or overhaul is still performing as intended.
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Off the wing, that is, on the ground, an individual engine’s net thrust can be determined by direct
measurement of the forces imparted by the engine on load cells in a bespoke structure in a test
cell. Figure E6.1.1 (left) shows a jet engine under test in an indoor test cell with thrust cradle,
used for data acquisition, and (right) an outdoor test facility for future target applications.

Figure E6.1.1: Test facilities for indoor (left) and outdoor (right) data acquisition

However, direct measurement of force exerted by the power plant on the mountings is difficult
to carry out with adequate accuracy for a power plant installed in an air-frame. Firstly, the load
path(s) between the power plant and air-frame are more complex than on the test stand, making
direct measurement of load challenging. Secondly, any changes in aircraft attitude modifies the
forces in the engine/air-frame interface, which will in turn influence the errors in the measured
thrust.

Nozzle thrust can also be derived from measurements of exhaust flow, and determined from mul-
tiple measurements of total pressure and total temperature. These measurements are tradition-
ally made using multiple ‘rakes’ of individual pressure and temperature sensing ‘Kiel’ heads [466],
in combination with static wall pressure tappings. The methods of determining thrust from aero-
dynamic performance measurements are well established: a typical traditional approach is de-
scribed in [467]. To achieve an acceptable level of uncertainty, this approach requires a large
number of individual temperature and pressure measurement points to ensure good capture of
the complex flow, but this in turn becomes increasingly intrusive to the flow being measured.
The rakes required introduce blockage to the flow, especially if they need to be designed to be
suitable for flight. Additionally, a large volume of signal-conditioning equipment needs to be
accommodated on board the aircraft.

Both these traditional approaches are therefore difficult to realize practically on an engine in-
stalled in an air-frame.

A seminal document [467] concerns the indirect measurement of thrust of turbojet and turbofan
engines at steady conditions. It covers the calculation or determination of thrust as opposed to
the measurement of thrust and despite its age remains the most complete summary of previous
methods for thrust determination. There are many more recent papers on the better understand-
ing or optimization of total pressure or of total temperature probes or both, but contain little
specific information relating to thrust determination using them.
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An alternative, non-intrusive, approach to determining nozzle thrust, is therefore highly desir-
able. However, the uncertainties in the results so obtained of the approach need to be understood.
Here we describe a non-intrusive acoustic techniques known as sonic anemometry that uses dis-
tance and acoustic propagation time-of-flight (TOF) measurements. The TOF is a function of
propagation distance and direction, flow velocity and speed of sound.

Sonic anemometry is a well known and often used measurement technique in low-speed flow
applications such as atmospheric meteorology and hydrology [468–474]. It is often coupled with
sonic thermometry so as also to estimate the gas temperature [472,474]. Sonic thermometry is
also used to measure temperatures in some industrial applications, such as power plant boilers,
and is usually called acoustic pyrometry on these fields [475, 476]. Most of these applications
involve flows at low speeds (typically Mach numbers below 0.1). There are several significant
challenges to extending the technique to the compressible regime. These challenges include
typically high background noise, as well as significant attenuation of the transmitted signal by
turbulence in the flow. Additionally, under some circumstances, it may be necessary to account for
the refraction of the acoustic rays by the moving fluid. The application of sonic anemometry and
sonic thermometry to higher speed flows, like those present in turbofan engines, was pioneered
by Otero et al. [477–480], targeted for future in-flight measurement of engine exhaust thrust.

A sonic anemometry approach is used together with an uncertainty assessment for a current ex-
perimental configuration. Two cases are possible: uniform flow, namely, constant flow and con-
stant (thermodynamic) speed of sound propagation throughout the medium, and non-uniform
flow. Only uniform flow is considered in detail although some comments are made on the
non-uniform case.

Potential advantages of changing the experimental configuration are considered. It is shown that
the uncertainty associated with estimated nozzle thrust can usefully be reduced.

E6.1.3 Specification of the measurands

E6.1.3.1 Assumptions

A Cartesian x y co-ordinate system is used in which x denotes the direction of the flow with y
orthogonal to the flow. Assumptions made are:

1. The exhaust gas is calorically perfect (the specific heat capacity of the gas is constant),

2. The speed of sound in the medium is constant and independent of direction,

3. Flow velocity in the x-direction is constant,

4. Flow velocity in the y-direction is negligible when compared to that in the x-direction.

E6.1.3.2 Primary and secondary measurands

The measurands are shown as rectangular boxes in figure E6.1.2, which gives a workflow for
the required calculations. The primary measurands are the nozzle thrust F and exhaust temper-
ature T shown at the bottom and bottom-right of the figure. Intermediate measurands are jet
velocity vx , speed of sound C in the medium and nozzle exit Mach number M on which vx and T
depend. The input quantities to the calculations, on which the measurands depend, are shown
as trapezoidal boxes in the figure.
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Figure E6.1.2: Computational workflow. Input quantities are shown in trapezoidal boxes. Output
quantities (measurands) appear in rectangular boxes: nozzle thrust and exhaust temperature are
primary measurands; the other three quantities are intermediate measurands
E6.1.3.3 Coordinate system

The coordinate system used for the analysis is that in [477] and displayed in figure E6.1.3:

– x points axially, pointing aft (the direction in which the exhaust points),

– y points horizontally, from the side of the exhaust with the source to the side with the
acoustic receivers,

– z points vertically, away from the ground,

– The origin is centred on the turbofan exhaust, and in the same axial plane as the sound
source, that is, the centre of exhaust is located at (x , 0, 0) and the source is at (0, y, 0),

– The source and receivers all lie in the x y plane (z = 0).

E6.1.3.4 Acoustic components

Figure E6.1.4 depicts an arrangement of the acoustic components. That particular configuration
contains a (single) source located on one side of the flow field and two receivers (‘downstream’
and ‘upstream’) on the other, displaced in the stream-wise direction.

E6.1.4 Measurement model

The measurement model for the primary measurand F and T and the intermediate measurands
vx , C and M (see figure E6.1.2) comprises the following formulæ
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Figure E6.1.3: Coordinate system, with exhaust, sound source and receivers shown

Figure E6.1.4: Upstream and downstream acoustic component displacements and times of flight
1. Jet velocity vx in the direction of flow given displacements ∆xUS, ∆xDS, ∆yUS and ∆yDS,

and times of flight τUS and τDS:

vx =
1
2

∆x2
DS+∆y2

DS

τ2
DS

−
∆x2

US+∆y2
US

τ2
US

∆xDS

τDS
−
∆xUS

τUS

. (E6.1.1)

2. Speed of sound C in the medium given vx from formula (E6.1.1) and (once more) ∆xUS,
∆yUS and τUS:

C =

�

�

∆xUS

τUS
− vx

�2

+
�

∆yUS

τUS

�2
�1/2

. (E6.1.2)

3. Exhaust temperature T given C from formula (E6.1.2) and the gas properties γ and R:

T =
C2

γR
. (E6.1.3)

4. Nozzle exit Mach number M given vx from formula (E6.1.1) and C from formula (E6.1.2):

M =
vx

C
, (E6.1.4)
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5. Nozzle thrust F given M from formula (E6.1.4), and the gas properties ps and R, and the
cross-sectional area A of the exhaust:

F = psγM2A. (E6.1.5)

In the above expressions, ps is atmospheric static pressure, γ is the specific heat ratio, R is the
specific gas constant for the exhaust gas and A is the cross-sectional area of the exhaust.

formulæ (E6.1.1) and (E6.1.2) are derived in appendix E6.1.A by an analysis involving the rela-
tive displacement of components and times of flight along two acoustic propagation paths.

E6.1.4.1 Data

In terms of dimensional quantities and times of flight, fundamental quantities relating to fig-
ure E6.1.4 are ∆xUS, ∆xDS, ∆yUS, ∆yDS, τUS and τDS. ∆xUS and ∆xDS are the upstream and
downstream displacements from the source of the receivers in the x-direction, ∆yUS and ∆yDS
are the counterparts in the y-direction (they are both equal to∆y in figure E6.1.4), and τUS and
τDS denote the corresponding acoustic times of flight.

∆xUS, ∆xDS, ∆yUS and ∆yDS are measured before the experiment, while τUS and τDS are the
times of flight measured during the experiment. Associated standard uncertainties are available.
Values and associated uncertainties are also available for the quantities A, R, γ and ps.

The ten quantities of which the data items ∆xUS, ∆xDS, ∆yUS, ∆yDS, τUS, τDS, A, R, γ and ps
constitute measured values are regarded as statistically independent input quantities in the mea-
surement model specified by formulæ (E6.1.1) to (E6.1.5).

E6.1.5 Measurement uncertainty evaluations

E6.1.5.1 Generalized law of propagation of uncertainty

In applying the law of propagation of uncertainty (LPU) in the Guide to the expression of Un-
certainty in Measurement (GUM) [2] to the measurement model specified by the workflow in
figure E6.1.2 in section E6.1.4, the standard uncertainties u(F) and u(T ) associated with the pri-
mary measurands F and T can be obtained together with those, u(vx), u(C) and u(M), associated
with the secondary measurands vx , C and M .

To apply LPU to evaluate these standard uncertainties, partial derivatives of the relevant mea-
surands with respect to the input quantities are required. These derivatives constitute sensitivity
coefficients representing measures of dependence of the measurands upon the input quantities.
Since there are N = 10 input quantities and m = 5 measurands, there will be 10× 5 = 50 such
partial derivatives. These derivatives are arranged to form a sensitivity matrix C x of dimen-
sion N × m. Some of these derivatives will be zero since some measurands do not depend on
certain input quantities. For instance, jet velocity vx is not influenced by the gas property γ.

Appendix E6.1.B gives an outline of the generalization of the LPU to multivariate measurands,
m in number, and N input quantities.

For this application, the N = 10 input quantities and m= 5 output quantities are respectively

X ≡ [∆xUS ∆xDS ∆yUS ∆yDS τUS τDS A R γ ps]
⊤, Y ≡ [vx C T M F]⊤ (E6.1.6)
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and, since the input quantities have been assumed to be independent, the covariance matrix V x
of dimension N × N (10× 10) is a diagonal matrix with diagonal elements

[u2(∆xUS) u2(∆xDS) u2(∆yUS) u2(∆yDS) u2(τUS) u2(τDS) u2(A) u2(R) u2(γ) u2(ps)]
⊤.

Equivalently, indicating zero elements by blanks,

V x =





u2(x1)
. . .

u2(xN )



=





u2(∆xUS)
. . .

u2(ps)



. (E6.1.7)

The other component in LPU is the above sensitivity matrix C X evaluated at X = x . Considerable
care is required when obtaining the elements of C X . Although section E6.1.4 gives formulæ for
the measurands in terms of the input quantities, these formulæ do not individually indicate that
dependence explicitly. Apart from in formula (E6.1.1) there are ‘hidden’ variables, which must
be taken into account in obtaining valid uncertainty evaluations. Formula (E6.1.2) expresses
C is terms of three input quantities ∆xUS, ∆yUS and τUS, and jet velocity vx , but C also de-
pends indirectly on ∆xDS, ∆yDS and τDS since C depends on vx , which in turn depends on these
three further quantities. Thus, C depends on all displacement and time of flight data. Similarly,
T , M and F depend on eight, six and nine input quantities rather than the three, two and four,
respectively, that appear explicitly in formulæ (E6.1.3) to (E6.1.5).

These observations imply a high degree of complexity in the analytical evaluation of the partial
derivatives of the measurands with respect to the quantities that influence them. Analytical
differentiation will require repeated careful application of the chain rule of differential calculus
to ensure that all dependencies are fully considered. This degree of complexity is to be contrasted
with the simplicity of the formulæ themselves for vx , C , T , M and F in section E6.1.4, which can
be evaluated, depending on the precise way the formulæ are arranged, with only some 24 basic
arithmetic operations (plus, minus, times, divide) and one square root.

The safest way to capture all essential dependencies is to automate the process of producing
first-order partial derivatives or sensitivity coefficients. Accordingly, we considered the advice
given in [40, 481], which covers automatic differentiation techniques and their application in
metrology. We examine three approaches, symbolic differentiation, the complex step method and
finite differences, in appendix E6.1.C. These methods avoids this complexity and the associated
high risk of accompanying algebraic error. Two of these methods are capable of providing a
degree of numerical accuracy comparable to that provided by analytical methods. The third
method provides less numerical accuracy but is more than sufficient for practical requirements.

A computationally intensive approach (Monte Carlo method (MCM)) to confirming the correct-
ness of the evaluation is also considered. This approach requires assignment of probability dis-
tributions to the input quantities. Normal distributions were chosen for this purpose with means
equal to the input estimates x1, . . . , xN and standard deviations equal to the associated standard
uncertainties u(x1), . . . , u(xN ). All that is then required is the evaluation (a very large number of
times) of the model equations (E6.1.1) to (E6.1.5), from which measurand estimates, standard
uncertainties and covariances can readily be extracted. Appendix E6.1.D gives a brief description
of the approach.

E6.1.5.2 Data

Table E6.1.1 gives typical data. For proprietary reasons, the data are not actual engine test data
but representative of what can be obtained from such tests. The uncertainties quoted for the gas
constants in table E6.1.1 take account of the gas composition at the exit of the engine not being
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constant. A varying proportion of combustion products, mostly CO2 and H2O, will be present
depending on engine operating conditions. For a modern high by-pass ratio turbofan the majority
of the flow will be entrained air.

Table E6.1.1: Typical data: values and associated expanded uncertainties

Quantity Unit Value Expanded uncertainty
(≈ 95% confidence)

∆xUS m −0.200 0.002
∆xDS m −0.050 0.002
∆yUS m 1.000 0.002
∆yDS m 1.000 0.002
τUS ms 3.03 0.010
τDS ms 2.79 0.010
A m2 0.7854 0.0031
R J kg−1 K−1 287 2
γ — 1.38 0.03
ps Pa 101 325 100

Standard uncertainties are taken as half the reported expanded uncertainties, that is, by assuming
the corresponding quantities are characterized by normal distributions and that the expanded
uncertainties correspond to a confidence level of approximately 95 %.

It is worth mentioning more about the nature of the uncertainties for τUS and τDS, given their
central importance in the measurement. Their expanded uncertainty is listed as constant. This
behaviour stems from the fundamental measurement being one of acoustic signal phase. Changes
to the measuring system will leave phase uncertainty of the signal processing scheme unaltered,
given that the signal-to-noise ratio and the acoustic carrier waveform remain the same.

E6.1.5.3 Results

Using the data in column 3 of table E6.1.1, formulæ (E6.1.1) to (E6.1.5) in section E6.1.4 were
used to form estimates of the five measurands. These estimates are given in column 2 of table
E6.1.2.

Table E6.1.2: Measurand estimates and their associated standard uncertainties

Quantity Estimate Std. unc. Rel. std. unc./%

Current New Current New

Jet velocity vx/ms−1 161 8 3 4.7 1.9
Speed of sound C/ms−1 401 4 2 1.1 0.6
Exhaust temperature T/K 405 10 7 2.5 1.6
Nozzle exit Mach number M 0.402 0.015 0.005 3.7 1.3
Nozzle thrust F/kN 17.8 1.3 0.5 7.4 2.9

As said, the expanded uncertainties in column 4 of table E6.1.1 were halved, assuming underlying
normality, to give the standard uncertainties associated with the values in column 3 of that table.
These standard uncertainties were squared to form the corresponding variances, which were
used as the diagonal elements of the diagonal covariance matrix V x in expression (E6.1.7).
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The sensitivity matrix C x , given in table E6.1.3, was formed using the complex step method
(appendix E6.1.C.3). The ith numbered row corresponds to the ith element of the vector input
quantity in expression (E6.1.6) and the jth numbered column to the jth vector output quantity.
The unit of the element in row i and column j is the unit of the jth measurand divided by that of
the ith input quantity. A check was made on the calculation using the finite-difference method
outlined in section E6.1.C.2 to form an approximate sensitivity matrix. The relative difference
between the 2-norms of the two matrices was O (1× 10−8), so confirming the adequacy of these
calculations.

Table E6.1.3: Sensitivity matrix provided by the complex step method (blank = zero element).
The unit of the element in row i and column j is the unit of the jth measurand divided by that
of the ith input quantity

1 2 3 4 5

1 1.560× 103 6.975× 102 1.412× 103 3.192 2.822× 105

2 −2.265× 103 −1.013× 103 −2.050× 103 −4.635 −4.098× 105

3 −1.336× 103 −7.576× 102 −1.533× 103 −2.572 −2.274× 105

4 2.672× 103 1.515× 103 3.066× 103 5.145 4.548× 105

5 8.505× 105 3.803× 105 7.696× 105 1.741× 103 1.539× 108

6 −9.815× 105 −5.567× 105 −1.126× 106 −1.890× 103 −1.671× 108

7 2.265× 104

8 −1.413
9 −2.938× 102 1.289× 104

10 1.755× 10−1

Formula (E6.1.11) in appendix E6.1.B gives the generalization of the LPU to a multivariate mea-
surand. Insertion of V x and C x into that formula gives the covariance matrix V y of dimen-
sion 5×5 associated with the estimates of the five measurands. The square roots of the diagonal
elements of V y are the standard uncertainties associated with those estimates. They are given in
column 3, marked ‘Current’, of table E6.1.2. Relative standard uncertainties, that is, these stan-
dard uncertainties divided by the corresponding estimates in column 2 are given in column 5.

V y is a full matrix (units not given here but they are the appropriate products of the units of the
elements of y):

V y =











58.6559 30.1900 61.0905 0.1161 10258.7839
30.1900 15.7465 31.8636 0.0595 5261.7129
61.0905 31.8636 85.8935 0.1205 9795.2098
0.1161 0.0595 0.1205 0.0002 20.3164

10258.7839 5261.7129 9795.2098 20.3164 1834599.2814











.

The diagonal elements of V y are the squares of the standard uncertainties associated with y , that
is [u2(vx) u2(C) u2(T ) u2(M) u2(F)], and the covariances between pairs of estimate are the off-
diagonal elements. For instance, the element in row 1 and column 2 is the covariance between
the first and second elements of the measurand vector y , namely, that between vx and C .
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It is virtually impossible to say anything concrete about the magnitudes of the correlations be-
tween the various quantities following a cursory examination of the elements of V y . However,
the correlation matrix associated with y obtained for the original data is

Ry = D−1V y D−1 =











1.000 0.993 0.861 1.000 0.989
0.993 1.000 0.866 0.989 0.979
0.861 0.866 1.000 0.857 0.780
1.000 0.989 0.857 1.000 0.989
0.989 0.979 0.780 0.989 1.000











,

where D is a diagonal matrix with diagonal [u(vx) u(C) u(T ) u(M) u(F)]. For example, the
correlation between vx and C is element (1, 2) of Ry , namely, 0.993. This and several other
correlations are very close to unity, indicating the strong mutual dependence on the input data.

Monte Carlo calculations for 1 × 107 trials, requiring about 60 s on a modest laptop computer,
reproduced the above results to within two to three significant decimal digits.

Table E6.1.4 gives the uncertainty budget for the estimate of each measurand in terms of the
contributing quantities. Rows in the table correspond to the ten input quantities and columns
to the measurands of interest. Note that the zero-nonzero structure is identical to that of the
sensitivity matrix C x in table E6.1.3 for the following reason. The entry in row i and column
j of the uncertainty budget is the product of the standard uncertainty u(x i) associated with
the ith input quantity x i and the magnitude of ci, j , the first-order partial derivative (sensitivity
coefficient) of the jth measurand with respect to the ith input quantity evaluated at the input
estimates. By comparison, the corresponding element in the sensitivity matrix in table E6.1.3 is
simply ci, j . So, since the input standard uncertainties are all non-zero, u(x i)|ci, j| will be zero or
non-zero according to whether ci, j has this property. The standard uncertainties associated with
the measurand estimates take the values given in the antepenultimate row of the table, marked
‘Combined’.

Inspection of table E6.1.4 reveals that the standard uncertainties associated with measured times
of flight, τUS and τDS, make the largest contributions to the estimates of all measurand.

To improve measurand uncertainties, it is well worth reducing the uncertainties associated with
times of flight. If hypothetically they could be reduced to zero, the standard uncertainties asso-
ciated with the measurand estimates would take the values given in the penultimate row of the
table, marked ‘Combined∗’. Consequently, all measurand uncertainties would be reduced by over
45 % with the exception of that for gas temperature T , which would be reduced by over 30 %.

Of course, such reductions are totally unrealistic but give an indication of the limit of achievement
consequent on improving time of flight uncertainties.

E6.1.6 Interpretation of results

E6.1.6.1 Validation of results

Attention has been paid to validating the results of the uncertainty evaluation. The use of the LPU
requires first-order partial derivatives of the five measurands with respect to the ten input quan-
tities. The measurands are given by relatively simple formulæ (E6.1.1) to (E6.1.5) but they form
a cascade of calculations as indicated in figure E6.1.2. Calculating partial derivatives analytically
thus involves repeated application of the chain rule of differential calculus, with considerable
scope for algebraic error. As a consequence, several approaches for automatic calculation of
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Table E6.1.4: Uncertainty budget for measurand estimates in terms of the contributing quantities

Measurand (output quantity)

vx/(m s−1) C/(m s−1) T/K M F/kN
Input quantity

∆xUS/m 1.6 0.7 1.4 0.0032 282
∆xDS/m 2.3 1.0 2.0 0.0046 410
∆yUS/m 1.3 0.8 1.5 0.0026 227
∆yDS/m 2.7 1.5 3.1 0.0051 455
τUS/ms 4.3 1.9 3.8 0.0087 769
τDS/ms 4.9 2.8 5.6 0.0095 835
A/m2 36
R/(J kg−1 K−1) 1.4
γ 4.4 193
ps/Pa 9

Combined 7.7 4.0 9.3 1.52 1354
std. unc.

Combined∗ 4.1 2.1 6.3 8.0 738
Reduction/% 47 47 32 47 46

these derivatives were reviewed: symbolic algebra, the complex step method and finite differ-
ences. The latter two approaches were applied and found to be in agreement to a numerical
precision far surpassing that required in the application. As a further test, the MCM was applied
with a large number of trials (1 × 107) after assigning normal distributions to input quantities
with parameters defined in terms of the provided estimates and associated standard uncertain-
ties. Agreement of results with those for the complex step method was found to the numerical
precision expected of the MCM with that number of trials.

We also checked some of the derivative calculations by obtaining manually analytical expressions
for some of the partial derivatives, employing the chain rule of differential calculus. We also used
the symbolic calculation engine [482] to check these derivatives.

Concerning the formulæ themselves that specify the measurands, it is not possible to make any
statement about their faithful implementation on the computer apart from the authors their-
selves verifying that the results are reasonable in the context of the application. This check was
undertaken.

E6.1.6.2 Experimental design considerations

Some progress can be made on implementing experimental design principles. Times of flight in
terms of the considered configuration can be determined from equation (E6.1.2). If the deter-
mined values of C and vx are used in this equation, the computed time of flight τUS (and τDS
similarly) would be recovered:

τUS =
−∆xUSvx + [(∆xUSvx)2 + (C2 − v2

x )(∆x2
US+∆y2

US)]
1/2

C2 − v2
x

,
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which we express in terms of nozzle exit Mach number M = vx/C [expression (E6.1.4)] as

τUS =
−M∆xUS+ [∆x2

US+ (1−M2)∆y2
US]

1/2

(1−M2)C
.

To avoid the potential loss of numerical precision for M close to unity, we rationalize the expres-
sion by multiplying both numerator and denominator by the conjugate of the former, giving

τUS =
∆x2

US+∆y2
US

C{M∆xUS+ [∆x2
US+ (1−M2)∆y2

US]1/2}
, (E6.1.8)

with a comparable expression for τDS.

In terms of the assumption in section E6.1.3.1 that C and vx are constant over the medium, other
configurations can be considered by changing the displacements ∆xUS, ∆yUS, ∆xDS and ∆yDS.
Suppose a single change is made to the configuration: move receiver 1 further upstream, that
is, change ∆xUS from −0.2 m to a different value. Expression (E6.1.8) and and its counterpart
for τDS provide the corresponding times of flight for the new configuration: ∆xUS will change
in value but, as expected, τUS will be unaltered. The estimates of the primary measurands vx ,
C , T , M and F will be unaltered but their associated relative standard uncertainties will change.
Figure E6.1.5 shows the manner in which the relative standard uncertainty in two of the mea-
surands, exhaust thrust F and jet velocity vx , varies as a function of ∆xUS.

Figure E6.1.5: Relative standard uncertainty urel(vx) in exhaust thrust F and (right) jet velocity
vx as functions of displacement ∆xUS of receiver 1 from source in x-direction

Changing∆xUS from the original value of −0.2 m to −0.3 m has a relatively large benefit: urel(F)
changes from 7.4 % to 4.6 % and urel(vx) from 4.7 % to 3.0 %.

The results of the calculation with the data revised such that only∆xUS is changed, from −0.2 m
to −0.5 m, are given in columns 4 and 6 marked ‘New’ in table E6.1.2. In that instance,

τUS = 3.71ms, τDS = 2.79ms

and, as expected, τUS has changed and τDS is unaltered. The estimates of the primary measur-
ands vx , C , T , M and F are unchanged, as anticipated, but their associated relative standard
uncertainties have improved, mostly lying between approximately one third and one half of their
previous values. The only exception is T , for which the standard uncertainty is about two thirds
of its original value.
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E6.1.6.3 Suggestions for further work

1. The two receivers are generally arranged such that they are shifted axially from each other,
that is, the horizontal spacing is the same for both receivers (∆yDS = ∆yUS). As stated,
the approach considered is general and would operate with alternative spacings in the x-
and y-directions. Optimization of the measurand standard uncertainties over a prescribed
region for the location of the sources and receivers is possible, but the practicalities of
re-positioning sources and receivers must be respected.

2. If further calculations are to be carried out with some or all of the measurands, namely, vx ,
C , T , M and F , account must be taken of the especially high correlations associated with
their values. Otherwise, any resulting uncertainties will be invalid.

3. Further study of the methods used for measuring displacements and times of flight might
identify some common effects across individual observations, which would induce correla-
tion in the input data. Using the principles expounded in [5], the input covariance matrix
(section E6.1.5) would be modified to take account of the necessary covariance terms, and
the process would proceed in the same manner.

4. Only the homogeneous case is covered in the treatment here. Subsequent work would
usefully consider the case when the flow and temperature become non-uniform throughout
the exhaust. The use of a number of sources and receivers and determining TOFs between
them could be beneficial. With a criss-cross pattern of paths and the use of least squares,
the non-uniform effects would be averaged out to some extent.

E6.1.A Derivation of formulæ for the speed of sound and flow ve-
locity

Formulæ are derived for the speed of sound and flow velocity.

Let β1 denote the angle between the y-axis and path 1 (from the source to receiver 1) in fig-
ure E6.1.4. Using ‘distance = velocity × time’ in the x- and y-directions,

∆xUS = (vx + C1 cosβ1)τUS,

∆yUS = C1τUS sinβ1,

where C1 is the (average) speed of sound along the path (also see [477, 478, 483]). There are
similar expressions for path 2 (from source 1 to receiver 2) involving angle β2 between the y-axis
and path 2. Upon applying cos2 θ + sin2 θ = 1 for θ = β1 and θ = β2,

C2
1 =

�

∆xUS

τUS
− vx

�2

+
�

∆yUS

τUS

�2

, C2
2 =

�

∆xDS

τDS
− vx

�2

+
�

∆yDS

τDS

�2

.

Then, using assumption 2 in section E6.1.3.1, the speed of sound in the medium C = C1 = C2,
implying formula (E6.1.2) in section E6.1.4.

C2 =
�

∆xUS

τUS
− vx

�2

+
�

∆yUS

τUS

�2

=
�

∆xDS

τDS
− vx

�2

+
�

∆yDS

τDS

�2

. (E6.1.9)
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Solving equation (E6.1.9) for vx gives

vx =
1
2

∆x2
DS+∆y2

DS

τ2
DS

−
∆x2

US+∆y2
US

τ2
US

∆xDS

τDS
−
∆xUS

τUS

(E6.1.10)

as the uniform flow velocity vx in the direction of flow (x-direction).

Thus, the speed of sound depends on flow velocity and the downstream (or upstream) displace-
ments and times of flight. In turn, vx is calculated from both upstream and downstream displace-
ments and times of flight.

E6.1.B The generalization of LPU to multivariate measurands

GUM Supplement 2 (GUM-S2) [4] gives an extension of the LPU to multivariate measurands, m
in number and N input quantities, for which a brief outline is given here.

The relationship between a multivariate output quantity Y = (Y1, . . . , Ym)⊤ and a multivariate
input quantity X = (X1, . . . , XN )⊤ is specified by a multivariate measurement model

Y = f (X), f = ( f1, . . . , fm)
⊤,

where f denotes the multivariate measurement function.

Given an estimate x of X , the ‘plug-in’ estimate of Y is

y = f (x ).

The covariance matrix of dimension m×m associated with y is

V y =





u(y1, y1) · · · u(y1, ym)
...

. . .
...

u(ym, y1) · · · u(ym, ym)



,

where u(yi , y j) is the covariance associated with yi and y j and u(y j , y j) = u2(y j), given by [81,
page 29]

V y = C x V x C⊤x (E6.1.11)

and C x is the sensitivity matrix given by evaluating

C X =













∂ f1
∂ X1

· · ·
∂ f1
∂ XN

...
. . .

...
∂ fm

∂ X1
· · ·

∂ fm

∂ XN













at X = x .
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E6.1.C Methods for obtaining sensitivity coefficients

E6.1.C.1 Symbolic differentiation

Symbolic differentiation uses algebraic expressions or formulæ (such as in section E6.1.4) for the
functions involved. It applies the rules for differentiation together with a database of derivatives
of special function, to provide formulæ for the derivatives. Software for symbolic differentiation
essentially mimics the steps taken in deriving the formulæ analytically. Further, we checked some
of the partial differential calculations using the symbolic algebra package [482].

An advantage is that formulæ are provided that can be directly incorporated in software. Dis-
advantages are that the formulæ produced can contain unwieldy expressions and there is no
guarantee that they are in a numerically stable form for evaluating the derivatives.

E6.1.C.2 Partial derivatives by finite differences

The forward difference approximation to the first derivative of a function f is [484]

f ′(x)≈
f (x + h)− f (x)

h
(E6.1.12)

with discretization error−hf ′′(η)/2, where h is the step size, for someη in the interval [x , x + h].
Generally, a better, very popular central difference approximation is [484]

f ′(x)≈
f (x + h)− f (x − h)

2h

with discretization error −h2 f ′′′(η)/6 for some η in the interval [x , x + h]. h is usually selected
such that the sum of the magnitudes of the round-off error and the discretization error is mini-
mized. Its optimal choice in that regard is

h=
�

3ε
|M |

�1/3

, (E6.1.13)

where ε is the machine round-off (ε ≈ 2× 10−16 for many computers) and M ≈ f ′′′(η). How-
ever, equation (E6.1.13) is primarily of theoretical value and can hardly be used in practice to
determine h because to obtain the third derivative or a bound for it is a more demanding task
than approximating the first derivative itself. We have found empirically that h = ε1/2|x | seems
to be a reasonable choice for the current application.

E6.1.C.3 Partial derivatives by the complex step method

The use of the complex step method in metrology is considered in [40,481] (see section E6.1.C.3),
where the original references to the method are also to be found. There also is interest in the
aeronautics industry with the method [485,486], where its advantages have been expounded.

The method utilizes a minute imaginary step size in expression (E6.1.12), which means that
the rounding error associated with the conventional finite difference formulation is completely
avoided and thus the derivative is approximated to very close to full machine precision. A brief
description of the method is given. It is capable of delivering first derivatives to a relative nu-
merical accuracy of O (ε).
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Consider the output quantity Y in a univariate measurement model Y = f (X1, . . . , XN ) or one
component of a multivariate measurement model having input quantities X1, . . . , XN , where the
measurement function f is given by a mathematical expression or algorithm.

Rather than approximate f ′(x) using expression (E6.1.12), it is defined [487] by

f ′(x)≈
1
h
ℑ f (x + ih),

where ℑ denotes ‘imaginary part’ and h is a positive value very much smaller than unity.

This method is applicable when the real types in the software that implements the model can be
replaced by complex types. Such types are supported by several popular computer languages.

The complex-step method is similar to finite differences but uses complex arithmetic to obtain
first derivatives. The Taylor expansion of a function f of a complex variable is

f (z +w) =
∞
∑

r=0

wr

r!
f (r)(z),

where z and w are complex. Setting z = x and w= ih, where x is real and h is real, positive and
small, and taking real and imaginary parts,

ℜ f (x + ih) = f (x)−
h2

2
f ′′′(x) +O (h4), ℑ f (x + ih) = hf ′(x)−

h3

6
f ′′′(x) +O (h5),

from which

f (x) =ℜ f (x + ih), f ′(x) =
1
h
ℑ f (x + ih),

with truncation errors of O (h2). Unlike the use of a finite-difference formula for f ′(x), h is chosen
to be very small with no concern about the loss of significant digits through subtraction cancel-
lation. In the work of the first author, the method is routinely applied with h= 10−100 [488],
suitable for all but pathologically-scaled problems. Also see references [40,489].

A simple example of the use of the ih method is as follows. Consider the first derivative f ′(x) of
the mathematical function

f (x) =
(1+ x)(1+ 2x)
(1+ 3x)(1+ 4x)

evaluated at x = 1. A MATLAB implementation is

h = 1e-100;
x = 1 + sqrt(-1)*h;
f = (1 + x)*(1 + 2*x)/((1 + 3*x)*(1 + 4*x));
dfdx = imag(f)/h;

The exact value of f ′(1) is −23/200, which the above code delivers correct to within one binary
digit of full machine precision.
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E6.1.D The Monte Carlo method for uncertainty evaluation

From the Bayesian perspective, the MCM is the ‘gold standard’ for uncertainty evaluation. The
input quantities in a measurement model are assigned appropriate probability distributions as
befits knowledge of those quantities. The method involves evaluating the measurement model
very many times for values of the input quantities chosen randomly from their probability dis-
tributions, from which the required results are derived. Considerable advantages are that no
derivative calculation is required and, with a sufficiently large number of evaluations, any mea-
surement model can be treated no matter how complicated and ‘how non-linear’ it is. Conversely,
the GUM uncertainty framework (GUF) applies only for linear models or models that can safely
be linearized.

The Monte Carlo method for uncertainty evaluation can be summarized as follows [3]. Consider
a univariate measurement model, or one component of a multivariate measurement model, of
the form

Y = f (X1, . . . , XN ).

Assign a probability distribution to each of the input quantities X1, . . . , XN . Consider a large
number M of Monte Carlo trials. In the rth trial, draw randomly from the probability distribution
for each input quantity, and use the measurement model to compute the corresponding value Yr
of Y . The values Yr , r = 1, . . . , M , constitute a sample from the probability distribution for Y .
M should be chosen to be sufficiently large so that a representative sample of the probability
distribution of the output quantity Y is obtained. The approach here applies to independent
input quantities. For details of its extension to dependent input quantities, see GUM-S1 [3], and
for a multivariate output quantity, see GUM-S2 [4].
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Example E6.2

Calibration of a torque measuring
system – GUM uncertainty evaluation
for least-squares versus Bayesian
inference

S. Martens, K. Klauenberg, C. Elster

E6.2.1 Summary

This example addresses the straight-line calibration of a torque measuring sensor against a refer-
ence system using measurements taken at different torque values. For each torque value, a single
measurement result of the reference system is available, together with results of repeated mea-
surements of sensor that shall be calibrated. The goal is to determine a linear relationship that
relates results of the torque measuring sensor with those of the reference system. The data are
analysed by applying (i) ordinary and weighted least-squares estimation in combination with an
uncertainty evaluation following the GUM and (ii) Bayesian inference. Analytic expressions are
given for the Bayesian uncertainty analysis which simplifies its application. The results obtained
by the different approaches are discussed and recommendations given.

E6.2.2 Introduction of the application

Straight-line calibration of a torque measuring sensor, which are made of a strain gauges, against
a reference system is addressed. The data are partly taken from example B2 of the guideline
VDI/VDE 2600 part 2 [490]. The goal of the calibration is to determine a functional relationship
between results obtained by the sensor and those of a reference system. Measurements have
been carried out at different values of torque by the considered sensor and the reference system.
For each torque value, a single measurement has been conducted by the reference system and
a number of repeated measurements by the considered sensor. Table E6.2.1 shows the data,
where repeated measurement results of the sensor have been summarized through their means
and standard deviations, respectively. For further details about the measurements the reader is
referred to [490].
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i x i Mean yi SD Si ni
N m N m N m

1 0.101 0.095 0 0.005 5 6
2 0.201 0.196 6 0.005 2 6
3 0.305 0.301 6 0.004 1 6
4 0.501 0.498 3 0.004 1 6
5 1.001 1.008 3 0.009 8 6
6 3.000 3.026 6 0.008 2 6
7 4.001 4.046 6 0.012 1 6
8 5.007 5.066 6 0.037 9 3

Table E6.2.1: Summary statistics for
part1of the measurement data given in
the guideline [490][table B6, p. 43].
The summary statistics include mean
yi = n−1

i

∑ni
j=1 yi j and standard deviations

(SD) Si =
�

(ni − 1)−1
∑ni

j=1(yi j − yi)2
�1/2

of
the ni measurement results yi j of the consid-
ered sensor at the i-th torque level; x i denotes
the corresponding measurement result of the
reference system. These summary statistics are
available online in repository [35].
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Figure E6.2.1: Visualization of the data. Re-
peated measurements (dots) are indistinguish-
able from the mean values (crosses) in this pre-
sentation. The dashed line represents the iden-
tity y = x .

This example provides guidance for the evaluation of uncertainty in the estimation of a calibra-
tion curve from data like those in table E6.2.1. Two approaches are provided: (i) ordinary and
weighted least-squares estimation (see, e.g., ISO 28037 [77]) accompanied with an uncertainty
evaluation based on the GUM [2], and (ii) a statistical approach applying Bayesian inference (cf.,
for example, [65]). Explicit expressions are given for the Bayesian uncertainty analysis which
simplifies its application.

E6.2.3 Specification of the measurand

Let X denote the applied torque, in what follows called stimulus, and Y the corresponding quan-
tity measured by the considered sensor, below denoted as response. The linear relation

Y = βX (E6.2.1)

is assumed to model the relationship between the measured responses of the considered sensor
and the applied stimulus. Model (E6.2.1) represents a straight line with zero offset. The latter
has been chosen for physical reasons which is supported by the observed data (cf. figure E6.2.1).
The measurand is the slope parameter β of the particular straight line model (E6.2.1). The input
quantities are Y1, . . . , Yp (with p = 8 in our example) which correspond to the measurement
results at the considered torques X1, . . . , Xp. The variability associated with the measurement
results x1, . . . , xp of the reference device are considered as small enough so that they can be
neglected.

1The original analysis includes data points (0,0) which support the assumed relationship (E6.2.1). To prevent
double counting information, we omit the data point (0, 0) in the our consideration.
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E6.2.4 Measurement model

The uncertainty evaluations presented in this example are based on two different models. The un-
certainty evaluation following the GUM in connection with ordinary and weighted least-squares
estimation is based on a measurement model in which the measurand is represented as a function
of the input quantities. An estimate of the measurand is then obtained by evaluating this mea-
surement model using the estimates of the input quantities. The uncertainty associated with the
resulting estimate for the measurand results from a propagation of the uncertainties associated
with the estimates of the input quantities through this measurement model.

The Bayesian inference is based on a statistical model for the observed data, and the measurand
enters as one of the parameters of the statistical model. The Bayesian inference can account
for prior knowledge about the measurand. It results in a probability distribution for the mea-
surand which can be viewed as the final complete result. Mean and standard deviation of that
distribution can be taken as an estimate and standard uncertainty for the measurand. Bayesian
uncertainty analysis can be viewed as being reached through the Bayesian inference, rather than
by a process of propagating input uncertainties through a measurement model in the sense of
the GUM.

E6.2.4.1 Ordinary and weighted least-squares

Application of weighted least-squares estimation determines an estimate bβ for the measurand by
minimizing

Q =
p
∑

i=1

ni
∑

j=1

Wi

�

yi j − β x i

�2
=

p
∑

i=1

Wi{ni (yi − β x i)
2 + (ni − 1)S2

i } (E6.2.2)

with respect to β . In (E6.2.2), yi and Si represent mean and standard deviation of the repeated
measurement results yi j , j = 1, . . . , ni , of the considered sensor at the i-th stimulus x i , and Wi

denote some weights, i = 1, . . . , p. The solution bβ to this minimization problem is given by

bβ =

� p
∑

i=1

niWi x
2
i

�−1 p
∑

i=1

niWi x i yi . (E6.2.3)

The measurement model will now be defined as

β =

� p
∑

i=1

niWi x
2
i

�−1 p
∑

i=1

niWi x iYi , (E6.2.4)

i.e., by replacing the estimates yi in (E6.2.3) with corresponding quantities Yi . Note that a
measurement model in the sense of the GUM is always a model between quantities. Since the
estimates x i of the stimulus are treated as being exact, the actual quantity X i in (E6.2.4) has al-
ready been replaced with the known values x i in this example. Ordinary least-squares estimation
is obtained by choosing weights Wi = 1, i = 1, . . . , p.

E6.2.4.2 Statistical model

A statistical model specifies the distribution from which the observed data is taken as a realization.
The subsequent statistical model assumes that all single measurements yi j , j = 1, . . . , ni , i =
1, . . . , p, are realizations of independently and normally distributed random variables Yi j with
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means equal β x i and variances σ2
i , i.e.

Yi j|β ,σ2
i ∼ N

�

β x i ,σ
2
i

�

. (E6.2.5)

In (E6.2.5), the x i denote the known stimuli and the σ2
i the unknown variances to be inferred.

The likelihood function is the probability for the observed data viewed as a function of the un-
known parameters. For the statistical model (E6.2.5) the likelihood function is given by

l(β ,σ2; data)∝
p
∏

i=1

(σ2
i )
−ni/2 exp

�

−
1

2σ2
i

�

(ni − 1)S2
i + ni (yi − β x i)

2�
�

, (E6.2.6)

where σ2 = (σ2
1, . . . ,σ2

p)
⊤, yi and Si denote mean and standard deviation of yi j , j = 1, . . . , ni ,

and “data” summarizes the sufficient statistics y1, . . . , yp, S1, . . . , Sp of the data, see table E6.2.1.

E6.2.5 Estimation and uncertainty evaluation

E6.2.5.1 GUM uncertainty propagation

The measurement model in (E6.2.4) contains input quantities Yi , i = 1, . . . , p. For each of these
input quantities a series of repeated measurement results yi j , j = 1, . . . , ni is available. In follow-
ing the GUM, mean and scaled standard deviation Si/

p
ni are taken as estimate yi and associated

standard uncertainty u(yi) for Yi . The estimates and standard uncertainties for the input quan-
tities are listed in table E6.2.2.

According to the GUM [2], the estimate bβ for β is taken as value of the measurement model
(E6.2.4) when inserting the estimates from table E6.2.2 for the input quantities, i.e.

bβ =

� p
∑

i=1

niWi x
2
i

�−1 p
∑

i=1

niWi x i yi . (E6.2.7)

The (squared) standard uncertainty is obtained by

u2
�

bβ
�

=
p
∑

i=1

�

∂ β

∂ Yi

�

�

�

�

Yi=yi

�2

u2(yi) =

∑p
i=1 (niWi x i)

2 u2(yi)
�∑p

i=1 niWi x
2
i

�2 .

If the weights are chosen according to niWi = 1/u2(yi), one obtains

u2
�

bβ
�

=

� p
∑

i=1

x2
i

u(yi)2

�−1

, (E6.2.8)

and for ordinary least-squares estimation with Wi = 1

u2(bβ) =

∑p
i=1 (ni x i)

2 u2(yi)
�∑p

i=1 ni x
2
i

�2 . (E6.2.9)

Assuming a Gaussian distribution for β , a 95% coverage interval is given by
�

bβ − 1.96u
�

bβ
�

, bβ + 1.96u
�

bβ
��

. (E6.2.10)

Examples of evaluating measurement uncertainty First edition



Example E6.2. Torque calibration: GUM uncertainty versus Bayesian inference 505

Table E6.2.2: For the data in table E6.2.1 and measurement model (E6.2.4), the estimate and
standard uncertainty is listed for each input quantity (N m).

Input quantity Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Estimate yi 0.095 0 0.196 6 0.301 6 0.498 3 1.008 3 3.026 6 4.046 6 5.066 6
Standard un-
certainty u(yi) 0.002 2 0.002 1 0.001 7 0.001 7 0.004 0 0.003 3 0.004 9 0.021 9

E6.2.5.2 Bayesian uncertainty analysis

In a Bayesian inference one combines the prior knowledge about the measurand (and other
unknowns) with the information contained in the data through application of Bayes’ theorem.
The result is the posterior distribution which summarizes the knowledge about the measurand
(and other unknowns in the statistical model (E6.2.5)) conditional on the observed data. In our
case, the posterior is given through the following probability density function (PDF)

π(β ,σ2|data)∝ π(β ,σ2)l(β ,σ2; data) , (E6.2.11)

where l(β ,σ2; data) denotes the likelihood function (E6.2.6) for the assumed statistical
model (E6.2.5), and π(β ,σ2) the employed prior for β and σ2 = (σ2

1, . . . ,σ2
p)
⊤. From the joint

posterior (E6.2.11), the marginal posterior π(β |data) for the measurand is obtained through
marginalization according to

π(β |data) =

∫ ∞

0

. . .

∫ ∞

0

π(β ,σ2|data)dσ2
1 . . . dσ2

p . (E6.2.12)

The marginal posterior (E6.2.12) is a PDF that can be seen as the complete Bayesian uncertainty
analysis for the measurand. Summary statistics of this PDF may be sufficient in many cases, and
one can consider in line with the GUM the posterior mean,

bβ =

∫ ∞

−∞
π(β |data)βdβ (E6.2.13)

as the Bayesian estimate, and the posterior standard deviation as the associated standard uncer-
tainty u(β), where

u2(β) =

∫ ∞

−∞
π(β |data)(β − bβ)2dβ . (E6.2.14)

Note that from a Bayesian point of view the standard uncertainty characterizes the uncertainty
about the quantity β , rather than the uncertainty about its estimate bβ (which is known exactly).
For this reason, the notation u(β) is used in equation (E6.2.14) rather than u(bβ). Finally, a 95 %
credible interval [β ,β] can be calculated from the posterior (E6.2.12) which satisfies

∫ β

β

π(β |data)dβ = 0.95 . (E6.2.15)

Equation (E6.2.15) does not uniquely determine a credible interval and further conditions need
to be posed, for example that the credible interval is symmetric around the Bayes estimate, prob-
abilistically symmetric, or of shortest length, cf. also [3].
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Informative prior

Below, π(β) denotes a PDF that models the prior knowledge about the measurand β . bσ2
i are

the prior guesses of the variances σ2
i , i = 1, . . . , p, which have to be inferred. Assume that the

reliability of these variance guesses can be expressed in terms of chosen coefficients of variations
ci . In using inverse Gamma distributions to model such prior knowledge, the parameters ai and
bi of the inverse Gamma distributions are then determined through

ai = 2+
1

c2
i

, bi = (ai − 1)bσ2
i , (E6.2.16)

i.e., the prior knowledge about each σ2
i is modelled by a distribution with mean bσ2

i and variance
c2

i (bσ
2
i )

2. The resulting marginal posterior for the measurand is then obtained as

π(β |data)∝ π(β)
p
∏

i=1

tni−1+2ai

�

β; yi/x i , ((ni − 1)S2
i + 2bi)/(ni x

2
i [ni − 1+ 2ai])

�

, (E6.2.17)

where π(β) denotes the prior PDF for β , and tν(x; m, s2) stands for the PDF of a scaled and
shifted t-distribution with ν degrees of freedom, i.e.

tν(x; m, s2)∝
�

1+
1
ν

(x −m)2

s2

�− ν+1
2

, (E6.2.18)

cf. also [3]. The univariate PDF (E6.2.17) is easily evaluated, and the summary statis-
tics (E6.2.13)–(E6.2.15) can immediately be obtained through standard procedures of numerical
quadrature. Note that for evaluating (E6.2.17) it is advantageous to calculate the logarithm of
π(β |data) first, and applying the exponential function afterwards.

In this example no true prior knowledge has been available. For the purpose of illustration, hy-
pothetical prior knowledge in form of a normal distribution for β with mean 1 and standard
deviation 0.1 has been used, accompanied with guesses bσ2

i for the variances that have been
taken as the observed variances S2

i . The reliability of the variance estimates was modelled by a
coefficient of variation equal to unity, ci = 1, i = 1, . . . , p. Note that prior knowledge is informa-
tion available before measurements are preformed. True prior knowledge will and shall not be
deductions of observed data, as in this illustrative case.

Noninformative prior

The case of vague prior knowledge can be modelled by choosing a vague prior for the measurand
π(β) which has large variance, together with parameters ai and bi of the inverse Gamma distri-
butions which approach zero. In this case the inverse Gamma distributions (taken to model prior
knowledge about the variances) are distributions with huge tails and they do not even possess a
finite expectation. The posterior (E6.2.17) then approaches

π(β |data)∝
p
∏

i=1

tni−1(β; yi/x i , S2
i /(ni x

2
i )) , (E6.2.19)

which is also formally obtained when using the following non-informative prior [65]

π(β ,σ2)∝
p
∏

i=1

1

σ2
i

(E6.2.20)

from the start.
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Method bβ u(bβ)
95% coverage /
credible interval

a.u. a.u. a.u.

OLS-GUM 1.010 7 0.001 5 [1.007 7,1.013 6]

WLS-GUM 1.008 5 0.000 8 [1.007 0,1.010 0]

Bayes 1.009 2 0.001 1 [1.007 0,1.011 2]

Bayes-Info 1.009 1 0.000 9 [1.007 3,1.010 8]

Table E6.2.3: Results obtained by ordinary
least-squares (OLS-GUM) and weighted least-
squares (WLS-GUM) with uncertainty eva-
luation according to the GUM, as well as
results from a Bayesian uncertainty analysis
with (Bayes-Info) and without (Bayes) ac-
counting for vague prior knowledge.
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Figure E6.2.2: Marginal posterior distribu-
tion π(β |data) for the measurand according
to (E6.2.19) (solid line) and (E6.2.17) (dashed
line) using a non-informative or a vague infor-
mative prior, respectively. The symbols in light
gray display the estimate bβ and 95% coverage
interval of the weighted least-squares approach
for comparison.

E6.2.6 Reporting the result

Table E6.2.3 contains the estimate, its associated standard uncertainty, and the 95% coverage in-
terval obtained by application of the GUM to ordinary least-squares method (OLS) and weighted
least-squares method (WLS) estimation, together with corresponding results for the Bayesian un-
certainty analysis. The credible intervals determined by the Bayesian uncertainty analysis were
taken as probabilistically symmetric intervals. Figure E6.2.2 shows the PDFs for the measur-
and obtained by Bayesian uncertainty analyses in comparison with the results achieved by WLS
estimation with uncertainty evaluated according to the GUM.

E6.2.7 Discussion and recommendation

The results obtained by application of the GUM to OLS and WLS estimation are different. This
difference is due to the difference of the corresponding measurement models (E6.2.4) used.
Specifically, WLS estimation with weights niWi ∝ 1/u2(yi) leads to a different estimate for the
slope and a smaller uncertainty u(bβ) than OLS estimation. In fact, these weights are “optimal”
in the sense that they lead to a minimum uncertainty under all measurement models (E6.2.4).

On the other hand, OLS does not apply “optimal” weights and results in a larger uncertainty
associated with its different estimate for the measurand. Since the corresponding measurement
model is linear in the data, the squared standard uncertainty provides an unbiased estimate
of the variance of the OLS estimator under hypothetical repeated sampling from the statistical
model (E6.2.5). From the perspective of the type A evaluation of the GUM, the corresponding
uncertainty evaluation can thus be recommended. However, OLS estimation utilizes a measure-
ment model that does not account for the fact that different observations have different variability.
That is, measurements are assigned the same weight although their variability differs by orders
of magnitude.
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The WLS estimate can be also be viewed as a solution to the statistical model (E6.2.5) if the vari-
ances σ2

i were known. For unknown variances, however, the optimal weights
niWi∝ 1/(σ2

i /ni) are also unknown. The uncertainties u(yi) approximate the optimal weights
σi/
p

ni , but they will generally be different – especially for a small number of repeated measure-
ments. Some of the observations are weighted too high and, more importantly, are also treated
by the GUM uncertainty evaluation as being more accurate than they actually are. Consequently,
the resulting uncertainty associated with the weighted least squares estimate might be too small.
This judgment is to be seen from a frequentist point of view, which corresponds to the view of
the GUM with respect to type A evaluation.

The Bayesian uncertainty analysis is based on the statistical model (E6.2.5) and does account for
the different variability in the observations. At the same time, it does not use a single estimate of
that variability to be used in a subsequent estimation of the measurand, but rather estimates the
measurand and the variability in the observations simultaneously. Due to the straight-line model,
all observations influence the estimation of all different variabilities in the observations, and
observations with large variability will have less influence in the final result for the measurand.
Furthermore, Bayesian inference allows prior knowledge about the measurand to be taken into
account. For these reasons, we recommend the Bayesian uncertainty analysis for this example.
It should be noted that also methods from classical statistics can be used to analyze the data on
the basis of the statistical model (E6.2.5) which has not been considered in this example.

Bayesian inference using our hypothetical informative prior yields very similar results to those
using the non-informative prior. The reason is that the data overrule the prior information taken
for the measurand, and that the (hypothetical) prior knowledge about the variances has been
taken only vaguely and in accordance with the observed variances. If either of these two latter
conditions for the prior of the variances is removed, the results of an informative Bayesian infer-
ence might look significantly different because each variance is modelled individually for each
stimulus value and only a small number of repeated measurement results are available. In this
case, the prior about for the variance will be more informative. In other applications it can be
reasonable to assume a common variance, which would reduce the sensitivity with respect to the
prior for the variance significantly. Furthermore, the proceeding provided for the Bayesian infer-
ence would then result in a single t-distribution for the measurand in the non-informative case,
or the product of a single t-distribution and an informative prior for the measurand otherwise.

We emphasise that the statistical model (E6.2.5) does not directly account for possible errors
in the measurement results of the reference system. In fact, the example B2 of the guide-
line VDI/VDE 2600 part 2 [490] reports non-vanishing uncertainties for them. The statistical
model (E6.2.5) account for such an additional variability to a certain extent, as it includes un-
known, individual variances for the dependent variable, that are simultaneously inferred together
with the parameters of the straight line.
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Example E6.3

Calibration and measurement
uncertainty in hardness verification

M. Griepentrog, A. Germak, A. Bošnjaković, V. Vedran Karahodžić, F. Manta, P. Pedone,
M.G. Cox

Summary

The example refers to the evaluation of the uncertainty in hardness verification considering that
repetition of tests at the same location is in general not possible. In order to improve the methods
provided by standards for the Vickers Hardness Test, Knoop Hardness Test, Rockwell Hardness
Test, Brinell Hardness Test and the Instrumented Indentation Test, a harmonised approach for
uncertainty evaluation has been developed for application to all hardness tests. Two methods,
using the GUM uncertainty framework (GUF) and Monte Carlo method (MCM), are used for the
uncertainty evaluation. Further, proposals are made on how to use measurement uncertainty in
hardness testing in conformity assessment.

E6.3.1 Introduction to the application

A statement concerning the evaluation of uncertainty is given in the normative part of all related
standards; for the Vickers Hardness Test [491], Knoop Hardness Test [492], Rockwell Hardness
Test [493], Brinell Hardness Test [494] and the Instrumented Indentation Test [495] it is stated
that a complete evaluation of the uncertainty should be carried out according to the GUM [2].

In general, for hardness tests, there are two possibilities for the evaluation of uncertainty de-
scribed in the standards:

– indirect calibration based on hardness reference blocks for the overall checking of the ma-
chine. In all related standards guidance for the evaluation of uncertainty is given in infor-
mative annexes;

– direct calibration based on the evaluation of single parameters of the machine (that is, pre-
liminary test force, total test force, indentation depth, indentor geometry, frame stiffness,
etc.). In such cases general guidance is given only in the Instrumented Indentation Test
standard.
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In hardness measurement, traceability has a four-level structure of the metrological chain nec-
essary to define and disseminate hardness scales. The chain starts at the international level
using international definitions of the various hardness scales to carry out international inter-
comparisons. A number of primary hardness standard machines at the national level “produce”
primary hardness reference blocks for the calibration laboratory level. This third level provides
calibrated hardness reference blocks that are used at the fourth level to calibrate the hardness
testing machines.

For all hardness tests specific hardness reference blocks for indirect calibration of hardness testing
machines are available and guidelines for uncertainty evaluation related to indirect calibration
traceability chain are given as informative annexes in all hardness standards.

Analysing the content of the Annexes in the standards it was found that all guidance is comparable
in general, but there are significant differences in detail making understanding, application and
comparison for users of the standards difficult. The main differences were found in the wording
and the symbols used and for calculation and considering the uncertainty of the testing machine,
as well as the treatment of the bias.

A proposal for a standard procedure for the evaluation of uncertainty applicable to all five hard-
ness tests is presented in this example.

The approach for evaluating uncertainty presented in the Annexes to the standards considers
only those uncertainties associated with the overall measurement performance of the hardness
testing machine with respect to the hardness reference blocks (designated as certified reference
material (CRM)). These performance uncertainties reflect the combined effect of all the separate
uncertainties (indirect verification).

The proposed approach, applicable to indirect hardness verification methods, has the aim to
harmonize and improve the already existing procedures described in the standards.

The harmonized approach begins with the calibration of the reference block and the testing ma-
chine in order to evaluate the uncertainty of a hardness measurement carried out on a test piece.
In addition, the proposed approach can be used for uncertainty evaluation when a statement of
conformity to specification is required.

In general in metrology, measurement uncertainty is understand as the dispersion of the values
that could reasonably be attributed to the measurand [2,89]. For hardness testing, the measurand
is the hardness at a point of the test piece surface obtained by applying a standardized method
with the dispersion relating to measurements repeated in the same way and in the same circum-
stances. The uncertainty is given as a standard deviation assuming that the measured hardness
values follow an assumed probability distribution. Usually a normal distribution is used for this
purpose.

In hardness testing it is not possible to repeat the test at the same place. This inability could
lead to a, mostly unknown, possibly significant contribution to the statistical dispersion. The
main sources of this additional contribution are (i) local changes of material properties and (ii)
change of test machine performance because of sample movement.

In daily laboratory practice, the quantitative assessment of the contributions of these sources on
a single test is not possible, at least because local changes in hardness are often the object of the
investigation.

The Student‘s t-test is a statistical test to determine, to a reasonable degree of confidence,
whether two sets of observations come from different populations. Using the t-test for analy-
sis of the measured hardness values it is possible to decide whether the difference in measured
values from sample test sets carried out at different locations describes a real change in hardness.
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The main assumption is, if the analysis using the t-test gives no evidence, that sample sets carried
out at different locations describing a real hardness change, the influence of the non-repeatability
of hardness tests at the same place on the evaluation of uncertainty can be neglected.

Example: two sets of Instrumented Indentation Hardness measurements

Two sets of Instrumented Indentation Hardness measurements A and B with NA = 6 and NB = 7
tests in the sets were carried out at different locations in a test piece. Calculated values for the
mean hardness values H ITA

, H ITB
and standard deviations sA, sB were

H ITA
= 313.0N mm−2, H ITB

= 338.6N mm−2, sA = 28.2 N mm−2, sB = 29.1N mm−2.

The according t statistic is

t =
H I TA
−H I TB

r

s2
A

NA
− s2

B
NB

= 1.58. (E6.3.1)

The appropriate reference distribution for the t statistic is the t distribution. For a degrees of
freedom NA + NB − 2 = 11 and an expected confidence level of 95 %, the critical t-value is
tcrit = 1.80. Since t ≤ tcrit we can say with 95 % confidence that the analysis using the t test
gives no evidence that the sample sets carried out at different locations describe a real change
in hardness. Hence, the influence of the non-repeatability of hardness tests at the same place on
the evaluation of uncertainty can be neglected, certainly for the data set under consideration.

For the Rockwell Hardness Test, guidance for the evaluation of the uncertainty, based on the
evaluation of all relevant sources appearing during a direct calibration, is available [496]. In the
case of this test, a mathematical relationship connecting measured quantities with hardness is not
known. The relationship between measured values and the estimated hardness value is given by
the scale definitions. Using the appropriate sensitivity coefficients, namely, the partial derivatives
of the dependent variable hardness in terms of the independent variables, the GUM [2] can be
applied to propagate standard uncertainties in the case of uncorrelated input quantities. In the
absence of a mathematical formula, the sensitivity factors are estimated experimentally.

As far as possible, the software packages delivered with the testing machines offered by the main
suppliers have been checked. Only one supplier offers a procedure based on the evaluation of
relevant sources appearing during direct calibration. Evaluating this procedure, a harmonized
and general procedure was developed, This procedure combines uncertainty from the following
contributions:

– displacement and force;
– maximum sensed displacement;
– maximum displacement;
– frame compliance;
– thermal drift;
– support spring stiffness;
– maximum force;
– stiffness;
– contact depth;
– contact area.

The advantages of the evaluation of uncertainty based on all relevant sources appearing during
a direct calibration are:
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– the evaluation of uncertainty can be made without any reference material (hardness block);

– knowing the sensitivity factors for individual sources of uncertainty it is possible to evaluate
their contribution to the combined uncertainty;

– the uncertainty contributions may be grouped into those corresponding to random and
systematic effects.

E6.3.2 Specification of the measurand

The measurand for all indentation hardness tests is hardness defined as the ratio of applied force
to contact area for a given point on the surface of the test piece under prescribed conditions.
Depending on the test, the contact area is a defined function of one or two characteristic dimen-
sions.

There are several standardized methods including the Rockwell, Vickers, Brinell, Knoop and
Instrumented Indentation Test. For the first four of these methods, the size of the indentation is
obtained after the force application process. For the Instrumented Indentation Test, indentation
size is obtained during the force application process.

The size of the indentation is determined by measuring the average length of the diagonals of
the indentation (Vickers), the longest diagonal (Knoop), the average diameter (Brinell) or the
depth (Rockwell, Instrumented Indentation Test).

E6.3.3 Measurement model

The characteristic dimensions mentioned in section E6.3.2 together with the applied force are
the measured quantities.

E6.3.3.1 Vickers hardness test

In the Vickers hardness test, the indentor is made from diamond in the form of a pyramid. The
measurand is HV. The quantities measured are the applied test force F and the length d of the
diagonal of the indentation. The measurement model is

HV = 0.1891
F
d2

. (E6.3.2)

E6.3.3.2 Knoop hardness test

The Knoop hardness test also uses a diamond indentor in the form of a pyramid. The measurand
is HK. The quantities measured are the same as for the Vickers hardness test. The measurement
model is

HK = 1.451
F
d2

. (E6.3.3)
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E6.3.3.3 Rockwell hardness test

In the Rockwell hardness test, the indentor has a specific size and shape. The measurand is
HR. The quantities measured are the applied test force F and the indentation depth h. The
measurement model, where N and S are given constants, is

HR= N −
h
S

. (E6.3.4)

E6.3.3.4 Brinell hardness test

In a Brinell hardness test, the indentor takes the form of a ball with a radius D. The measur-
and is HBW. The quantities measured are the applied test force F and the diameter d of the
indentation. The measurement model is

HBW =
0.102
π

2F

D2
�

1−
Ç

1− d2

D2

� . (E6.3.5)

E6.3.3.5 Instrumented Indentation hardness test

In an Instrumented Indentation hardness test, a diamond indentor in the form of a pyramid
(as for the Vickers hardness test) is used. The measurand is HIT. The quantities continuously
measured during force increasing (loading) and force decreasing (unloading) are the applied test
force F and the indentation depth h. The measurement model is

HIT =
Fmax

Ap(hc)
. (E6.3.6)

In equation (E6.3.6),

Ap(hc) = 24.50h2
c

is the projected (cross-sectional) area of contact between the indentor and the test piece calcu-
lated for the depth of contact hc at maximum applied test force Fmax, and

hc = hmax −
Fmax

S
. (E6.3.7)

where hmax is the maximum indentation depth and S is the slope (stiffness) of the unloading
curve.

E6.3.4 Uncertainty evaluation

This document discusses a general procedure of uncertainty evaluation based on indirect cali-
bration using a hardness reference block for the overall checking of the machine. The procedure
is applicable to all related standards. The metrological traceability chain of hardness measure-
ment, as described in clause 1 of the standards, starts from a reference material (RM) or CRM,
usually termed a hardness block, as described in clause 3 of the standards, and passed through
a calibrated Hardness Testing Machine (HTM), as described in clause 2 of the standards.
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This procedure calculates an expanded uncertainty U (at the 95 % level of confidence) associated
with the measured hardness value X of the test piece.

The general expression for the expanded uncertainty is

U = k
�

u2
HTM + u2

x + u2
msx

�1/2
, (E6.3.8)

where k is the coverage factor for a confidence level of 95 %. The contributions to the standard
measurement uncertainty u associated with X are

– uHTM, the contribution generated by the hardness testing machine;
– ux, the contribution due to the combination of the lack of measurement repeatability of the

hardness testing machine and the hardness non-uniformity of the sample under investiga-
tion;

– umsx, the contribution due to the resolution of the hardness testing machine when measur-
ing a characteristic dimension of the indentation for the sample under investigation.

The effective degrees of freedom ν associated with u is calculated with the Welch-Satterthwaite
formula [2]. The coverage factor k is taken as 2 when ν exceeds 30. Otherwise, k is calculated
using the t distribution [2, annex G].

The treatment of uncertainty made in the annexes of the standards as well as in EURAMET Cg-16
[496] implicitly assumes all contributions are uncorrelated. The same assumption is adopted in
this proposed procedure for indirect traceability.

E6.3.4.1 Standard uncertainty due to the hardness testing machine

The standard uncertainty uHTM due to the hardness testing machine (HTM) is given by

u2
HTM = u2

CRM + u2
HCRM + u2

CRM−D + u2
ms. (E6.3.9)

uCRM = UCRM/2 is the standard uncertainty corresponding to the calibration expanded uncer-
tainty UCRM associated with the certified hardness values HCRM of the CRM, according to the
calibration certificate.

uHCRM is the standard uncertainty due to the combination of the lack of measurement repeata-
bility of the HTM and the hardness non-uniformity of the CRM when measuring the CRM. Note
that the non-uniformity of the CRM is already included in uCRM; consequently, the contribution
of non-uniformity of the CRM is doubly counted. It would be desirable to have separate informa-
tion about this contribution in the CRM calibration standard uncertainty uCRM in order to avoid
this double counting.

uCRM−D is the standard uncertainty due to the drift of values certified for the CRM. Usually, the
estimate of the contribution is assumed to be 0.

ums is the standard uncertainty due to the resolution of the hardness testing machine when mea-
suring the characteristic dimension of the residual indentation in the CRM.

Standard uncertainty due to calibration

From the results of n hardness measurements Hi , (i = 1, . . . , n) on the CRM, the mean value is

H =
1
n

n
∑

i=1

Hi . (E6.3.10)
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Then, the standard deviation sHCRM and the standard uncertainty uHCRM are calculated from

s2
HCRM =

1
n− 1

n
∑

i=1

(Hi −H)2, (E6.3.11)

uHCRM =
sHCRM

n1/2
. (E6.3.12)

In the informative annexes “Uncertainty of measured hardness values” of all mentioned stan-
dards, a Student t factor of 1.14 is incorporated in the right-hand side of formula (E6.3.12).
This factor corresponds to a confidence level of 68.27 % and 4 degrees of freedom. This approach
is used in the standards in order to be combined with other contributions to the uncertainty (i)
avoiding the calculation of the effective degrees of freedom with the Welch-Satterthwaite formula
and (ii) enabling a coverage factor k = 2 to be used for evaluating the expanded uncertainty.

This procedure is not GUM-compliant and is not adopted here. It leads to the same expanded
uncertainty as delivered by the GUM uncertainty framework (GUF) only in the case where the
contribution uHCRM is dominated by the remaining contributions. Otherwise, its use leads to an
overstatement of the uncertainty.

Standard uncertainty due to resolution of measurement of characteristic distance

All hardness tests are based on the measurement of some characteristic distance d (length of
diagonal, diameter, indentation depth), to be able to calculate some characteristic area, where d
in this section is defined differently from elsewhere. For all indentation tests the hardness value
H is a function of d:

H = H(d). (E6.3.13)

The resolution for the measurement of d is denoted by δms for which a rectangular distribution
is assumed. So,

ums = C
δms

2
p

3
(E6.3.14)

with sensitivity coefficient

C =
∂ H
∂ d

. (E6.3.15)

When considering the measurement models for the various hardness measurands, sensitivity
coefficients must be calculated. Table E6.3.1 shows the sensitivity coefficients for the various
hardness tests calculated in terms of measured values of the input quantities only and also in
terms of the measurand value.

NOTE: If the measurement of the distance is obtained from a difference (or sum) of two single
measurements, like for Vickers measurements, the effect of resolution shall be considered twice.

E6.3.4.2 Standard uncertainty due to repeated measurements on the sample

From the result of n measurements X i, i = 1, . . . , n, on the sample under investigation the mean
value is

X =
1
n

n
∑

i=1

X i . (E6.3.16)
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Table E6.3.1: Sensitivity coefficients for the various hardness tests

Sensitivity coefficient C

Hardness test Measured values known only Measurand value also known

Vickers −2×0.1891F
d3 − 2

d HV

Knoop 2×1.451F
d3 − 2

d HK

Rockwell − 1
S

Brinell −0,102
π

2Fd

D4
r

1− d2

D2

�

1−
r

1− d2

D2

�2 −HBW d

D2
r

1− d2

D2

Instrumented indentation − 2Fmax
24.50h3

c
− 2

hc
HIT

Then, the standard deviation sX and the standard uncertainty uX are given by

s2
X =

1
n− 1

n
∑

i=1

(X i − X )2. (E6.3.17)

uX =
sX

n1/2
. (E6.3.18)

E6.3.4.3 Standard uncertainty due to resolution of the hardness testing machine

The standard uncertainty due to resolution of the hardness testing machine is similar to that,
ums, of the measurement of characteristic distance in section E6.3.4.1:

umsx = C
δms

2
p

3
. (E6.3.19)

C =
∂ H
∂ d

. (E6.3.20)

E6.3.4.4 Bias of the testing machine

The bias of the HTM under the particular verification conditions is

b = H −HCRM. (E6.3.21)

Because the usual calibration of the HTM is performed at several hardness values, q in number,
using different CRMs, there are different values for the bias referred to the specific hardness
values for the same HTM. The bias can be computed as the actual bias for each specific hardness
value. Alternatively, the bias b can be calculated as the arithmetic mean of the q biases b1, . . . , bq:

b =
1
q

q
∑

j=1

b j . (E6.3.22)
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Further, the standard deviation sb and the standard uncertainty ub are formed using

s2
b =

1
q− 1

q
∑

j=1

(b j − b)2, (E6.3.23)

ub =
sb

q1/2
. (E6.3.24)

Other methods can be used to take into consideration the systematic effect of the HTM, like the
correction function obtained by a linear regression of the biases at the specific hardness values.
In such a case, the bias is given by the correction function and its associated standard uncertainty
can be calculated from the regression results.

E6.3.4.5 Application of the Monte Carlo method

The above analysis method requires the evaluation of the standard uncertainty for each input
quantity and its influence on the combined standard uncertainty through a sensitivity analysis.
To provide the sensitivity coefficients, either first-order partial derivatives of the output quantity
with respect to each input quantity need to be calculated analytically or estimated experimentally.

The glsmcm is an alternative approach for obtaining the required results that avoid the sometimes-
laborious sensitivity calculations. In a specific hardness test, a limited amount of data is gathered
that is used in conjunction with the appropriate measurement model. Using the MCM the mean
and the uncertainty of the estimated hardness value can be calculated using the measured mean
and standard deviations of the input quantities. A general treatment is given in [3]. MCM is
considered below for the Vickers’ Hardness Test. Other tests are using MCM are conducted anal-
ogously.

Example: GUM and Monte Carlo method for the evaluation of uncertainty for the Vickers’
Hardness Test

The GUM’s LPU and the MCM for the evaluation of uncertainty were both applied to data from
the Vickers’ Hardness Test using the same measurement model in each case. It is assumed that
force and diagonal measurement are the most significant sources of uncertainty. Further, it is
assumed that the input quantities force and displacement are not correlated and, for MCM, the
mean values of the input quantities follow normal distributions.

For both approaches, means and standard uncertainties are based on 20 repeated measurements
during direct calibration. 2×105 Monte Carlo trials were carried out and for each trial a sample of
the input quantities from their respective PDFs was drawn. The according value of the measurand
is calculated from the measurement model. Table E6.3.2 summarizes the results obtained.

Table E6.3.2: GUM and MCM estimates and standard uncertainties for Vickers hardness test

Force/N Displacement/mm Vickers hardness/HV

GUM estimate 294.18 0.3730 401.40
GUM standard uncertainty 1.18 0.0005 1.10
MC estimate 294.22 0.3729 399.82
MC standard uncertainty 1.21 0.0005 1.06
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Taking the respective standard uncertainties in table E6.3.2 into consideration, there is no signif-
icant difference between the GUM and MC results are. The implication is that the GUM approach
is satisfactory for this data set and other data sets that are sufficiently similar.

E6.3.4.6 Uncertainty evaluation based on all relevant sources

The evaluation of uncertainty based on all relevant sources appearing during a direct calibration
assumes that the uncertainty contributions from all source are known.

If the quantities measured in indentation hardness tests for estimation of a hardness value H are
force F and some characteristic geometric dimension d, a general measurement model is

H = f (F, d). (E6.3.25)

In applying the law of propagation of uncertainty [2], the standard uncertainty uH associated
with an estimate of H can be calculated knowing the standard uncertainties uF and uD and
covariance uF,d :

u2
H =

�

∂ H
∂ F

�2

u2
F +

�

∂ H
∂ d

�2

u2
d + 2

∂ H
∂ F
∂ H
∂ d

uF,d . (E6.3.26)

The covariance uF,d is the uncertainty contribution due to possible correlation between the mea-
sured values of F and d, with F and d denoting the mean values of n simultaneous measurements:

uF,d =
1

n(n− 1)

n
∑

i=1

(Fi − F)(di − d). (E6.3.27)

The treatment of uncertainty in the annexes of the standards as well as in EURAMET cg-16 [496]
implicitly assumes all contributions to be uncorrelated. The same assumption is adopted in all
proposed procedures. This assumption can be verified with the following considerations.

Usually, the correlation coefficient r is calculated as

r(F, d) =
uF,d

uF ud
. (E6.3.28)

Using the correlation coefficient, the law of propagation (E6.3.26) can be written as

u2
H =

�

∂ H
∂ F

�2

u2
F +

�

∂ H
∂ d

�2

u2
d + 2

∂ H
∂ F
∂ H
∂ d

uF uhr(F, d). (E6.3.29)

If |r| ≪ 1, the input quantities F and d can be assumed to be uncorrelated.

Example: Test of correlation for data from an Instrumented Indentation Hardness tester

With an Instrumented Indentation Hardness tester, n= 20 tests on a sample were conducted. The
quantities maximum force Fmax and maximum displacement hmax were measured simultaneously
for every test. From these quantities the mean values Fmax = 20.130m N and hmax = 1610.1 nm
and the corresponding standard uncertainties uFmax

= 1.89µN and uhmax
= 51.5 nm were calcu-

lated. Applying equation (E6.3.28), r = 0, 0021. For this example, the input quantities can be
assumed to be uncorrelated.
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E6.3.5 Reporting the result

In section E6.3.4, the method for evaluating the uncertainty of hardness measurement was pre-
sented. The measurement is made using a calibrated hardness testing machine whose uncer-
tainty and error, called bias, have been evaluated. Depending on how the bias is considered, the
uncertainty on the hardness measurement must be treated accordingly.

If the bias is used to correct for systematic effects in case the actual bias b was calculated, the
confidence interval is expressed as

(X − b)± U . (E6.3.30)

When the average bias b is calculated, the confidence interval is expressed as

(X − b)± Ucorr. (E6.3.31)

where Ucorr is calculated considering the contribution due to the calculation of the mean bias b:

Ucorr = k
�

u2
HTM + u2

X + u2
b + u2

msx

�1/2
(E6.3.32)

with k the coverage factor for a confidence level of 95 %.

If the actual bias b is used to compute the uncertainty, the confidence interval is expressed as

X ± (U + |b|), (E6.3.33)

When the average bias b is calculated, the confidence interval is expressed as

X ± (Ucorr + |b|), (E6.3.34)

E6.3.6 Examples of calculation

E6.3.6.1 General

Examples of hardness estimation and the evaluation of the associated uncertainty are carried out
in sections E6.3.6.2 to E6.3.6.7 using the harmonized procedure summarized in section E6.3.4.6.
For the determination of the coverage factor k (usually for a confidence level of 95 %), the ef-
fective degrees of freedom νeff must be calculated considering the actual number of direct mea-
surements of the measured quantities. Note that in the Vickers Hardness test the diagonal length
used in the measurement model is the mean of the measurement of two diagonals. The force is
measured directly only in the Instrumented Indentation Test. Because in all other tests force is
only controlled to be in the required limits of the direct force calibration, the uncertainty and the
degrees of freedom for the direct calibration must be considered. Further uncertainties and de-
grees of freedom for the calibration of the CRM and for the resolution of the dimension measuring
device must be considered.

In each example, the data relates to the construction and properties of the testing machine used.
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Table E6.3.3: Rockwell Hardness values calculated from five tests made on a CRM

Test number Hardness value H/HRC

1 45.2
2 45.4
3 45.6
4 45.4
5 45.8

Mean value H 45.48
Standard deviation sH 0.23

E6.3.6.2 Rockwell calculation

Using a Rockwell Hardness Testing machine (δms = 0.2 HRC) calibrated according to ISO 6508
[493], five tests on a CRM (HCRM = 45.1 HRC, UCRM = 0.3 HRC) were conducted with a maximum
applied force of 1.47 kN. The quantities measured are the applied test force F and indentation
depth h under the final test force. Applying the measurement model (E6.3.4), the Rockwell
hardness values for all tests were calculated (table E6.3.3).

Applying equations (E6.3.14) and (E6.3.15), ums = 0.06 HRC. Using the mean value H =
45.48 HRC and the standard deviation sH = 0.23 HRC, the contribution uHCRM = 0,10, HRC was
calculated using equation (E6.3.12). The contribution uHTM = 0.27 HRC was finally calculated
using equation (E6.3.9).

Using the same Rockwell Hardness Testing machine, five tests on the sample under investigation
were conducted. Applying the measurement model (E6.3.4), the Rockwell hardness values for
all tests were calculated (table E6.3.4).

Table E6.3.4: Rockwell Hardness values calculated from five tests made on the sample under
investigation

Test number Hardness value H/HRC

1 42.4
2 42.6
3 42.0
4 42.8
5 42.2

Mean value X 42.40
Standard deviation sX 0.32

Applying equations (E6.3.19) and (E6.3.20), umsx = 0.06HRC. Using the mean value X =
42.4 HRC and the standard deviation sX = 0.32 HRC, the contribution uX = 0.29 HRC was calcu-
lated using equation (E6.3.18). Then, applying equation (E6.3.8), u = 0.31 HRC with expanded
uncertainty U = ku = 0.64 HRC (k = 2.06, νeff = 25, confidence level 95 %).
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E6.3.6.3 Instrumented Indentation Test calculation

Using an Instrumented Indentation Hardness tester (δms = 1nm) calibrated according ISO 14577-
2 [495], five tests on a CRM (HCRM = 9.4GPa, UCRM = 0.25 GPa) were conducted with a maxi-
mum applied force of 300 mN. The quantities measured are the maximum test force Fmax and
the maximum indentation depth hmax under maximum force. Applying the measurement model
(E6.3.6) the Indentation Hardness values HIT for all tests were calculated (table E6.3.5).

Table E6.3.5: Indentation Hardness values calculated from five tests made on a CRM

Test number Hardness value H GPa

1 9.385
2 9.619
3 9.446
4 9.204
5 9.447

Mean value H 9.240
Standard deviation sH 0.149

Applying equation (E6.3.14), ums = −0.011 GPa. Using the mean value H = 9.420 and the
standard deviation sH = 0.149 GPa from table E6.3.4, uHCRM = 0.067GPa was calculated. The
contribution uHTM = 0.147GPa was finally calculated applying equation (E6.3.9).

Using the same Instrumented Indentation Testing machine, five tests on the sample under inves-
tigation were conducted. Applying the measurement model (E6.3.6), the Indentation Hardness
values HIT for all tests were calculated.

Table E6.3.6: Indentation Hardness values calculated from five tests made on the sample under
investigation

Test number Hardness value H/GPa

1 1.533
2 1.409
3 1.419
4 1.328
5 1.272

Mean value X 1.392
Standard deviation sx 0.099

Applying equation (E6.3.14), ums = −0.05GPa. Using the mean value X = 1.392GPa and the
standard deviation sx = 0.099 GPa from table E6.3.5, ux = 0.044GPa. Finally, applying equation
(E6.3.8), u = 0.156GPa and the appropriate expanded uncertainty U = ku = 0.32 GPa (k =
2.06, νeff = 25, confidence level 95 %).
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E6.3.6.4 Vickers calculation

Using a Vickers Hardness Testing machine (δms = 0.1µm, calibrated according to ISO 6507
[491], five tests on a CRM (HCRM = 400 HV, UCRM = 5 HV) were conducted. The quantities mea-
sured are the applied test force F = 292.4N and the mean length d of two measured diagonals
after removal of the test force: see table E6.3.7. Applying the measurement model (E6.3.2), the
Vickers hardness values for all tests were calculated.

Table E6.3.7: Vickers hardness values calculated from five tests made on a CRM

Test number Mean indentation diagonal d/mm Hardness value H/HV

1 0.3716 402.9
2 0.3724 401.1
3 0.3728 400.3
4 0.3719 402.2
5 0.3722 401.5

Mean value H 0.3722 401.6
Standard deviation sH 0.00046 1.00

Applying equations (E6.3.14) and (E6.3.15), ums = 0.06 HV. Using the mean value H = 401.6 HV
and the standard deviation sH = 1.00 HV, the contribution uHCRM = 0.45 HV was determined
using equation (E6.3.12). The contribution uHTM = 2.54 HV was finally calculated using equa-
tion (E6.3.9).

Using the same Vickers Hardness Testing machine, five tests on the sample under investigation
were conducted. Applying the measurement model (E6.3.2), the Vickers hardness values for all
tests were calculated.

Table E6.3.8: Vickers hardness values calculated from five tests made on the sample under
investigation

Test number Mean indentation diagonal d/mm Hardness value H/HV

1 0.3746 398.6
2 0.3731 399.6
3 0.3713 401.4
4 0.3725 400.9
5 0.3731 399.6

Mean value X 0.3729 400.0
Standard deviation sx 0.0119 1.12

Applying equations (E6.3.19) and (E6.3.20), umsx = 0.06 HV was calculated. Using the mean
value X = 400.0 HV and the standard deviation sX = 1.12 HV, the contribution uX = 0.5 HV was
calculated using equation (E6.3.18). Finally applying equation (E6.3.8), u = 2.6 HV and the
associated expanded combined uncertainty U = ku = 5.3 HV (k = 2.04, νeff = 33, confidence
level 95 %).
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E6.3.6.5 Knopp calculation

Using a Knopp Hardness Testing machine (δms = 0.5µm), calibrated according to ISO 4545
part 2 [492], five tests on a CRM (HCRM = 802.7 HK1, UCRM = 12 HK1) were conducted. The
quantities measured are the applied test force F = 9.807N and the length d of the larger diagonal
of the indentation after removal of the test force: table E6.3.9. Applying the measurement model
(E6.3.4), the Knopp hardness values for all tests were calculated.

Table E6.3.9: Knopp hardness values calculated from five tests made on a CRM

Test number Measured indentation diagonal d/mm Hardness value H/HK

1 0.1332 802.0
2 0.1333 800.8
3 0.1335 798.4
4 0.1330 804.4
5 0.1331 803.2

Mean value H 0.1332 801.76
Standard deviation sH 0.00019 2.41

Applying equations (E6.3.14) and (E6.3.15), ums= 1.77 HK. Using the mean value H = 801.76 HK
and the standard deviation sH = 2.41 HK from table E6.3.8, the contribution uHCRM = 1.08 HK
was determined. The contribution uHTM = 6.25 HK was finally calculated.

Using the same Knopp Hardness Testing machine, five tests on the sample under investigation
were conducted. Applying the measurement model (E6.3.3), the Knopp hardness values for all
tests were calculated: table E6.3.10.

Table E6.3.10: Knopp Hardness values calculated from five tests made on the sample under
investigation

Test number Measured indentation diagonal d/mm Hardness value H/HK

1 0.1881 402.2
2 0.1876 404.3
3 0.1882 401.7
4 0.1885 400.5
5 0.1876 404.3

Mean value X 0.1880 402.6
Standard deviation sx 0.000 39 1.67

Applying equation (E6.3.19), umsx = 1.88 HK. Using the mean value X = 402.6 HK and the stan-
dard deviation sx = 1.67 HK from table E6.3.9, the contribution uX = 0.75 HK was calculated
using equation (E6.3.18). Finally applying equation (E6.3.8), u = 6.32 HK and the associated
expanded combined uncertainty U = ku= 13.01 HK (k = 2.06, νeff = 25, confidence level 95 %)
were calculated.
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E6.3.6.6 Brinell calculation

Using a Brinell Hardness Testing machine (δms = 0.5µm), calibrated according to ISO 6507
[491], five tests on a CRM (HCRM = 597.1 HBW 2.5/187.5, UCRM = 3.6 HBW 2.5/187.5) were
conducted. The quantities measured are the applied test force F and the diameter d of the in-
dentation after removal of the test force F = 1839N. Applying the measurement model (E6.3.5)
with d = 2.5 mm, the Brinell hardness values for all tests were calculated: table E6.3.11.

Table E6.3.11: Brinell Hardness values calculated from five tests made on a CRM

Test number Measured indentation diameter d/mm Hardness value H/HBW

1 0.6305 591.4
2 0.63 592.3
3 0.6295 593.3
4 0.6297 592.9
5 0.6295 593.3

Mean value H 0.6298 592.6
Standard deviation sH 0.000 42 0.80

Applying equations (E6.3.14) and (E6.3.15), ums = −0.28 HBW. Using the mean value
H = 592.6 HBW and the standard deviation sH = 0.8 HBW from table E6.3.10, the contribution
uHCRM = 0.36 HBW was determined. The contribution uHTM = 1.86 HBW was finally calculated
using equation (E6.3.9).

Using the same Brinell Hardness Testing machine, five tests on the sample under investigation
were conducted. Applying the measurement model (E6.3.5) the Brinell hardness values for every
test were calculated: table E6.3.12.

Table E6.3.12: Brinell Hardness values calculated from five test made on the sample under
investigation

Test number Measured indentation diameter d/mm Hardness value H/HBW

1 0.6304 591.0
2 0.6301 591.6
3 0.6294 592.9
4 0.6296 592.5
5 0.6297 592.3

Mean value X 0.6298 592.1
Standard deviation sx 0.00040 0.76

Applying equation (E6.3.19), umsx = −0.28 HBW. Using the mean value X = 592.1 HBW and
the standard deviation sX = 0.76 HBW, the contribution uX = 0.34 HBW was calculated using
equation (E6.3.18). Finally applying equation (E6.3.8), u = 1.91 HBW and the associated ex-
panded combined uncertainty U = ku = 3.93 HBW (k = 2.06,νeff = 25, confidence level 95 %)
were calculated.
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E6.3.6.7 Instrumented Indentation Test calculation

Most of the measuring heads of Instrumented Indention Testing machines are working-force con-
trolled. The indentor displacement is sensed using various types of sensor. The sensed displace-
ment z is given by the measured signal and the calibration function.

An evaluation of the standard uncertainty uzmax
of the maximum sensed displacement zmax is

made.

Assume the estimation of the zero point z0, the position of first physical contact between indentor
and sample, yields a displacement range ∆z in which it is very likely that contact occurred. As-
suming further that within this range the probability density function is rectangular, the standard
uncertainty due to surface detection is

uz0
=

∆z

2
p

3
. (E6.3.35)

The standard uncertainty for the position just before unloading can be calculated by considering
the scatter about a straight-line fit z(t) to the time-displacement data over a period prior to
unloading. The maximum displacement is

hmax = zmax − hframe − hdrift, hframe = (F1 − F2)cf. (E6.3.36)

In equation (E6.3.36), F1 and F2 are the forces applied at contact and at maximum displace-
ment, cf is the frame stiffness and hdrift is the drift of the measuring system. The standard uncer-
tainty uhmax

is given by
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(E6.3.37)

= u2
zmax
+ c2

f u2
F1
+ c2

f u2
F2
+ (F2 − F1)

2u2
cf
+ u2

hdrift
. (E6.3.38)

The frame compliance is determined according to the procedure described in ISO 14577-1 [495].
Together with the mean value, the standard uncertainty ucf

is calculated.

An estimate of the drift hdrift and evaluation of the associated standard uncertainty uhdrift
are

obtained.

If the force is applied by an electromagnetic system, the measured force F is estimated using
the applied current and the calibration function. An evaluation of the standard uncertainty uF
associated with the estimate is made.

Analyzing the force balance at contact and at maximum displacement, the force at maximum
displacement Fmax is calculated using

Fmax = F2 − F1 − KS Zmax. (E6.3.39)

An estimate of the support stiffness KS is made and the associated standard uncertainty uKS

evaluated. The standard uncertainty uFmax
is then given by

u2
Fmax
=
�

∂ Fmax

∂ F2

�2

u2
F2
+
�

∂ Fmax

∂ F1

�2

u2
F1
+
�

∂ Fmax

∂ Zmax

�2

u2
Zmax
+
�

∂ Fmax

∂ KS

�2

u2
KS

(E6.3.40)

= u2
F1
+ u2

F2
+ K2

S u2
zmax
+ Z2

maxu2
KS

. (E6.3.41)
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Assume the estimation of the force applied at the zero point yields a force range ∆F for which it is
very likely that contact occurred. Assuming further that within this range the PDF is rectangular,
the standard uncertainty due to surface detection is

uF1
=

∆F

2
p

3
. (E6.3.42)

Since stiffness S is the slope of the force-removal curve at hmax, S is usually estimated by fitting
a power-law to the force-displacement data and then analytically differentiating that expression.
In general, the stiffness standard uncertainty uε depends on the accuracy of the fitting procedure
used.

Assuming uc to be negligible, the contact depth hc and the associated standard uncertainty uhc

are given by

hc = hmax −
εFmax

S
, (E6.3.43)
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ε (E6.3.44)

= u2
hmax
+
�ε

S

�2
u2

Fmax
+
�

εFmax

S2

�2

u2
S +

�

Fmax

S

�2

u2
ε. (E6.3.45)

The contact area is normally expressed as a mathematical function relating the projected surface
area Ap to the contact depth hc. A procedure for the verification of the area function is given
in [5]. The area function is given as a polynomial-like function with m adjustable coefficients
a0, . . . , am−1:

Ap(hc) =
m
∑

j=1

a j−1h22− j

c = a0h2
c + a1hc + a2h1/2

c + a3h1/4
c + · · ·+ am−1h22−m

c . (E6.3.46)

The associated standard uncertainty uAp
is given by

u2
Ap
=

m
∑

j=1

�

h22− j

c uaj−1

�2
+

m
∑

j=1

�

22− jaj−1h22− j−1
c uhc

�2
. (E6.3.47)

The measurement model for Instrumented Indentation hardness is

HIT =
Fmax

Ap(hc)
. (E6.3.48)

The combined standard uncertainty uHIT
is given by

u2
HIT
=
�

∂ HIT

∂ Fmax

�2

u2
Fmax
+

�

∂ HIT

∂ Ap(hc)

�2

u2
Ap(hc)

(E6.3.49)

=

�

1
Ap(hc)

�2

u2
Fmax
+

 

Fmax

A2
p(hc)

!2

u2
Ap(hc)

(E6.3.50)

E6.3.7 Interpretation of results

The most significant impact of this work relates to uncertainty evaluation in the framework of
normative development and conformity assessment.
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E6.3.7.1 Uncertainty evaluation in hardness testing standardization

Given the close connection between this work and the guideline ‘Metallic Materials – Strategy for
a Common Framework to determine Measurement Uncertainty in Mechanical Testing’ drafted
in the Advisory Group ‘Uncertainty’ of ISO/TC 164, the proposed harmonized procedure will
be used as the starting point for discussion in TC 164/SC 3 Hardness testing. Following the
resolutions approved by TC 164/SC 3 in 2020, the systematic review of all mentioned standards
starts in 2021. One of the main purposes of these systematic reviews is the harmonization of the
evaluation of uncertainty for all hardness testing standards. This report has been submitted to
TC 164/SC 3 for consideration in that activity.

E6.3.7.2 Uncertainty evaluation in conformity assessment

Most product specifications have tolerances that have been developed over the past years based
mainly on the requirements of the product but also, in part, on the performance of the testing
machines used to make the hardness measurement. These specifications, therefore, incorporate
a contribution due to the uncertainty of the hardness measurement and, generally, it would be
inappropriate to make any further allowance for this uncertainty by, for example, modifying the
limits in the specifications by the evaluated uncertainty of the hardness measurement.

In special circumstances, adjusting specification limits by the measurement uncertainty is appro-
priate. In any case, a proper and harmonized evaluation of uncertainty is clearly necessary for
understanding the actual specifications.

In all evaluated hardness standards informative guidance on how to evaluate an uncertainty is
given. As long as there is no harmonized procedure in hardness standards, evaluated uncertain-
ties can create ambiguity in conformity assessment.

At the ISO/TC 164 level, the Advisory Group ‘Uncertainty’ has drafted a guidance document
[497] to assist user standards in the interpretation of terms and definitions applied to uncertainty
evaluation, application in decision rules and determination of risk in applying a decision rule.
The main recommendations are the following:

– the method standards themselves are not recommended for specifying requirements of
assessment criteria for use in product standards;

– the method standards are not to be considered normative in the application of measure-
ment uncertainty when testing or assessing products;

– if measurement uncertainty in the method standards is determined uniformly, they can be
considered in a conformity assessment if required;

– a statement of conformity can be made based on the standards dealing with general product
specifications (e.g. ISO 14253-1:2018 [199] and JCGM 106:2012 [6]).
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Example E6.4

Evaluation of measurement uncertainty
in the calibration of a mobile optical
measurement system

L.L. Martins, A.S. Ribeiro, M.G. Cox, J.A. Sousa, D. Loureiro, M.C. Almeida, M.A. Silva,
R. Brito, A.C. Soares

E6.4.1 Summary

This example illustrates the evaluation of measurement uncertainty related to the calibration of
a mobile optical measurement system, based on the use of an SI-traceable reference standard
bar measured in specific spatial positions. The measurement system studied (Krypton, model
K610) contains three linear CCD (charge-coupled device) cameras, in different spatial positions
and orientations, with overlapping fields of view, permitting the simultaneous observation of an
infrared LED (light emitting diode) located in a region of interest. By applying triangulation
techniques, the measurement system can determine the static and dynamic spatial position of a
set of observed LEDs.

E6.4.2 Introduction of the application

Mobile optical measurement systems (MOMS) are currently used in different laboratories and
industries, namely, in automotive, motorsport, aerospace, and naval and structural engineering.
In these contexts, MOMS support the static and dynamical dimensional measurement of objects
with complex geometrical shapes, allowing in situ non-contact manual or automatic measure-
ments of their position or motion.

This example is focused in one type of MOMS – the Krypton K610 [498,499] – which comprises
a camera system and control unit, acquisition computer, measurement probe, multiplexer boxes
and infrared LED. The camera system has three linear CCD cameras, in different spatial positions
and orientations with overlapping fields of view, which results in a pyramidal measurement vol-
ume characterised by a depth range between 1.5 m and 6.0 m and a corresponding cross-section
area ranging between (0.90 m × 0.55 m) and (3.6 m × 2.6m). Using triangulation techniques,
the location of an infrared LED can be determined with a measurement accuracy [499] variable
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between (60+7 m−1 · L) µm and (130+17 m−1 · L) µm, where L is the distance from the location
to the camera, expressed in metres. The acquisition frequency depends on the number of LEDs
targeted, varying between 1 kHz for one LED and 232 Hz for 15 LED, for example [498,499].

Regular calibration of this MOMS is advisable, before and after in situ measurements, since it is
vulnerable to effects such as transportation, assembly, installation and temperature variation, all
of which would introduce uncertainty. This metrological operation is supported by the use of a
carbon fibre composite bar, with an SI traceable reference length (close to 1550 mm), placed in
specific spatial positions in front of the camera system, as shown in figure E6.4.1, which displays
seven spatial distances d1 . . . d7 that are measured.

Figure E6.4.1: Schematic representation of the MOMS calibration

Using a measurement probe composed of a ruby tip and nine LEDs spatially distributed by three
sets in the same plane, the position of each end-point in the standard bar can be determined and
their relative distance compared with the reference length value. If required for instrumental
accuracy improvement, the performed measurements can support the adjustment of the MOMS
[499].

E6.4.3 Specification of the measurand(s)

In this example, the measurand is the length reading, l, obtained in the MOMS at a reference tem-
perature of 20 °C. The calibration of the MOMS involves quantifying the difference, d, between
the measurand and the reference value, ls, related to the measurement standard:

d = l − ls (1+αs · θs) (E6.4.1)

where αs is the coefficient of thermal expansion of the carbon fibre composite bar and θs is its
temperature deviation from the 20 °C reference temperature during calibration. Since the MOMS
performs non-contact dimensional measurements, the length reading is not directly related to any
linear thermal expansion effects.

E6.4.4 Measurement model

The measurement model can be obtained from expression (E6.4.1) and is given by

l = d + ls (1+αs · θs) (E6.4.2)
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E6.4.5 Uncertainty propagation

The application of the law of propagation of uncertainty [3] to expression (E6.4.2) yields

u2(l) = c2
d · u

2(d) + c2
ls
· u2 (ls) + c2

αs
· u2 (αs) + c2

θs
· u2 (θs) (E6.4.3)

with

cd =
∂ l
∂ d
= 1 (E6.4.4)

cls =
∂ l
∂ ls
= 1+αs · θs (E6.4.5)

cαs
=
∂ l
∂ αs

= ls · θs (E6.4.6)

cθs
=
∂ l
∂ θs

= ls ·αs (E6.4.7)

and thus

u2(l) = u2(d) + (1+αs · θs)
2 · u2 (ls) + l2

s · θ
2
s · u

2 (αs) + l2
s ·α

2
s · u

2 (θs) (E6.4.8)

A reference standard bar such as that used in the calibration of the MOMS is designed to be a
rigid body characterised by a null coefficient of thermal expansion at room temperature. It is
composed of carbon fibres (related to a reduced negative coefficient of thermal expansion) in a
polymer matrix (with a coefficient of thermal expansion of opposite sign). Therefore, if a null
coefficient of thermal expansion is considered for the reference standard bar, expression (E6.4.8)
can be simplified:

u2(l) = u2(d) + u2 (ls) + l2
s · θ

2
s · u

2 (αs) (E6.4.9)

Table E6.4.1 shows the differences between reading and reference values obtained in one cal-
ibration of the MOMS, being composed of four individual tests where the reference standard
bar was placed in seven spatial positions (transverse, vertical, longitudinal and four diagonals;
see figure E6.4.1) in the measurement volume, at a nominal observation distance of 3.5 m. Ta-
ble E6.4.1 also mentions the corresponding average, (d̄i), and experimental standard deviation,
s(di), for each of the seven spatial positions (i = 1,2 . . . 7).

Table E6.4.1: MOMS calibration results

Test number Differences between readings and reference values (mm)
d1 d2 d3 d4 d5 d6 d7

1 -0.017 -0.007 -0.021 -0.008 0.015 0.028 0.020
2 0.020 0.011 -0.002 -0.044 -0.007 0.031 0.030
3 -0.011 -0.013 -0.008 -0.034 0.020 0.042 0.021
4 0.001 0.011 -0.003 -0.036 -0.032 0.058 0.084

d̄i -0.002 0.001 -0.009 -0.031 -0.001 0.040 0.039
s(di) 0.016 0.012 0.009 0.016 0.024 0.014 0.031
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Based on the results shown in table E6.4.1, correlation coefficients, r(di , d j), were determined
between pairs of spatial positions of the reference standard bar,

r
�

di , d j

�

=
u
�

di , d j

�

s (di) · s
�

d j

� , (E6.4.10)

where u (di , di) is the covariance, which can be calculated by

u
�

di , d j

�

=
1

n(n− 1)

n
∑

k=1

�

dik − d̄i

� �

d jk − d̄ j

�

(E6.4.11)

with n being the number of independent pairs of observations of di and d j , in this case four. The
results obtained are shown in table E6.4.2. Correlation between differences is present since the
same physical measurement standard (the reference standard bar) is used in their determination,
although in different spatial positions, but having a specific measurement uncertainty related to
its reference value.

Table E6.4.2: Correlation coefficients between the obtained differences

r(di , d j) d1 d2 d3 d4 d5 d6 d7

d1 1 0.20 0.20 −0.20 −0.14 0.01 0.06
d2 0.20 1 0.16 −0.14 −0.22 0.06 0.17
d3 0.20 0.16 1 −0.25 −0.16 0.10 0.13
d4 −0.20 −0.14 −0.25 1 0.12 −0.10 −0.09
d5 −0.14 −0.22 −0.16 0.12 1 −0.17 −0.23
d6 0.01 0.06 0.10 −0.10 −0.17 1 0.22
d7 0.06 0.17 0.13 −0.09 −0.23 0.22 1

The four tests performed in the calibration of the MOMS contributed to the measurement sam-
ples of differences between reading and reference values, related to the seven adopted spatial
positions of the reference standard bar, for which individual average values and experimental
standard deviations were obtained, as shown in table E6.4.1. In a global perspective, an esti-
mate of the difference between reading and reference values can be obtained by averaging. The
corresponding standard uncertainty [2] is given by

u2(d) =
7
∑

i=1

c2
i · u

2 (di) + 2
6
∑

i=1

7
∑

j=i+1
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�

· r
�

di , d j

�

(E6.4.12)

where ci = c j =
1
7 , r

�

di , d j

�

is the correlation coefficient and u2 (di) = s2 (di) (see table E6.4.2),
allowing to simplify expression (12) to

u2(d) =
1
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

 (E6.4.13)

The use of the values in tables E6.4.1 and E6.4.2 in expression (13) results in a standard un-
certainty equal to 0.0065mm The reference standard bar was calibrated in a controlled labo-
ratory environment, using an SI-traceable coordinate measuring machine, which allowed the
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determination of the reference length between the two end-points of this measurement stan-
dard: ls = 1550.313 mm. The calibration certificate issued mentioned an expanded measure-
ment uncertainty equal to 0.016mm, corresponding to the product of a standard uncertainty of
0.0079 mm and the coverage factor of 2.02 , evaluated using a Student t distribution with 102
degrees of freedom, in order to achieve a coverage probability of 95 %.

The estimate of the coefficient of thermal expansion of the reference standard bar is considered,
as above, to be equal to zero

�

αs = 0.0× 10−6 °C−1
�

. However, it has an associated standard
uncertainty represented by a uniform distribution with a semi-width of 2×10−6 °C−1, taking into
consideration the dispersion of known values for the two main components (carbon fibre and
polymer matrix) of the composite bar. Therefore, the standard uncertainty [2] corresponds to

u (αs) =
1
p

3
2× 10−6 °C−1 = 1.2× 10−6 °C−1 (E6.4.14)

The calibration of the MOMS was performed in a controlled laboratory environment, with a nom-
inal temperature of 20 °C. Room temperature time records show an average temperature devia-
tion of θs = 0.1 °C, and a cyclic variation following an arcsine distribution of temperature with a
semi-amplitude of 0.5 °C. In addition, these temperature measurements in time were performed
by a digital thermo-hygrometer with an instrumental standard uncertainty of 0.2 °C related to a
normal distribution. The combination of these two temperature measurement uncertainties [3]
is given by

u (θs) =
r

�

0.5 °C/
p

2
�2
+ (0.2 °C)2 = 0.41 °C

Table 3 shows a summary of the above mentioned standard uncertainty components of the length
reading performed by the MOMS during calibration.

Table E6.4.3: Summary of the standard uncertainty components

Standard
uncertainty
component
u (x i)

Source of uncertainty Standard uncer-
tainty u (x i)

ci ≡
∂ l
∂ xi

ui(l)≡ |ci | · u (x i) Degrees
of free-
dom

u(d) Difference between read-
ing and reference values

0.0065 mm 1 0.0065 mm 6

u (ls) Calibration of the standard
bar

0.0079 mm 1 0.0079 mm 102

u (αs) Thermal expansion coeffi-
cient of the standard bar

1.2× 10−6 °C−1 155mm °C 0.0002 mm 50

u (θs) Temperature deviation
from reference value

0.41 °C 0 0 ∞

E6.4.6 Reporting the result

Based on the results shown in table E6.4.3, the combined standard uncertainty, uc(l), of the length
reading is determined from expression (E6.4.9), corresponding to 0.010 mm, with 32 effective
degrees of freedom.

Considering an interval having a level of confidence of approximately 95 % in a Student t dis-
tribution, the expansion factor is 2.04, which results in an expanded measurement uncertainty
of

U95%(l) = k · uc(l) = 2.04 · 0.010mm= 0.021mm
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E6.4.7 Interpretation of results

Table E6.4.3 shows that the calibration of the reference standard bar is the major contribution to
the output measurement uncertainty, followed closely by the measured difference between read-
ing and reference values. The remaining uncertainty components have a negligible contribution
to the combined measurement uncertainty.

If no correlation effect was considered in the measured difference between reading and refer-
ence values, u(d)would increase to 0.007 mm and U95%(l)would be slightly higher (0.022 mm).
Therefore, if the correlation between measurements performed in different positions of the ref-
erence standard bar is not considered, the expanded measurement uncertainty of the calibration
is only overestimated by approximately 5 %.

Although the uncertainty components related to the thermal influence on the performed mea-
surements were considered negligible, some significant considerations can be made based on the
established probabilistic formulation and calculation method.

For instance, suppose a steel bar (characterised by a thermal expansion coefficient estimate of
11.5 × 10−6 °C−1, with the same standard uncertainty as mentioned before) were used as the
measurement standard instead of the carbon fibre composite bar (with a null estimate). The
expanded measurement uncertainty would then increase by 19 %.

In a similar way, if the estimate of the temperature deviation from the reference temperature
would increase to 2 °C, keeping the same measurement uncertainty as before, this would be
reflected in a 4.5 % increase of the calibration expanded measurement uncertainty.
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Evaluation of measurement uncertainty
associated with the quantification of
ephedrine in anti-doping testing

O. Barroso, A. Danion, B. Garrido, S. Westwood, M.G. Cox, A.M.H. van der Veen

E6.5.1 Summary

In this example, an anti-doping laboratory’s evaluation of the combined standard uncertainty
associated with the measured concentration of the prohibited (in sports) stimulant ephedrine at
levels close to the threshold in urine samples is described. For this purpose, laboratory validation
data for intermediate precision and bias are used. The evaluation is verified through the labora-
tory’s participation in three rounds of WADA’s proficiency testing programme, EQAS. The study
concludes with the acceptance of the evaluated standard uncertainty in accordance with WADA
requirements.

E6.5.2 Introduction of the application

E6.5.2.1 Regulatory framework

The WADA Prohibited List defines which substances and methods are prohibited in sports. In
addition, some of these substances are classified as a threshold substance. That is, for an anti-
doping laboratory to decide an adverse analytical finding (AAF), the substance (or its charac-
teristic metabolite) shall be measured in a sample at a concentration higher than a pre-defined
threshold T (with at least a 95 % level of confidence). This 95 % level of confidence in exceed-
ing the stated T is achieved by comparing the measured concentration x with a decision limit
(DL) [500, 501]. The comparison takes into consideration the analytical standard uncertainty
uc(x) of a result obtained with the validated measurement procedure (see figure E6.5.1).

The narrower distribution (red) in figure E6.5.1 illustrates a normal PDF with mean equal to
T and standard deviation equal to a testing laboratory’s reported standard uncertainty uc(x).
The broader distribution (blue) shows a normal PDF with the same mean and standard devia-
tion equal to the maximum allowed measurement uncertainty uc,max (see section E6.5.2.4). The
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decision limit DL, equal to T + 1.645uc,max, where uc,max is the target standard uncertainty, is
also shown in the figure. The value 1.645, taken from the normal distribution, ensures that DL
constitutes the upper endpoint of the upper one-sided 95 % limit of the probability distribution.

Figure E6.5.1: Probability distribution for (a) mass concentration ephedrine in urine for the test
laboratory and (b) corresponding to the target uncertainty showing the threshold T and decision
limit DL

The applicable decision rule [7, clause 7.8.6] is based on a result at the threshold T , for which a
target measurement uncertainty [502] is established. For the substances concerned, this target
measurement uncertainty is given in [501]. Based on this target measurement uncertainty, a
guard band [6] is defined, which is used to establish a DL that is applied to assess compliance of
the analytical result with the applicable rules. This guard band is established using a coverage
factor k of 1.645 to comprise the extreme left 95 % coverage range of a normal distribution. This
example is mainly concerned with the task of the laboratory to demonstrate that its analytical
standard uncertainty uc(x) at the threshold is no greater than the target standard uncertainty, so
that the DL can be used in the reporting of an AAF [501]:

‘Where a threshold T has been established for a prohibited substance, the DL repre-
sents the value for that substance above which it can be decided that the result in a
given sample, obtained using a validated measurement procedure, has exceeded T
with a statistical confidence of at least 95 %, and hence that an AAF is justified.’

To evaluate uc(x), WADA-accredited laboratories may use any approach consistent with the Guide
to the expression of uncertainty in measurement (GUM) [2]. Such approaches include ‘top-down’
or ‘empirical’ approaches using data derived, for example, from intra- or inter-laboratory method
validation studies or from the WADA External Quality Assessment Scheme (EQAS) programme,
outlined in section E6.5.2.2. In this regard, the use of laboratory validation data for method
performance characteristics (namely intermediate precision and bias) is the recommended pro-
cedure. The evaluated uc(x) is re-assessed periodically using quality control (QC) data to account
for expected improvements in method performance over time as well as any other factors that
may influence its application.
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Evaluations of uc(x) are verified through the laboratory’s regular participation in the WADA
EQAS, which may include the analysis of blind, double-blind or educational (open) samples.
In this example, a laboratory’s evaluations associated with the measurement of the prohibited
stimulant ephedrine at levels close to the threshold in urine samples is described. Laboratory
validation data are used for this purpose, and the evaluation verified by the laboratory’s partici-
pation in three rounds of WADA EQAS (two blind, one double-blind). The study concludes with
the acceptance of the evaluated uc(x) in accordance with the requirements of the relevant WADA
Technical Document (TD DL) [501].

E6.5.2.2 WADA External Quality Assessment Scheme (EQAS)

WADA regularly distributes EQAS samples to WADA-accredited laboratories and, when applica-
ble, to probationary laboratories. The WADA EQAS is designed to monitor continually the capa-
bilities of the accredited laboratories and probationary laboratories to evaluate their proficiency
and to improve test result uniformity between laboratories.

The WADA EQAS includes three different types of EQAS:

1. Blind EQAS (bEQAS)

Laboratories will be aware that the sample is a WADA EQAS sample since it is delivered by
WADA’s EQAS Sample Provider; however, the content of the EQAS samples is not known
to the participants.

2. Double-blind EQAS (dbEQAS)

The dbEQAS samples are packaged and distributed to laboratories by testing authorities
(that is, laboratory clients) in order to be indistinguishable from routine anti-doping sam-
ples and, therefore, the participants are not aware that they are processing an EQAS sample.

3. Educational EQAS

Educational EQAS samples may be provided as open (in which case the content of the EQAS
sample is known), blind or double-blind samples and therefore the participants may or may
not be made aware of the educational EQAS sample or its contents. This programme aims
at providing educational opportunities to the participants or data-gathering opportunities
to WADA.

E6.5.2.3 Evaluation of measurement uncertainty in anti-doping quantification pro-
cedures

Since the methods employed for doping control analyses must be validated and determined to
be fit-for-purpose (WADA International Standard for Laboratories [500]), the use of laboratory
validation data for method performance characteristics (namely intermediate precision and bias)
is the recommended procedure.

Where the laboratory result x is assigned as the mean of n replicate measurements, the com-
bined standard uncertainty uc(x) associated with x is evaluated as the root square sum of a
contribution sw derived from the within-laboratory (im)precision estimate of an individual result
using the measurement procedure under intermediate precision conditions and a contribution
ubias accounting for measurement bias:

uc(x) =

√

√ s2
w

n
+ u2

bias.
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Relevant points are as follows:

– sw may be determined by repeat analysis of a typical sample under intermediate preci-
sion conditions (that is, over time by different operators and using different equipment, if
applicable) and represents the intra-laboratory precision of an individual analysis.

– To determine ubias, repeated analysis of a sample having an independently assigned refer-
ence value xref (preferably a Certified Reference Material1) using the complete measure-
ment procedure under repeatability conditions is performed. Under these conditions, the
bias contribution ubias to uc(x) is evaluated according to

u2
bias =

s2
ref

n
+∆2 + u2(xref),

where
sref standard deviation (SD) under repeatability conditions of the measured val-

ues obtained for the CRM
∆ deviation ∆ = x − xref of the mean value x of n replicate measurement

results from the corresponding reference value xref
u(xref) standard uncertainty associated with xref.

– To evaluate method performance and check for the absence of unaccounted bias, a sec-
ondary material (CRM or usually EQAS material), also having independently assigned con-
centration xtest of the compound concerned, is analyzed using the laboratory’s method as
it is applied in practice. In this case the absolute value of ∆xtest = x − xtest is compared
with the expanded uncertainty U(∆xtest) associated with ∆xtest. U(∆xtest) is taken as
2u(∆xtest), where u(∆xtest) is the standard uncertainty associated with ∆xtest, assuming
a normal distribution. u(∆xtest) combines the standard uncertainty u(∆xtest) associated
with the assigned value xtest and the standard uncertainty u(x) associated with x:

u2(∆xtest) = u2(xtest) + u2(x).

– If ∆test ≤ U∆ there is no significant difference between the measurement and the certi-
fied/assigned value and there is no evidence of unaccounted bias.

– In addition, the evaluated uc(x) should be re-assessed periodically using QC data. This pe-
riodic evaluation would account for expected improvements in method performance over
time as well as any other factors that may influence its application (for example, replace-
ment of technicians or analysts).

E6.5.2.4 Example of laboratory estimation and verification of measurement un-
certainty for quantification of ephedrine in urine samples

Ephedrine is a stimulant, which is included under class S6.b – Specified Stimulants of the WADA
Prohibited List [503] and is prohibited in-competition in all sports. In addition, ephedrine is
classified as a threshold substance, that is, for an anti-doping laboratory to conclude an adverse
analytical finding (AAF), ephedrine shall be measured in a sample at a concentration higher
than (with at least 95 % level of confidence) a threshold T set at 10µg mL−1. This 95 % level of

1If a suitable CRM is not available, a QC sample prepared to be traceable to a CRM or a value-assigned EQAS
sample can be used.
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confidence in exceeding the stated T is achieved by comparing the measured concentration with
a decision limit DL set at 11µgmL−1. The DL takes into consideration the analytical uncertainty
of a result obtained with the validated measurement procedure, using a coverage factor k of
1.645 to comprise the 95 % coverage range of a single-tailed normal distribution.

The measured concentration of ephedrine shall be determined using a method having an associ-
ated combined standard uncertainty uc(x) for a result at levels close to T , which does not exceed
the maximum allowed measurement uncertainty uc,max of 0.5µg mL−1 (5 %). This value of uc,max
is a conservative estimate derived from inter-laboratory reproducibility (robust) data obtained
from EQAS measurement performance data.

For evaluation of the uc(x) of the measurement procedure of ephedrine, a WADA-accredited labo-
ratory applies a top-down intra-laboratory data approach based on the estimation of intermediate
precision sw and method bias. The uncertainty contribution due to the intermediate precision of
a determination was estimated using a urine QC sample, containing ephedrine at a level close to
T , which was analyzed over an extended period under intermediate precision conditions. The
relative intermediate precision sw,rel for the result of an individual analysis, obtained from the
combined results for this sample is 4.2 %.

The uncertainty contribution due to the precision of a determination equals 0.042x/
p

n, where
x is the mean of n replicate determinations.2

The uncertainty contribution due to bias was determined from the results of replicate determi-
nations of a CRM solution for ephedrine in urine under repeatability conditions as described
below.

E6.5.3 Specification of the measurand(s)

The measurand is the mass concentration ephedrine in urine. The threshold T is set at 10µgmL−1.
The regulation requires the laboratories to demonstrate that their standard measurement uncer-
tainty does not exceed 0.5µgmL−1 at levels close to T . The DL is established based on a one-sided
normal distribution and is set at 11µg mL−1 [501].

E6.5.4 Measurement model

The laboratory establishes its precision using a QC material and its bias using a certified reference
material. The resulting uncertainty budget is deemed valid for the estimation of the concentration
of ephedrine µ in urine samples collected from athletes during doping control.

The statistical model of a laboratory result is given by [232]

x = µ+ B + ϵ,

where x denotes the measured value, B a bias term and ϵ a random error term. ϵ is evaluated
as precision under within-laboratory conditions.

The estimation of B can be performed in different ways, and hence it can be viewed also in
different ways:

– as a bias term, evaluated using a certified reference material (CRM);

2According to the WADA International Standard for Laboratories (ISL) [500], the result of a quantitative confir-
mation procedure is reported as the mean of a triplicate determination.
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– as a laboratory effect in the EQAS.

The evaluation summarised in table E6.5.1 uses a CRM to establish the bias ∆ in the measured
value using the certified value as the reference. This bias is included in the uncertainty budget
for B. A target uncertainty is set to ensure that the associated standard uncertainty u(B), in com-
bination with a precision component, is fit for purpose to implement the WADA rules. The target
uncertainty is used as standard uncertainty in the subsequent steps, including the conformity
assessment.

Table E6.5.1: Calculation of bias component of uc(x) using a CRM

Step Action Formulae Result

1
Use the certified value of
ephedrine in the CRM

xref = 10.00µgmL−1

U(xref) = 0.06µgmL−1

u(xref) = 0.03µg mL−1

urel(xref) = 0.3%

2

Derive the relative uncertainty
component due to precision for a
mean value x of triplicate results
using this procedure

x = 1
3 (x1 + x2 + x3)

uprec =
swp

n =
0.042xp

3

urel(x) =
4.2 %p

3
= 2.4%

3

Determine the bias component
of the method by analyzing the
ephedrine urine CRM 30 times un-
der repeatability conditions

x =mean(x1, . . . , x30)
sref = SD(x1, . . . , x30)
ubias precision =

srefp
30

x = 10.3µgmL−1

sref = 0.203µgmL−1

RSD= 1.97%
ubias precision = 0.36%

4 Form absolute deviation ∆= |x − xref| ∆= 0.3µg mL−1

5 Form relative deviation ∆rel =
|x−xref|

xref
∆rel = 3.0 %

6 Form ubias contribution to uc(x) ubias =
h

s2
refp
n +∆

2 + u2(xref)
i1/2

ubias = 3.0%
Note: ubias = ∆ (other
contributions negligi-
ble)

7 Evaluate combined relative stan-
dard uncertainty uc(x) for mean of
triplicate results

uc(x) = (u2
prec + u2

bias)
1/2 uc(x) = 3.8%

Note: uc(x)< uc,max

In table E6.5.2, the verification of the laboratory’s performance in an EQAS, the magnitude of B,
the laboratory effect, is assessed using the target standard uncertainty as the standard deviation
for performance rating in the EQAS [69]. The z-score shall be satisfactory, that is, |z| ≤ 2. This
criterion ensures that the laboratory result in the EQAS is fit for purpose.

From

u2
c =

s2
w

n
+ u2

bias,

the statistical model in section E6.5.4 follows. sw, the intermediate precision, is estimated by
the repeated analysis of urine samples under within-laboratory reproducibility conditions. The
estimate of bB and its evaluated standard uncertainty u(bB) are given by

bB = 0,

u2(bB) =
s2
ref

n′
+∆2 + u2

ref.
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The bias estimate bB is set at zero by including∆ in the expression of its associated standard uncer-
tainty and to confirm that this standard uncertainty, combined with the intermediate precision,
does not exceed the target standard uncertainty. (See also ISO 21748 [232] for the application
of this model.)

Table E6.5.2: Verification of uc assignment from Laboratory EQAS data

Step Action Formulae Result of 3 trials

1
Make laboratory triplicate deter-
minations of ephedrine in EQAS
Sample

x1
x2
x3

(11.8, 12.1, 11.6)µgmL−1

(11.5, 11.9, 11.6)µgmL−1

(11.5, 11.4, 11.5)µgmL−1

2
Form laboratory mean value and
standard uncertainty for mean of
triplicates

x = 1
3 (x1 + x2 + x3)

uc(x) = 0.038× x
(11.8, 11.6, 11.5)µgmL−1

(0.45, 0.44, 0.44)µgmL−1

3

Form standard deviation sr of lab-
oratory repeatability determina-
tions of EQAS sample. Check con-
sistency with validated intermedi-
ate precision sw

sr = SD(x1, x2, x3)
srel,r = sr/x
sw

(0.252, 0.208, 0.45)µg mL−1

(2.1, 1.8, 0.4) %
(4.2, 4.2, 4.2) %

4 Number of participant laborato-
ries in the EQAS

31, 27, 30

5 EQAS Assigned value XEQAS Robust average of re-
sults reported by all par-
ticipants in EQAS study

(12.3, 12.3, 11.1)µgmL−1

6 Report inter-laboratory repro-
ducibility standard deviation
sR

Robust SD of results re-
ported by all partici-
pants in EQAS study

(0.53, 0.53, 0.35)µgmL−1

(4.3, 4.3, 3.2) %

7 Report and check z-score z =
x − xEQAS

sEQAS

0.27, 0.71, 0.47
All |z| − scores < 2: satis-
factory

8 Form absolute deviation ∆XEQAS
of laboratory value x from as-
signed value XEQAS

∆XEQAS = |x − XEQAS| (0.5, 0.6, 0.4)µgmL−1

9 Form expanded uncertainty for
U(∆XEQAS)

2
�

u2(XEQAS) + u2(x)
�1/2

∆≤ U(∆XEQAS)?

(0.93, 0.92, 0.89)µg/mL

Yes, Yes, Yes

10 Calculate En-score for verification
of uc(x)

x − XEQAS

[u2(x) + u2(XEQAS)]1/2
∆≤ U(∆XEQAS)? Yes, Yes, Yes

E6.5.5 Uncertainty propagation

The uncertainty propagation for the calculation of the bias component of uc(x) using a CRM
proceeds by following the series of steps in tables E6.5.1 and E6.5.2.

Stage 1 Calculation of bias component of uc(x) using a CRM: table E6.5.1;
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Stage 2 Verification of uc(x) assignment from Laboratory EQAS data: table E6.5.2.

In the calculations, the law of propagation of uncertainty for independent input quantities from
the GUM [2, eqn. (10)] is used.

For verification of uc(x) using EQAS data, the Laboratory considers data from each EQAS round
that includes samples containing ephedrine. In this case, the Laboratory has participated in three
recent EQAS rounds:

• Blind EQAS-01/2019 (April 2019): Sample prepared by spiking a urine blank pool with
ephedrine standard at 10.6µg mL−1 (concentration determined by EQAS sample provider)
(and norephedrine at 0.85µgmL−1);

• Double-blind EQAS-02/2019 (September 2019): same sample distributed in bEQAS-01/2019,
but this time distributed in double-blind fashion;

• Blind EQAS 01/2020 (January 2020): New sample prepared by spiking a urine blank pool
with ephedrine standard at 11.7µg mL−1 (again concentration determined by EQAS sample
provider) and norephedrine at 0.8µgmL−1.

In each EQAS round, the inter-laboratory EQAS consensus value and reproducibility (SD) are
obtained by robust statistics from the results reported by all participants in the EQAS study.

E6.5.6 Reporting the result

The laboratory reports the measured value and the target uncertainty. Based on the applicable
decision rule, the laboratory states that the result constitutes an adverse analytical finding when
the decision limit is exceeded.

E6.5.7 Interpretation of results

This example demonstrates how a laboratory can seek support for meeting a given performance
requirement. In the WADA rules [500,501], such a requirement is given as a maximum value for
the standard uncertainty, a target standard uncertainty.

The inclusion of the bias observed when using a CRM in an uncertainty budget can be conse-
quential (see also example E1.8). Other approaches when using a CRM are permitted, which
implies that the guidance of ISO Guide 33 [10] can also be followed. This approach requires an
evaluation of the uncertainty associated with the measured value of the CRM. Unbiasedness is
then demonstrated if

|∆| ≤ 2
q

u2
meas + u2

CRM,

and, given the similarity of the procedure for analysing the CRM, many components of uncer-
tainty in this assessment can be used in a GUM uncertainty budget, following for example the
guidance in the EuraChem/CITAC guide [42].

Alternatively, the guidance of ISO 21748 [232] can be used to establish the uncertainty of a
laboratory result from the participation in the EQAS of WADA. The only component that needs in
such an approach further attention is a possible bias of all laboratories. With the current practices
in place, this possibility is ruled out by using a CRM to establish that the laboratory results are
not significantly biased.
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To conclude, there are several options to establish an uncertainty budget for the measurand,
which can range from practically completely ‘top-down’, to mostly ‘bottom-up’. In the end, the
rigorous quality control and quality assurance measures ensure that laboratories meet the set
performance requirements, thereby guaranteeing that the decision limits set by WADA can be
maintained.
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Example E6.6

Measurement uncertainty in a
multiplexed data-acquisition system

A. Carullo, S. Corbellini, A. Vallan

E6.6.1 Summary

This example refers to the measurement of the magnitude of an electrical impedance by compari-
son to a standard resistor. The voltage signals across the impedance and the resistor are acquired
by means of a multiplexed data-acquisition board. The measurement uncertainty is estimated
according to the GUM uncertainty framework (GUF).

E6.6.2 Introduction of the application

The magnitude of the impedance of an electrical component is one of the quantities that is often
required to be measured in Alternate Current (AC) in order to characterize the behaviour of the
component at different operating frequencies. The device under test could be used as a current
shunt that converts an unknown AC current into an AC voltage signal and then its impedance
magnitude has to be known at the frequencies of the unknown current. In another scenario,
the device under test could be the load of an AC power supply and then the knowledge of its
frequency behaviour gives important information related to the driving capabilities of the power
supply.

Among the different techniques that can be used to measure the magnitude of an electrical
impedance, the comparison method in AC current is here considered, which is based on the
measurement circuit that is shown in the figure E6.6.1. The unknown impedance ZX

1 is con-
nected in series to a known standard resistor RS and the voltage source VG supplies the circuit
with a sinusoidal signal at the frequency f0. Two true root-mean square (true rms) voltmeters
are connected in parallel to ZX and RS, respectively, thus measuring the voltage amplitudes VX
and VS.

1Hereafter bold face character is used for complex quantities, while normal character denotes the magnitude of
the same quantities.
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Z

RI

V

I

Figure E6.6.1: The basic circuit for the measurement of the impedance magnitude.

Provided that the load effect of the two voltmeters is negligible, the current IX that flows through
ZX is the same as the current IS that flows through RS:

IX =
VX

ZX
= IS =

VS

RS
, (E6.6.1)

and then the magnitude of the unknown impedance can be obtained as:

ZX = RS
VX

VS
. (E6.6.2)

According to the measurement model (E6.6.2), the main uncertainty contributions are related to
the standard resistor RS and to the two voltmeters that measure the voltages VS and VX. Other
possible uncertainty contributions could be related to the load effect of the voltmeters and to the
effect of the measurement frequency on the standard resistor RS.

In this example, the described method is implemented using a two-channel multiplexed Data-
AcQuisition (DAQ) board and taking into account the uncertainty contributions related to the
different components of the measuring chain.

E6.6.3 Specification of the measurand

The impedance of an electrical component is usually represented by means of a complex number,
where the real part R represents the resistive component of the impedance, while the imaginary
part X represents the reactive component or reactance. The reactance increases as the frequency
f increases for an inductance L according to this rule:

XL = 2π f L, (E6.6.3)

while the reactance decreases as the frequency increases for a capacitance according to this ex-
pression:

XC =
1

2π f C
. (E6.6.4)

In general, an impedance Z is represented as a complex number in this way:

Z= R± jX , (E6.6.5)
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where the imaginary number j satisfies the equation j2 = −1 and the sign is plus for an inductive
reactance and minus for a capacitive reactance.

The magnitude of an impedance, which is the measurand of this example, can be expressed as:

Z =
p

R2 + X 2, (E6.6.6)

that for an ohmic-inductive impedance becomes:

Z =
Æ

R2 + (2π f L)2, (E6.6.7)

while for an ohmic-capacitive impedance becomes:

Z =

√

√

√

R2 +
�

1
2π f C

�2

. (E6.6.8)

The last two expressions highlight that the magnitude of an impedance is strongly dependent on
the frequency, thus requiring a series of measurement in the operating frequency range of the
impedance to be performed in order to obtain its full characterization.

In this example, the measurand is the magnitude of an impedance in the frequency range from
100 Hz to 20 kHz.

E6.6.4 Measurement model

The basic circuit of figure E6.6.1 is arranged using a dual-channel multiplexed Data AcQuisition
(DAQ) board according to the scheme of figure E6.6.2. The input channels CH0 and CH1 of the
DAQ board are configured as differential inputs, in order to measure the voltage signals vX and
vS. The samples vXi and vSi collected at the two input channels have to be processed in order to
estimate the rms value of the two voltage signals.

D

V

f

v

vZ

R

V

v

Figure E6.6.2: The measurement circuit arranged using a dual-channel multiplexed DAQ board.

One should note that because of the presence of the multiplexer (MUX), the actual sampling
frequency fCH on each channel is lower than the sampling rate fS of the Analogue-to-Digital
Converter (ADC). In the situation of settling time of the system that is negligible with respect
to the sample period TS, the sampling frequency can be obtained as fCH ≈ fS/2, i.e. the ADC
sampling rate divided by the number of active channels2.

2In the opposite situation (settling time ST higher than TS), the sampling frequency is fCH < fS/2≈ 1/(2ST).
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The codes DXi and DSi at the output of the ADC can be expressed as:

DXi =
vXiG0

Vq
; DSi =

vSiG1

Vq
, (E6.6.9)

where G0 and G1 are the nominal gains of the Programmable Gain Amplifier (PGA) for the chan-
nels CH0 and CH1, respectively, while Vq is the nominal quantization voltage of the ADC, i.e.
Vq = VFR/2

N b.

Starting from the nominal expressions (E6.6.9), the samples of the two voltage signals are ob-
tained as:

vXi =
DXiVq

G0
; vSi =

DSiVq

G1
, (E6.6.10)

and the estimation of their rms values vX and vS are obtained according to the following process-
ing algorithm:

vX =

√

√

√

√

1
N

N
∑

i=1

�DXiVq

G0

�2

; vS =

√

√

√

√

1
N

N
∑

i=1

�DSiVq

G1

�2

, (E6.6.11)

where N = kT0/TS is the number of acquired samples that correspond to an integer number k of
periods T0 of the two voltage signals3.

Replacing the expressions (E6.6.11) in the measurement model (E6.6.2), the magnitude of the
unknown impedance is eventually obtained through the following expression:

ZX = RS
G1

G0

√

√

√

√

∑N
i=1 D2

Xi
∑N

i=1 D2
Si

. (E6.6.12)

E6.6.5 Uncertainty propagation

The codes DXi at the output of the measuring chain of figure E6.6.2 when the channel CH0 is
selected can be expressed according to the following expression:

DXi =
G0

Vq
(vXi + Voff0,RTI + ni) + Doff +δqi, (E6.6.13)

where

Voff0,RTI is the Referred-To-Input voltage offset of the PGA on the channel CH0 (gain G0);

Doff is the offset of the ADC;

δqi is the i-th realization of the quantization noise of the ADC;

ni is the i-th realization of the electronic noise superimposed to the input signal.

3This condition, which is referred as coherent sampling [504], is considered valid in this example. In non-coherent
sampling conditions, the acquired samples can be weighted by means of suitable windowing functions in order to
minimize the error due to the processing algorithm [505].
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Inverting the expression (E6.6.13), each voltage sample can be expressed as:

vXi =
DXiVq

G0
− Voff0,RTI −

DoffVq

G0
−
δqiVq

G0
− ni. (E6.6.14)

For commercial DAQ boards, manufacturer usually provide specifications in terms of gain error
εG, offset error eOFF and noise (eq + n) of the whole measuring chain:

eOFF,0 = Voff0,RTI +
DoffVq

G0
; (eq + n)i = eqn,i =

δqiVq

G0
+ ni, (E6.6.15)

and then the expression (E6.6.14) can be rewritten as:

vXi =
DXiVq

G0
(1+ εG0) + eOFF,0 + eqn,i. (E6.6.16)

According to the processing algorithm (E6.6.11), the sum of the squared values of the samples
vXi has to be estimated and then each squared value can be estimated as:

v2
Xi =

�DXiVq

G0
(1+ εG0)

�2

+ e2
OFF,0 + e2

qn,i+ (E6.6.17)

+ 2
DXiVq

G0
(1+ εG0)eOFF,0 + 2

DXiVq

G0
(1+ εG0)eqn,i + 2eOFF,0eqn,i.

The square of the rms value of vX can be obtained as:

v2
X =

1
N

N
∑

i=1

v2
Xi. (E6.6.18)

Replacing the expression (E6.6.17) of v2
Xi in the previous relationship, it can be obtained:

v2
X =
(1+ εG0)2

N

N
∑

i=1

�DXiVq

G0

�2

+ e2
OFF,0 +

1
N

N
∑

i=1

e2
qn,i+ (E6.6.19)

+ 2
(1+ εG0)eOFF,0

N

N
∑

i=1

�DXiVq

G0

�

+ 2
(1+ εG0)

N

N
∑

i=1

�DXiVq

G0

�

eqn,i+

+
2eOFF,0

N

N
∑

i=1

eqn,i.

In the first term of the second row of the expression (E6.6.19), the mean value of the voltage
signal vX is present, which is zero. Furthermore, in the third row the mean value of the noise
estimated on N samples can be considered negligible. The second term of the second row, here-
after indicated with nmod,X, is a random noise with zero mean modulated by a sine wave with
zero mean, then its expected value is zero and its standard deviation is obtained as [506]:

u(nmod,X) =
vXu(eqn)
p

N
. (E6.6.20)

For the random variable εG0, the expected value is considered equal to zero (E[εG0] = 0), while
its standard uncertainty is indicated as u(εG0). For the random variable eOFF,0, a normal distribu-
tion is considered that is characterized by a zero expected value (E[eOFF,0] = 0) and a standard
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uncertainty u(eOFF,0). Under this assumption, the random variable e2
OFF,0 is characterized by a

scaled chi-square distribution with one degree of freedom, whose expected value and standard
deviation are equal to [507]:

E[e2
OFF,0] = u2(eOFF,0); u(e2

OFF,0) =
p

2u2(eOFF,0). (E6.6.21)

The third term in the first row of the expression (E6.6.19) can be considered a new random vari-
able e2

qn0,rms that is characterized by a scaled chi-square distribution with N degree of freedom,
whose expected value and standard deviation are equal to [507]:

E[e2
qn0,rms] = Nu2(eqn,rms); u(e2

qn0,rms) =
p

2Nu2(eqn,rms). (E6.6.22)

The expression (E6.6.19) can be rewritten as:

v2
X = (1+ 2εG0 + εG

2
0)v

2
X0 + e2

OFF,0 + e2
qn0,rms + 2(1+ εG0)nmod,X ≈ (E6.6.23)

≈ (1+ 2εG0)v
2
X0 + e2

OFF,0 + e2
qn0,rms + 2(1+ εG0)nmod,X.

where the approximation is due to the assumption εG2
0 ≪ εG0.

Repeating the same considerations for the voltage signal vS, the measurement model of the
impedance magnitude ZX is eventually expressed as:

ZX = RS

√

√

√

√

(1+ 2εG0)v2
X0 + e2

OFF,0 + e2
qn0,rms + 2(1+ εG0)nmod,X

(1+ 2εG1)v2
S0 + e2

OFF,1 + e2
qn1,rms + 2(1+ εG1)nmod,S

. (E6.6.24)

When the proposed measurement technique is implemented, a very convenient choice consists
in using a standard resistor RS with a value that is very close to the impedance magnitude ZX. In
this condition it is possible to use the same gain configuration for the two active channels, thus
obtaining a partial compensation of the systematic effects due to the gain error and the offset
error, since:

εG0 = εG1 = εG; eOFF,0 = eOFF,1 = eOFF, (E6.6.25)

and then the expression (E6.6.24) becomes:

ZX = RS

√

√

√

√

(1+ 2εG)v2
X0 + e2

OFF + e2
qn0,rms + 2(1+ εG)nmod,X

(1+ 2εG)v2
S0 + e2

OFF + e2
qn1,rms + 2(1+ εG)nmod,S

. (E6.6.26)

The expression (E6.6.26) represents the measurement model that is used to propagate the uncer-
tainty contributions according to the GUM framework. The standard uncertainty of the impedance
magnitude ZX is estimated under the assumption of negligible correlation among the random
variables RS, εG, e2

OFF, e2
qn0,rms , e2

qn1,rms, nmod,X and nmod,S, thus obtaining:

u2(ZX) =
�

∂ ZX

∂ RS

�2

u2(RS) +
�

∂ ZX

∂ εG

�2

u2(εG) +

�

∂ ZX

∂ e2
OFF

�2

u2(e2
OFF)+ (E6.6.27)

+

�

∂ ZX

∂ e2
qn0,rms

�2

u2(e2
qn0,rms) +

�

∂ ZX

∂ e2
qn1,rms

�2

u2(e2
qn1,rms)+

+

�

∂ ZX

∂ nmod,X

�2

u2(nmod,X) +
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where4:

∂ ZX

∂ RS
=

ZX

RS
. (E6.6.28)

∂ ZX

∂ εG
=

R2
S

ZX

(v2
X − v2

S )(e
2
OFF + e2

qn,rms)

(v2
S + e2

OFF + e2
qn,rms)2

. (E6.6.29)
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. (E6.6.30)
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. (E6.6.31)
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∂ ZX

∂ nmod,S
= −

R2
S

ZX

v2
X + e2

OFF + e2
qn,rms

(v2
S + e2

OFF + e2
qn,rms)2

. (E6.6.34)

In the previous expressions of the sensitivity coefficients it has been taken into account that the
expected values of εG, nmod,X and nmod,S are zero.

One should note that the expressions (E6.6.29) and (E6.6.30) highlight a partial compensation
of the uncertainty contributions due to gain and offset errors of the DAQ board. Such a com-
pensation is complete, i.e. null uncertainty contributions related to gain and offset errors, if
vX = vS.

E6.6.6 Reporting the result

The results here reported refer to the data that have been assigned in the MATLAB script unc_zx.m.
Other input data can be used accessing to the variables in the script according to the instructions
explained in the help section of the script.

The results reported in this example refers to an impedance ZX that is characterized by a resistance
R connected in series to an inductance L, which have the nominal values R = 100 Ω and L =
1 mH. According to the expression (E6.6.7), the impedance magnitude ZX has the nominal values

4The sensitivity coefficients have been analytically obtained using the basic rules of derivatives [508].
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reported in the table E6.6.1 at the measurement frequencies f . The same table also shows the
nominal values of the measured voltage signals vX and vS (rms value and peak value), which
have been obtained considering a supply voltage with a sinusoidal waveform and an rms value
vG = 5 V and a standard resistor with the nominal value RS = 100 Ω and standard uncertainty
u(RS) = 0.2 mΩ.

A commercial multiplexed DAQ board is selected for this application that is characterized by the
following specifications:

– bipolar full-range from −5 V to +5 V; Nb = 16;

– maximum ADC sample rate: 250 kSa/s (negligible settling time);

– εG = 250× 10−6 (maximum admitted error);

– U(eOFF) = 5 mV (95% confidence level specification);

– u(eqn,rms) = 118 µV

– RIN > 10 GΩ; CIN = 100 pF

– Common-Mode Rejection Ratio (CMRR) = 100 dB;

– Cross Talk (CT) = −80 dB @ 100 kHz (adjacent channels);

– CT = −95 dB @ 100 kHz (non-adjacent channels).

Table E6.6.1: Nominal values of the impedance magnitude ZX and of the measured voltage signals vX
and vS at the measurement frequencies f . The supply voltage is a sinusoidal signal with an rms value
vG = 5 V and the standard resistor has the nominal value RS = 100 Ω.

f (kHz) ZX(Ω) vX(V ) vS(V ) vX,pk(V ) vS,pk(V )

0.1 100.002 2.500 2.500 3.536 3.535
0.2 100.008 2.500 2.500 3.526 3.535
0.5 100.049 2.501 2.499 3.536 3.535
1 100.197 2.502 2.498 3.539 3.532
2 100.787 2.510 2.490 3.549 3.522
5 104.819 2.559 2.441 3.619 3.452
10 118.101 2.707 2.293 3.829 3.242
20 160.597 3.081 1.919 4.358 2.713

One should note that the available input range is suitable for the peak-to-peak values of the
two voltage signals at any measurement frequency. Furthermore, the sampling rate on each
channel (maximum value equals to 125 kSa/s) allows the Shannon theorem to be met up to the
maximum measurement frequency of 20 kHz. The acquisition process is managed in order to
collect N = 1000 samples of the two voltage signals vX and vS at each frequency of interest.

Among the DAQ board specifications, the parameters CMRR (Common-Mode Rejection Ratio)
of the PGA and CT (Cross Talk) are provided, which can be responsible for further uncertainty
contributions.

The parameter CMRR is defined in the following way:

CMRR= 20log10

�

Gd

GCM

�

(dB). (E6.6.35)
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where Gd and GCM are the differential and the common-mode gains of the PGA, respectively.

The voltage output of the PGA when the channel CH0 is selected can be represented as:

vADC,0 = GdvX + GCMvCM (E6.6.36)

where vCM is the common-mode voltage at the PGA input:

vCM =
v+ + v−

2
=

vG + vS

2
(E6.6.37)

The relative measurement error (worst case condition) of the voltage vX can be obtained as:

εvX =
GCMvCM

GdvX
= 10

−
CMRR

20
vCM

vX
= 10−5 vCM

vX
(E6.6.38)

With reference to the voltage values summarized in the table E6.6.1, the relative error εvX due
to the CMRR is 15× 10−6 for frequencies lower than 5 kHz and becomes 11× 10−6 @ 20 kHz.

The same considerations for the voltage signals vS bring to an estimation of the relative error εvS
due to the CMRR that is equal to 5× 10−6, since in this case vCM = vS/2.

The parameter CT is related to the inter-channel phenomena and is defined as:

CT = 20log10

�

vCH,adj

vadj

�

(dB) (E6.6.39)

where vCH,adj is the voltage error that is superimposed on the voltage vCH of the active channel due
to the non perfect insulation with respect to the adjacent channel, where the signal vadj is present.
The relative measurement error (worst case condition) of the voltage vCH can be obtained as:

εvCH =
vCH,adj

vCH
= 10

CT
20

vadj

vCH
(E6.6.40)

According to the manufacturer specifications, the parameter CT is equal to −80 dB for adja-
cent channels and since vX and vS have the same order of magnitude, a relative error of almost
100×10−6 is expected, which seems to be not negligible with respect to the other contributions.
However, the manufacturer provides this parameter at the frequency of 100 kHz and no informa-
tion is provided about the behaviour of the parameter CT at lower frequencies, which is expected
to be better. For this reason, the cross-talk of the DAQ board has been estimated at different
frequencies through the experimental set-up described in [509], obtaining the results that are
shown in the figure E6.6.3. In the figure, the blue line and the dashed black line represent the
measured cross-talk between adjacent channels (CH0 and CH1) and non-adjacent channels (CH0
and CH7). The manufacturer specifications @ 100 kHz are also reported for adjacent (continuous
red line) and non-adjacent (dashed red line) channels.

For adjacent channels (the configuration that is shown in the figure E6.6.2), CT values of about
−110 dB have been obtained up to 1 kHz, which corresponds to a relative error εvCH lower than
3× 10−6. In the frequency range from 1 kHz to 6 kHz the parameter CT is lower than −100 dB
and the relative error εvCH is lower than 10× 10−6. Eventually, at the measurement frequencies
of 10 kHz and 20 kHz the measured CT was about −96 dB and −90 dB, respectively, and the
corresponding relative errors εvCH are 19× 10−6 and 51× 10−6, respectively.

The standard uncertainty of the magnitude impedance ZX is initially estimated without consider-
ing the effects of CMRR and CT. For this evaluation, the propagation uncertainty law expressed
in the equation (E6.6.27) requires the standard uncertainty of each random variable to be esti-
mated. According to the available specifications, the following values are considered:
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Figure E6.6.3: Experimental results related to the parameter CT of the multiplexed DAQ board. The blue
line and the dashed black line represent the measured cross-talk for adjacent and non-adjacent channels;
the continuous red line (adjacent channels) and the dashed red line (non-adjacent channels) are the
manufacturer specification @ 100 kHz .

– u(RS) = 0.2 mΩ

– u(εG) = εGmaxp
3
≈ 144× 10−6

– u(e2
0F F ) =

p
2u2(eOFF) =

p
2 U2(eOFF)

4 ≈ 8.8× 10−6 V2

– u(e2
qn,rms) =

p
2Nu2(eqn,rms) =

p
2000u2(eqn,rms)≈ 6.3× 10−7 V2

– u(nmod,X) = vX
118×10−6
p

1000
≈ [9.3 9.3 9.3 9.3 9.4 9.5 10.1 11.5] × 10−6 V2 at the different

measurement frequencies

– u(nmod,S) = vS
118×10−6
p

1000
≈ [9.3 9.3 9.3 9.3 9.3 9.1 8.6 7.2] × 10−6 V2 at the different

measurement frequencies

About the random variables e2
OFF and e2

qn,rms, their expected values are obtained as:

– E[(e2
0F F ] = u2(eOFF)≈ 6.25× 10−6 V2

– E[e2
qn,rms] = Nu2(eqn,rms)≈ 1.4× 10−5 V2

The numerical values of the different terms (squared standard uncertainty contributions) of the
expression (E6.6.27) are summarized in the figure E6.6.4 in the frequency range of interest, while
the figure E6.6.5 reports the standard uncertainty u(ZX) in the same frequency range.

The effects of CMRR and CT are now considered interpreting them as uncertainty contributions
on the voltage signals vX and vS. According to the previous considerations, the relative errors
εvX and εvS due to the parameter CMRR have the following values at the different measurement
frequencies:
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Figure E6.6.4: Numerical values of the squared standard uncertainty contributions of the expression
(E6.6.27) in the frequency range of interest.

Figure E6.6.5: The standard uncertainty u(ZX) in the frequency range of interest without considering
the effects of CMRR and CT.
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– εvX = [15 15 15 15 15 15 14 11]× 10−6

– εvS = [5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0]× 10−6

If the cross-talk effects are taken into account for adjacent channels, the relative error εvCH on
the two voltage signals have similar values, since the signals have the same order of magnitude:

– εvCH = [3.2 3.2 3.2 3.2 10 10 19 51]× 10−6

The absolute errors due to CMRR and CT are then estimated as:

– δvX,CMRR = εvXvX = [38 38 38 38 38 38 38 34] µV

– δvS,CMRR = εvSvS = [12 12 12 12 12 12 11 9] µV

– δvX,CT = εvCHvS = [8 8 8 8 25 24 44 98] µV

– δvS,CT = εvCHvX = [8 8 8 8 25 26 51 157] µV

The assumption of uniform distribution in the range [−δv,+δv] V for each of the previous error
contribution is considered, thus estimating their expected value and standard deviation as:

µv = 0; σ(v) =
δv
p

3
. (E6.6.41)

Eventually, the absolute standard uncertainties u(vX) and u(vS) due to CMRR and CT are obtained
as:

u(vX) =

√

√

√δ2vX,CMRR

3
+
δ2vX,CT

3
= [22 22 22 22 26 26 33 60] µV. (E6.6.42)

u(vS) =

√

√

√δ2vS,CMRR

3
+
δ2vS,CT

3
= [9 9 9 9 16 16 30 91] µV. (E6.6.43)

The standard uncertainties u(vX) and u(vS) are then multiplied by the corresponding sensitivity
coefficients:

∂ ZX

∂ vX
=

R2
S

ZX

vX

v2
S + e2

OFF + e2
qn,rms

. (E6.6.44)

∂ ZX

∂ vS
= −

R2
S

ZX

vS(v2
X + e2

OFF + e2
qn,rms)

(v2
S + e2

OFF + e2
qn,rms)2

. (E6.6.45)

obtaining the squared standard uncertainty contributions reported in the figure E6.6.6 and the
standard uncertainty u(ZX) that is shown in the figure E6.6.7.

The same considerations are now repeated taking into account the cross-talk effects for non-
adjacent channels, whose approximated values are (see figure E6.6.3):
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Figure E6.6.6: Numerical values of the squared standard uncertainty contributions of the expression
(E6.6.27) and the ones related to CMRR and CT effects for adjacent channels.

Figure E6.6.7: The standard uncertainty u(ZX) in the frequency range of interest including the effects of
CMRR and CT for adjacent channels.
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– CTnon−adj = [−112 − 114 − 114 − 114 − 114 − 108 − 105 − 100] dB

The corresponding relative error εvCH,non−adj is estimated as:

εvCH,non−adj = [2.5 2.0 2.0 2.0 2.0 4.2 6.6 16]× 10−6,

and the absolute standard uncertainties u(vX,non−adj) and u(vS,non−adj) becomes:

u(vX,non−adj) = [22 22 22 22 22 23 24 26] µV (E6.6.46)

u(vS,non−adj) = [8 8 8 8 8 9 12 29] µV. (E6.6.47)

Figure E6.6.8 shows the squared standard uncertainty contributions for the multiplexed DAQ
board that uses non-adjacent channels. Eventually, the standard uncertainty u(ZX) in the same
configuration is shown in the figure E6.6.9.

Figure E6.6.8: Numerical values of the squared standard uncertainty contributions of the expression
(E6.6.27) and the ones related to CMRR and CT effects for non-adjacent channels.

E6.6.7 Interpretation of results

If the effects related to the parameters CMRR and CT of the multiplexed DAQ board are not taken
into account, the uncertainty contributions that are summarized in the figure E6.6.4 have to be
analyzed. In this case, the main contributions are the ones related to the standard resistor RS and
to the two random variables nmod,X and nmod,S, which depend on the noise superimposed to the
acquired signals. A small contribution is also given by the offset error of the measuring chain at
frequencies higher than 10 kHz, where the signals vX and vS becomes significantly different and
then the offset-error compensation is less effective. The compensation remains instead always
effective for the gain error, which gives a negligible contribution. The contributions of the random
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Figure E6.6.9: The standard uncertainty u(ZX) in the frequency range of interest including the effects of
CMRR and CT for non-adjacent channels.

variables e2
qn0 and e2

qn1 are negligible in the whole frequency range. The figure E6.6.5, where
absolute and relative standard uncertainties of the measurand ZX are reported, shows that the
implemented technique allows relative uncertainties of the order of few part per million (ppm) to
be obtained even though the gain error of the DAQ board is two order of magnitude higher. The
most effective intervention to reduce further the uncertainty consists in using a more accurate
standard resistor, but its relative uncertainty (2 × 10−6) is close to the uncertainty of primary-
level standards. Another possibility is the acquisition of a higher number N of samples in order
to reduce the contributions u(nmod,X) and u(nmod,S), even though it is not very convenient if the
contribution related to RS is not reduced.

When the contributions of Common Mode Rejection Ration and Cross Talk are estimated, the
main outcome is that these effects are the main factors that limit the overall uncertainty. The
obtained results suggest to avoid the use of adjacent channels, since in this configuration (see
figure E6.6.6) the uncertainty of the estimated rms values vX and vS becomes the most important
contributions and the overall relative standard uncertainty ur(ZX) (see figure E6.6.7) becomes
almost an order of magnitude higher than the previous obtained value.

If non-adjacent channels are instead used, CMRR and CT effects remain the main contributions
(see figure E6.6.8), but they are of the same order of magnitude of the other contributions up
to 10 kHz. About the relative standard uncertainty ur(ZX) (see figure E6.6.9), it is lower than
11× 10−6 up to 10 kHz and becomes about 18× 10−6at 20 kHz.

In conclusion, it can be stated that the proposed measurement technique is very effective, since
using a low-cost commercial multiplexed DAQ board it is possible to obtain a relative uncertainty
of the measurand ZX that is almost an order of magnitude higher than the uncertainty of the used
standard resistor RS, which is the most expensive component of the proposed circuit. In order
to obtain a relative uncertainty that is of the same order of magnitude of u(RS) it is necessary to
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use a DAQ board with independent channels (non multiplexed), thus minimizing the cross-talk
effects, and with a PGA characterized by a higher CMRR. This also mean that the cost of the
system becomes about an order of magnitude higher than the previous one.
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Example E6.7

Temperature measurement with a
micro-controller based board
A. Carullo, M.G. Cox

E6.7.1 Summary

This example refers to the measurement of the temperature inside a climatic chamber by means
of a measuring chain that includes a Resistive Temperature Detector (RTD), a simple condition-
ing circuitry and a commercial micro-controller (µ-C) based board. The advantages that are
related to the characterization of the Analogue-to-Digital Converter internal to the µ-C board
and the implementation of a dithering technique are highlighted. The measurement uncertainty
is evaluated according to the GUM uncertainty framework (GUF).

E6.7.2 Introduction to the application

The application of thermal cycles inside a climatic chamber are very common tests that are per-
formed to verify the correct behaviour of a device in the operating temperature range stated by
the manufacturer. During these tests, the air temperature inside the climatic chamber as well as
the temperature of different parts of the device under test are measured using different type of
sensors, such as thermistors, resistive temperature detectors, thermocouples or integrated elec-
tronic devices.

In this example, a platinum resistive thermal detector Pt100 is considered as the device that
converts the measured temperature θ into an electrical resistance R according to the Callendar-
Van Dusen equation1 [510]:

R= R0(1+ Aθ + Bθ2), (E6.7.1)

where

R0 = 100Ω,

A= 3.9083× 10−3 °C−1,

B = −5.775× 10−7 °C−2.

1The measurement of temperatures higher than 0 °C is here considered.
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Figure E6.7.1: The measuring chain of the temperature sensed through the sensor Pt100.
A 4-wire class A [510] Pt100 based on the film technological process is available, which is char-
acterized by a time constant τ = 0.1 s, a thermal resistance of 20 °CW−1, a temperature range
−30 °C to 300 °C and a maximum admitted error expressed as:

δθsensor = ±(0.15+ 0.002|θ |) °C. (E6.7.2)

The resistance change at the output of the sensor Pt100 is converted into a voltage signal by
means of a simple conditioning circuitry, which is based on a voltage divider. The voltage output
of this circuit is converted into a digital code through the Analogue-to-Digital Converter (ADC)
internal to a µ-C based board. The scheme of the whole measuring chain is shown in the figure
E6.7.1, where R is the sensor resistance, RF is a fixed known resistance, the ADC has a unipolar
range and its reference voltage VFR is set to the same value of the voltage VS (nominal value 5 V)
that supplies the voltage divider, thus obtaining a ratiometric measurement. The main specifica-
tions of the ADC are:

– maximum sampling rate: fs,max = 76.9kSa/s

– resolution: Nb = 10bit (8 bit if fs > 15kSa/s)

– Integral Non Linearity: INL = ±0.5LSB

– Total Unadjusted Error: TUE = ±2LSB

– input resistance: RIN = 100MΩ

E6.7.3 Specification of the measurand

The thermal cycle that is considered in this example is shown in figure E6.7.2, where the red line
represents the temperature profile the device under test is subjected to.

The quantity under measurement is the air temperature inside the climatic chamber, which is
included in the range 10 °C to 70 °C. Information about the temperature rate during the different
parts of the test is also provided in figure E6.7.2, where the highest rate is equal to 1 °C s−1 in the
time interval from 12.0 min to 12.5 min. Other measurement requirements include the standard
uncertainty, which is 2.0 °C, and the temperature resolution, which has to be not higher than
4.0 °C.
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Figure E6.7.2: The temperature profile to be measured inside a climatic chamber.
E6.7.4 Measurement model

The measurement circuit of figure E6.7.1 has been arranged using a resistor RF with a nominal
value of 1 kΩ and a relative standard uncertainty of ur(RF ) = 1 × 10−3. The value of RF has
been set taking into account the sensitivity SθVF

of the voltage output VF with respect to the input
quantity θ and the self-overheating of the sensor Pt100.

The sensitivity SθVF
is defined as:

SθVF
=
∂ VF

∂ θ
(V/°C), (E6.7.3)

where the voltage VF is obtained as:

VF = VS
RF

RF + R
= VS

RF

RF + R0(1+ Aθ + Bθ2)
. (E6.7.4)

Calculating the partial derivative of the previous expression with respect to the temperature, the
sensitivity (E6.7.3) can be expressed as:

SθVF
= −VS

RFR0(A+ 2Bθ )

[RF + R0(1+ Aθ + Bθ2)]2
. (E6.7.5)

Expression (E6.7.5) shows that a high sensitivity can be obtained using a high voltage VS, as
expected. However, the supply voltage is limited by the self-overheating of the sensor. In ad-
dition, it can be shown that the second term of the expression (E6.7.5) has its extreme value
when RF = R0, thus suggesting a nominal value of 100Ω for the fixed resistance. In this con-
dition, the maximum voltage VS that allows the self-overheating to be neglected is 1 V and the
corresponding sensitivity is of about −0.8 V °C−1.

Another possible choice consists in selecting a value of the fixed resistor RF higher than R0, thus
having the possibility to set values of the voltage VS higher than 1 V. This is the design criterion
used in this example, since the supply voltage provided by the µ-C based board is VS = 5 V. The
value of the fixed resistor RF has been set in order to obtain a sensor self-overheating not higher
than (δθsensor/4), where δθsensor is obtained by means of the expression (E6.7.2). Figure E6.7.3
shows the comparison between the sensor uncertainty δθsensor (blue line) and the sensor self-
overheating δθself (black line) for a value of the resistor RF that is equal to 1 kΩ, where δθself has
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been evaluated by multiplying the power on the sensor R by its thermal resistance (20 °CW−1).
One should note that the sensor self-overheating is always lower than the fixed threshold (red
line), which is equal to δθsensor/4.

Once the conditioning circuitry has been designed, the expected voltage VF can be evaluated
according to the equation (E6.7.4), thus obtaining the result that is shown in the top chart of
figure E6.7.4. The bottom chart of the same figure shows the sensitivity of VF with respect to the
measured temperature, which is evaluated by the expression (E6.7.5) in the range from about
−1.6 mV °C−1 to −1.5 mV °C−1.

Figure E6.7.3: The effect of the sensor self-overheating (black line) compared to the sensor
uncertainty (blue line) when RF = 1kΩ and VS = 5V.

The Input/Output (I/O) relationship of the whole measuring chain that has the temperature θ
as the input quantity and the code Dout provided by the ADC as the output quantity (see figure
E6.7.1) is:

Dout =
VF

Vq
=

VS

Vq

RF

RF + R
=

VS

Vq

RF

RF + R0(1+ Aθ + Bθ2)
. (E6.7.6)

Figure E6.7.4: The output voltage of the conditioning circuitry (top chart) and its sensitivity with
respect to the measured temperature (bottom chart) when RF = 1kΩ and VS = 5V.
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Since the reference voltage of the ADC is the same voltage VS that supplies the conditioning
circuitry, the quantization voltage Vq is obtained as:

Vq =
VS

2Nb
. (E6.7.7)

Replacing the expression (E6.7.7) in the equation (E6.7.6), the output code of the ADC is ob-
tained as:

Dout =��VS

��VS

RF2Nb

RF + R
=

RF2Nb

RF + R0(1+ Aθ + Bθ2)
, (E6.7.8)

that is then independent of the voltage VS (radiometric measurement), which has no effect in the
uncertainty budget of the measuring chain.

Eventually, inverting the I/O relationship (E6.7.8), the calibration function (O/I relationship) of
the whole measuring chain is obtained:

θ =
−A
2B
−

√

√

√ A2

4B2
−

1
R0B

�

R0 + RF − RF
2Nb

Dout

�

. (E6.7.9)

The calibration function (E6.7.9) has to be implemented in the firmware of the micro-controller
in order to provide the temperature measurements starting from the nominal values of the sensor
parameters A, B and R0, the actual value of the resistance RF and the output code Dout of the ADC;
then it represents the measurement model.

E6.7.5 Uncertainty propagation

The measurement model (E6.7.9) allows the main uncertainty contributions to be identified,
which are:

– the sensor uncertainty, which is evaluated through expression (E6.7.2);

– the tolerance of the fixed resistor RF;

– the uncertainty of the code Dout at the output of the ADC.

The last term depends on offset and gain errors Eoff and EG of the ADC, on its Integral Non
Linearity (INL) and on the quantization error Eq. If none of the first three error terms of the ADC
is compensated, the total unadjusted error provided by the manufacturer (maximum admitted
error ±2 LSB) is considered as a reliable evaluation of the effects of the errors Eoff, EG and INL.
For the quantization error Eq, if single readings of the ADC are processed according to the model
(E6.7.9), its value can be considered in the range −0.5 LSB to 0.5 LSB.

The sensitivity coefficient of θ with respect to Dout can be provided using expression (E6.7.9) as:

SDout
θ
=
∂ θ

∂ Dout
=

−2NbRF

R0BD2
out

2

√

√

√ A2

4B2
−

1
R0B

�

R0 + RF − RF
2Nb

Dout

�

, (E6.7.10)
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that has the behaviour shown in figure E6.7.5 for the two possible configurations of the ADC, i.e.
Nb = 10 for sampling rate fs ≤ 15 kSa/s (blue line) or Nb = 8 for fs > 15 kSa/s (red line). The
important difference between the two configurations requires the sampling rate of the ADC to be
set before the uncertainty evaluation is performed.

As observed from figure E6.7.2, the highest rate during the thermal test is equal to 1 °C s−1 and
since the resolution requirement is 0.4 °C, the minimum sampling rate is obtained as:

fS,min =
Ratemax

Resolution
=

1 °Cs−1

0.4 °C
= 2.5 Sa/s. (E6.7.11)

The ADC can be then configured to work with a sampling rate lower than 15kSa/s, thus taking
advantage of its maximum resolution, i.e. Nb = 10. However, in single-reading mode the ADC
resolution is ∆Dout = 1 LSB, which corresponds to a temperature resolution that is equal to ∆θ =
SDout
θ

∆Dout ≈ 3 °C, which does not allow the resolution requirement to be met. Furthermore,
due to the total unadjusted error of the ADC (±2LSB) it is not possible to meet the temperature
uncertainty requirement, which is equal to 2 °C (absolute standard uncertainty).

N

N

Figure E6.7.5: The sensitivity coefficient of θ with respect to Dout in the temperature range of
interest for ADC resolution equal to 10 bit (blue line) and 8 bit (red line).

The proposed system cannot be used as is, but a suitable characterization is required in order
to compensate for offset and gain errors of the ADC, thus reducing its uncertainty contribution
to the parameter INL, which is stated to be not higher than 0.5LSB. In addition, also the ADC
resolution has to be decreased since it is one of the main uncertainty contribution.

About the ADC characterization, a two-step procedure is proposed that is based on the evaluation
of the offset error Doff and the actual quantization step Vq,act. In the first step (right side of figure
E6.7.6), a short circuit is connected to the input of the ADC and the output code Doff is stored,
which is the evaluation of the ADC offset error. In the second step (left side of figure E6.7.6), a
known voltage V1 is applied to the ADC input and the corresponding output code D1 is acquired,
thus evaluating the actual quantization step as:

Vq,act =
V1

D1
. (E6.7.12)

In order to maintain the advantage of a ratiometric measurement, the voltage V1 is obtained by
means of a voltage divider made up of two resistors R1 and R2 that are supplied by the voltage VS.
In addition, the nominal values of the two resistors are set in order to obtain a voltage input of
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the ADC that is very similar to the voltage VF (see top chart of figure E6.7.4), that are R1 = 10 kΩ
and R2 = 1 kΩ. In this condition, the expression (E6.7.12) can be rewritten as:

Vq,act =
VS

D1

R1

R1 + R2
. (E6.7.13)

ADC
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V V

D

R

ADC

V
V V

D

V

R

Figure E6.7.6: The two steps of the ADC characterization: in the first step the ADC offset error
is evaluated, while in the second step the actual quantization voltage of the ADC is obtained.

The new I/O relationship of the characterized measuring chain can be expressed as

Dout =��VS

��VS

�

1+
R2

R1

�

D1
RF

RF + R
+ Doff, (E6.7.14)

and the calibration function becomes:

θ =
−A
2B
−

√

√

√ A2

4B2
−

1
R0B

�

R0 + RF −
KD1RF

Dout − Doff

�

, (E6.7.15)

where K = 1+ R2/R1.

In the new measurement model (E6.7.15), the uncertainty contributions related to the sensor
and the fixed resistor RF remain the same, the new terms K , Doff and D1 are present, while for
the term Dout the parameter INL and the quantization error of the ADC have to be taken into
account.

About the term K (nominal value 1.1), if the two resistors R1 and R2 are known with a relative
standard uncertainty ur(R1) = ur(R2) = 1 × 10−3, it can be easily shown2 that the absolute
standard uncertainty of the term K is u(K)≈ 1.4× 10−4.

The uncertainty of the terms Doff and D1 obtained during the characterization of the ADC mainly
depends on the reading resolution and repeatability. The ADC resolution is also responsible for
the uncertainty of the term Dout and, as previously shown, the value of 1 LSB that corresponds to
a single-reading mode does not allow to meet either the temperature resolution requirement or
the uncertainty requirement.

With the aim of reducing the ADC resolution, a dithering technique is implemented that is based
on the evaluation of the mean value of multiple readings. The effectiveness of this technique in
reducing the ADC resolution is related to the number M of multiple readings that are acquired
at the output of the ADC and mainly to the characteristics of the noise that is superimposed
on the sampled signal [511]. Such a noise must have a zero mean value, in order not to bias

2The correlation between the measurements of R1 and R2 is considered negligible.
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the sampled signal, and a standard deviation that is similar to the quantization step Vq of the
ADC. The dithering technique is often used in data acquisition boards, where an internal noise
generator can be turned on when multiple readings are acquired and averaged, and in digital
storage oscilloscope (high-resolution mode), taking advantage of the internal noise of the input
analogue conditioning circuitry.

One should note that the implementation of the dithering technique requires to over-sample the
signal at the input of the ADC, i.e. a sampling rate that is much higher than the Nyquist limit
has to be set; otherwise the average processing of multiple readings acts as a low-pass filter and
then modifies the behaviour of the sampled signal. In this example, a minimum sampling rate
has been evaluated by means of the expression (E6.7.11), which is 2.5 Sa/s, that sets the over-
sampling conditions. If the sampling rate of the ADC internal to the µ-C board is set to 10kSa/s,
a maximum number of samples M = 4000 can be acquired and averaged over a time interval of
0.4 s, thus ensuring the compliance to the minimum sampling rate.

If a zero mean-value noise with a normal distribution and a standard deviation σn is superim-
posed on the sampled signal VF, the number of bit of resolution of the ADC is improved of the
quantity N+b that can be expressed as3:

N+b =
1
2

log2

�

M
12(σn/Vq)2 + 1

�

. (E6.7.16)

With the assumption of a unitary ratio (σn/Vq), according to the previous expression the quantity
N+b is in the range from about 2 bit to about 3 bit for a number of samples M equal to 200 and
800, respectively.

In the proposed system, the dithering technique is implemented taking advantage of the internal
noise of the µ-C analogue circuitry. The standard deviation of such a noise has been evaluated
during the characterization of offset and gain errors of the ADC. The figure E6.7.7 shows the code
D1 acquired during 1000 single conversions of the ADC. This result refers to the second step of
the ADC characterization (see right side of figure E6.7.6) and to the nominal value of the resistor
R1 and R2 that are equal to 10kΩ and 1 kΩ, respectively. The experimental standard deviation
σn+eq

of the acquired samples, which includes the effects of the internal noise n of the analogue
circuitry and the quantization noise eq, has a value of about 0.87 LSB. Since the quantization
noise is characterized by a standard deviation σeq

= 1/
p

12 LSB, the standard deviation σn of
the noise can be obtained as

σn =
r

σ2
n+eq
−σ2

eq
=

√

√

0.872 −
1

12
≈ 0.82 LSB. (E6.7.17)

The ratio σn/Vq is then equal to 0.82, which is suitable for an effective implementation of the
dithering technique.

The sampling rate of the ADC has been set to about4 9615Sa/s and 1000 sets of 200 samples
have been acquired and averaged, obtaining the result that is shown in figure E6.7.8 during the
characterization of the ADC.

The result of figure E6.7.8 shows that averaging 200 multiple readings of the ADC allows the
resolution ∆Dout to be decreased to 0.1 LSB, that corresponds to a temperature resolution of
about 0.3 °C.

3This expression can be considered valid for values of the ratio (σn/Vq) greater than 0.5.
4This value derives from the main clock of the µ-C board divided by a integer division factor.
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Figure E6.7.7: Characterization of the gain error of the ADC in single conversion mode.

Figure E6.7.8: Characterization of the gain error of the ADC in free-running mode (average of
sets of 200 samples).
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The mean value and the experimental standard deviation of the parameter D1 have been evalu-
ated as D̄1 = 931.87 and σD1

= u(D1)≈ 0.09, respectively.

During the first step of the ADC characterization, the parameter Doff has been evaluated as
1.00 LSB with a standard uncertainty u(Doff)≈ 0.09 LSB.

Using the expression (E6.7.15) as the measurement model, where Dout is obtained as the average
of 200 multiple readings, the standard uncertainty of the temperature θ is evaluated under the
assumption of negligible correlation among the random variables RF, K , Doff, D1, Dout and the
parameters of the sensor Pt100, thus obtaining:

u2(θ ) =
�

∂ θ

∂ RF

�2

u2(RF) +
�

∂ θ

∂ K

�2

u2(K) +
�

∂ θ

∂ Doff

�2

u2(Doff)+ (E6.7.18)

+
�

∂ θ

∂ D1

�2

u2(D1) +
�

∂ θ

∂ Dout

�2

u2(Dout) + u2(θsensor), (E6.7.19)

where5
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∂ θ

∂ Dout
=

KD1RF

R0B(Dout − Doff)2

2

√

√

√ A2

4B2
−

1
R0B

�

R0 + RF −
KD1RF

Dout − Doff

�

. (E6.7.24)

E6.7.6 Reporting the result

The results here reported, which refer to the temperature range from 10 °C to 70 °C, have been
obtained using the MATLAB script pt100_emue.m. Other temperature intervals and other input
data can be used accessing to the variables in the script according to the instructions explained
in the help section.

5The sensitivity coefficients have been analytically obtained using the basic rules of derivatives [508].
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The absolute standard uncertainties of the input quantities RF, K , Doff and D1 are here summa-
rized:

u(RF) = 1Ω

u(K) = 1.4× 10−4

u(Doff) = 0.09LSB

u(D1) = 0.09LSB

About the code Dout, which is obtained as the average of 200 multiple readings of the ADC, the
main uncertainty contributions are related to the Integral Non Linearity (INL) of the ADC and
to the standard deviation σDout

of the repeated readings. The first contribution, which is stated
by the manufacturer as 0.5 LSB, is associated to a uniform probability density function, thus
obtaining a corresponding standard uncertainty u(INL) that is equal to:

u(INL) =
1
p

12
≈ 0.29LSB. (E6.7.25)

The standard deviation σDout
is evaluated as the same value obtained during the ADC character-

ization (0.09 LSB), thus obtaining the standard uncertainty u(Dout) as:

u(Dout) =
Ç

u2(INL) +σ2
Dout
=
p

0.292 + 0.092 ≈ 0.30 LSB. (E6.7.26)

Eventually, the contribution due to the sensor is evaluated starting from its maximum admitted
error δθsensor (see the expression (E6.7.2)) and making also for this contribution the assumption
of uniform probability density function, thus obtaining:

u(θsensor) =
δθsensorp

3
(◦C). (E6.7.27)

The numerical values of the different terms (squared standard uncertainty contributions) of the
expression (E6.7.18) are summarized in figure E6.7.9 in the temperature range of interest, while
figure E6.7.10 reports the standard uncertainty u(θ ) in the same temperature range.

E6.7.7 Interpretation of results

From an analysis of figure E6.7.9, the first outcome is that the main uncertainty contributions is
that related to the code Dout, which is due to the Integral Non Linearity of the ADC. The other
contributions are relatively negligible, thus suggesting the possibility to relax the uncertainty
requirements of the fixed resistor RF and of the fixed resistors R1 and R2 used during the ADC
characterization. The same figure shows that the lowest contribution is that related to the sensor
Pt100; then it is possible to use a cheap sensor that belongs to a worse uncertainty class than
class A, thus reducing the cost of the whole system.

Figure E6.7.10 eventually highlights that the evaluated standard uncertainty meets the measure-
ment requirement (2 °C), thanks to

– the minimization of the sensor self-overheating;
– the use of a ratiometric conditioning circuitry;
– the compensation of offset and gain errors of the ADC internal to the micro-controller6;

6Note that in this example the contributions related to possible drifts of the components of the measuring chain
after the characterization have not been taken into account.
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Figure E6.7.9: Numerical values of the squared standard uncertainty contributions of expression
(E6.7.18) in the temperature range of interest.

Figure E6.7.10: Absolute standard uncertainty u(θ ) in the temperature range of interest.
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– the implementation of the dithering technique.

Figure E6.7.11: Numerical values of the squared standard uncertainty contributions of the ex-
pression (E6.7.18) in the temperature range of interest obtained with a class B Pt100 and fixed
resistors known with a relative standard uncertainty equal to 3× 10−3.

Figure E6.7.12: Absolute standard uncertainty u(θ ) in the temperature range of interest obtained
with a class B Pt100 and fixed resistors known with a relative standard uncertainty equal to
3× 10−3.

As an example of results that can be obtained relaxing the requirements of the components of
the measuring chain, figure E6.7.11 shows the squared standard uncertainty contributions in
expression (E6.7.18) when the relative standard uncertainty of the resistors RF, R1 and R2 is
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3×10−3 (instead of 1×10−3) and the sensor Pt100 belongs to class B [510], which corresponds
to a maximum admitted error expressed as:

δθsensor = ±(0.30+ 0.005|θ |) °C. (E6.7.28)

The corresponding absolute standard uncertainty is instead shown in figure E6.7.12, which shows
that the uncertainty requirement is met in the whole temperature range.

The last consideration is related to the uncertainty contribution that is due to the wire resistance
of the sensor Pt100. Even though the sensor is provided with four wires, the measurement circuit
of figure E6.7.1 allows a three-wire connection to be arranged. The main consequence of this
connection is related to the resistance RW of the wire that connects the sensor to the voltage
supply VS. The resistance RW is connected in series to the sensor resistance R and then it acts as a
systemic effect that biases the temperature measurement. A raw evaluation of this effect can be
obtained evaluating the absolute resistance change of the sensor Pt100 as about 0.4Ω °C−1, which
corresponds to a temperature error of 0.25 °C for a value of RW = 0.1Ω. When this systematic
effect becomes non-negligible, it is possible to measure the resistance of the two wires of the
sensor Pt100 and modify the measurement model to take into account the voltage drop across
the resistance RW.
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Smoke production rate, 82
smoke production rate, 78
sonic anemometry, 485
sonic nozzle, 341

contour curvature, 342
multi-stage measurement model, 343
surface structure, 342
throat diameter, 343

sonic thermometry, 485
spatial distribution, 430
speed of sound, 483, 485
speed of sound of the gas, 350
standard deviation

between-group, 379
pooled, 380
within-group, 379

standard uncertainty
relative, 315
type A evaluation, 370
type B evaluation, 370

statistical model, 380
Bayesian, 174

steam sterilization, 472
straight line

intercept, 443
straight-line regression, 111, 501
straight-line relation, 439
sum of squares

weighted total least squares, 345
summation over three phases, 354
Surface Topography Standards, 174
sustainable development goals, 205
systematic effect, 240

therhold substance, 535

thermal comfort, 367
threshold substance, 535
time-integrated air concentration, 285
time-of-flight measurement, 485
tissue

electric properties, 429
tolerance, 149
tolerance interval, 190, 194
top-down modelling, 172
torque measuring sensor, 501
total heat release, 78
total smoke production, 78
Total Suspended Particulate Matter, 165
totalizers, 258
transformer losses, 353

billing, 353
triangulation techniques, 529
trueness, 237
tumour, 429
two-point calibration

interpolation, 61

ultrasonic flowmeter, 261
uncertainty

definitional, 452

vacuum gauge, 149
validation data, 535
validation studies

inter-laboratory, 536
intra-laboratory, 536

variable
response, 57
stimulus, 57

vector mean, 145
vector quantity, 94
viscosity, 449

certified reference material, 449
voxel, 409, 410, 430

water supply, 257
weighted average, 430
weighted total least squares, 69
weighted total least-squares, 341
within-laboratory reproducibility, 241
World Meteorological Organization, 205
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AFM Atomic Force Microscopy. 171–175, 177, 180, 187, 409, 418–420, 423, 426, 427

ANOVA analysis of variance. 166, 174, 247, 379, 380, 383, 384

BIPM Bureau International des Poids et Mesures. 99

CIPM International Committee of Weights and Measures. 99–102, 104, 106–108

CMC calibration and measurement capability. 91–95, 97, 98, 106

CMM coordinate measuring machine. 345

CRM certified reference material. 220, 510, 513, 514, 521, 524, 538, 541, 542

DoE Design of Experiment. 171, 174, 176–178, 181, 185–187

EA European co-operation for Accreditation. 21

GLS generalized least squares. 102

GUF GUM uncertainty framework. 77, 90, 163, 217, 219, 223, 224, 371, 374, 375, 377, 378,
395, 450–454, 456, 462, 463, 467, 499, 509, 515, 545, 561

GUM Guide to the expression of Uncertainty in Measurement. xv, 1, 2, 29, 57, 109–111, 115–
118, 122, 123, 125, 126, 129, 131, 133, 137, 151, 152, 161, 162, 173, 185, 189, 196, 200,
205, 213, 216, 225, 244, 263, 269, 273–275, 278, 312, 315, 318, 341, 342, 345, 348, 350,
353, 369–371, 374, 378, 384, 403, 419, 425, 427, 429, 439, 440, 442, 449, 451–457, 461,
462, 467, 469, 471, 476, 483, 488, 501–505, 507, 508, 511, 515, 517, 542

GUM-S1 GUM Supplement 1. 21, 205, 210, 213, 216, 217, 224, 273, 278, 344, 353, 370, 371,
374, 375, 395, 403, 425, 449, 452, 453, 457, 462, 463, 467, 499

GUM-S2 GUM Supplement 2. 57, 109, 111, 115, 122, 161, 344, 347, 496, 499

IEC International Electrotechnical Commission. 45

ILAC International Laboratory Accreditation Cooperation. 45

ISO International Organization for Standardization. 45

JCGM Joint Committee on Guides in Metrology. xv, 1, 99, 133, 269, 273, 483

619



Acronyms 620

KC key comparison. 91–95, 97–104, 106–108

KCRV key comparison reference value. 91, 93, 96, 98, 100–102, 108

LIMS laboratory information management system. 2

LPU law of propagation of uncertainty. 29, 57, 71, 73, 111, 114, 117, 152, 161, 173, 185, 189,
200, 201, 210, 219, 221, 222, 241, 262, 263, 266, 271, 274, 275, 278, 279, 315, 318, 345,
353, 369, 371, 429, 430, 452, 462, 472, 475, 488, 489, 491, 492, 496, 517

MAP maximum a posteriori. 95, 97

MCM Monte Carlo method. 29, 71, 73, 76, 77, 82, 89, 90, 210, 216, 217, 219, 221, 223–225,
266, 273, 278, 279, 343, 345, 353, 374, 375, 378, 395, 403, 416, 417, 452–456, 462, 463,
469, 473, 489, 493, 499, 509, 517

MCMC Markov Chain Monte Carlo. 21, 22, 174, 178, 179, 181–184, 187, 384

MPE maximum permissible error. 196, 199

MRA CIPM Mutual Recognition Arrangement. 99, 100

NMI national metrology institute. 92, 99, 110, 450

OLS ordinary least-squares method. 178, 348, 442, 444, 507

PDF probability density function. 53, 145, 146, 150, 153–155, 157, 167–169, 178, 179, 181–
185, 187, 189, 191–195, 197, 198, 200, 201, 212, 213, 216, 224, 263, 266, 371, 374, 375,
377, 378, 380, 384, 385, 422, 423, 425, 426, 452–456, 462, 463, 472–474, 505–507, 517,
526

PID Proportional Integral Derivative. 172, 419

RM reference material. 513

RMO regional metrology organisation. 99–104, 106, 108

SBI single burning item. 77–79, 83

SI Système International d’unités. 171, 172, 174, 196, 449, 529

SPM Scanning Probe Microscopy. 419, 423

VIM International Vocabulary of Metrology. 471

WLS weighted least-squares method. 345, 348, 442, 444, 507, 508

WM weighted mean. 101, 104

WMO World Meteoroligical Organization. 205, 209, 210

WTLS weighted total least-squares method. 341, 343, 345, 347, 439, 440, 442–445
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