Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Locations covered by the organisation and their relevant activities

Laboratory locations:

Location details		Activity	Location code
Address The Calibration House Halesfield 7 Telford Shropshire TF7 4QL	Local contact Mr R A Jones	Electrical and Dimensional calibrations	Ρ

Site activities performed away from the locations listed above:

Location details		Activity	Location code
Customers' sites or premises	Local contact Mr R A Jones	Dimensional calibrations	S
The customers' site or premises must be suitable for the nature of the particular calibrations undertaken and will be the subject of contract review arrangements between the laboratory and the customer			

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK
	Keysight Technologies UK Ltd
0126	Issue No: 047 Issue date: 27 March 2025
Accredited to ISO/IEC 17025:2017	
	Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
DC RESISTANCE				Р
Specific values	1 Ω 10 Ω 100 Ω 1 kΩ 10 kΩ 100 kΩ 1 MΩ 10 MΩ	3.9 μΩ/Ω 2.4 μΩ/Ω 1.2 μΩ/Ω 1.3 μΩ/Ω 1.5 μΩ/Ω 2.2 μΩ/Ω 6.1 μΩ/Ω	Standard resistors available for application to resistance measuring instruments, in a 2- wire or 4-wire configuration as appropriate. Calibration of	
Other Values	$\begin{array}{l} 0 \ \Omega \ \ to \ 0.5 \ \Omega \\ 0.5 \ \Omega \ \ to \ 5 \ \Omega \\ 5 \ \Omega \ \ to \ 5 \ \Omega \\ 50 \ \Omega \ \ to \ 500 \ \Omega \\ 500 \ \Omega \ \ to \ 500 \ \Omega \\ 500 \ \Omega \ \ to \ 500 \ \ \Omega \\ 500 \ \ \Omega \ \ to \ 500 \ \ \Omega \\ 500 \ \ \ \Omega \ \ to \ 500 \ \ \Omega \\ 500 \ \ \ \Omega \ \ \ to \ 500 \ \ \ \Omega \\ 500 \ \ \ \ \Omega \ \ \ \ \ \ \ \ \ \ \ \ \ \$	7.5 μΩ/Ω + 0.25 μΩ 7.4 μΩ/Ω 5.4 μΩ/Ω 5.4 μΩ/Ω 5.4 μΩ/Ω 5.4 μΩ/Ω 5.4 μΩ/Ω 5.4 μΩ/Ω 5.4 μΩ/Ω 7.2 μΩ/Ω 25 μΩ/Ω 33 μΩ/Ω 400 μΩ/Ω	resistors by comparison with these standards can also be undertaken. Using voltage / current method.	
DC VOLTAGE	0 V to 11 V 11 V to 110 V 110 V to 1100 V	2.8 μV/V + 0.30 μV 2.8 μV/V 3.2 μV/V	Known voltages for application to voltage measuring instruments. Measurements of the output voltages from sources may also be undertaken.	Ρ
	1 kV to 70 kV	0.14 %	Using high voltage divider.	
DC CURRENT	100 nA to 10 μA 10 μA to 1 A 1 A to 2 A 2 A to 100 A	13 μΑ/Α + 5.0 pA 10 μΑ/Α 23 μΑ/Α 10 μΑ/Α	Known currents for application to current measuring instruments. Measurements of the output currents from sources may also be undertaken.	Ρ
	10 mA to 5 A 5 A to 100 A 100 A to 2500 A	0.30 % + 1.0 mA 0.12 % + 20 mA 0.47 % + 0.52 A	For the calibration of clamp-on ammeters and similar devices using multi-turn coil method.	Р

CALIBRATION AND MEASUREMENT CAPABILITY (CMC)

Т

Г

Т

Т

	So United K 2 Pine Trees, Che	chedule of Accreditat issued by Kingdom Accreditatio rtsey Lane, Staines-upon-Tha	ion n Service mes, TW18 3HR,	UK		
UKAS CALIBRATION 0126	lssu	Keysight Technologies UK Ltd Issue No: 047 Issue date: 27 March 2025				
Accredited to ISO/IEC 17025:2017						
	Calibration performed by the O	rganisation at the locations specified				
Measured Quantity	Range	Expanded Measurement Uncertainty $(k = 2)$	Remarks	Locatio Code		

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks	cation Code
AC VOLTAGE				Р
AC VOLTAGE Generation	1 mV to 2.2 mV 10 Hz to 100 kHz 100 kHz to 300 kHz 300 kHz to 500 kHz 500 kHz to 1 MHz 2.2 mV to 22 mV 10 Hz to 50 kHz 50 kHz to 100 kHz 100 kHz to 300 kHz 300 kHz to 500 kHz 500 kHz to 1.0 MHz 22 mV to 220 mV 10 Hz to 20 Hz 20 Hz to 20 kHz 50 kHz to 100 kHz 100 kHz to 300 kHz 300 kHz to 500 kHz 500 kHz to 1 MHz 220 mV to 2.2 V 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 20 kHz 50 kHz to 100 kHz 100 kHz to 500 kHz 50 kHz to 100 kHz 100 kHz to 500 kHz 500 kHz to 1 MHz 2.2 V to 22 V 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 20 kHz 500 kHz to 1 MHz 2.2 V to 22 V 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 20 kHz 500 kHz to 100 kHz 100 kHz to 500 kHz 500 kHz to 100 kHz 100 kHz to 500 kHz 500 kHz to 100 kHz 100 kHz to 500 kHz 500 kHz to 1 MHz 22 V to 22 V 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 20 kHz 500 kHz to 100 kHz 100 kHz to 500 kHz 500 k	0.12 % + 5.0 μ V 0.21 % + 10 μ V 0.40 % + 20 μ V 0.61 % + 20 μ V 0.61 % + 20 μ V 0.053 % + 5.0 μ V 0.11 % + 10 μ V 0.15 % + 20 μ V 0.31 % + 20 μ V 0.025 % + 12 μ V 0.010 % + 7.0 μ V 0.032 % + 17 μ V 0.067 % + 20 μ V 0.14 % + 25 μ V 0.28 % + 45 μ V 0.28 % + 45 μ V 0.005 % + 8.1 μ V 0.005 % + 8.1 μ V 0.007 % + 10 μ V 0.010 % + 30 μ V 0.035 % + 80 μ V 0.10 % + 0.20 mV 0.19 % + 0.30 mV 0.025 % + 0.40 mV 0.007 % + 0.10 mV 0.010 % + 2.0 mV 0.17 % + 3.2 mV 0.025 % + 4.0 mV 0.006 % + 1.0 mV 0.009 % + 1.0 mV 0.091% + 16 mV	Known voltages for application to voltage measuring instruments, using multi-function calibrator.	Ρ

UKAS CALIBRATION 0126 Accredited to ISO/IEC 17025:2017		Sc United K 2 Pine Trees, Cher	hedule of Accreditat issued by ingdom Accreditatic tsey Lane, Staines-upon-Tha	tion on Service Imes, TW18 3HR, L	JK
		K Issue	Xeysight Technologies UK No: 047 Issue date: 27 Marc	Ltd ch 2025	
		Calibration performed by the Or	ganisation at the locations specified		
Measured Quantity Instrument or Gauge		Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
AC VOLTAGE (continued)					Р
Generation (continued)	220 \ 15 H. 40 H. 1 kH. 20 kH 220 \	/ to 1100 V z to 40 Hz z to 1 kHz z to 20 kHz Hz to 30 kHz / to 750 V	0.031 % + 16 mV 0.010 % + 4.2 mV 0.017 % + 6.1 mV 0.060 % + 11 mV		
	30 kł 50 kł	Hz to 50 kHz Hz to 100 kHz to 20 kV	0.061 % + 11 mV 0.23 % + 45 mV	Light weltage	Р
	50 H.	z to 60 Hz	0.42 %	divider.	
AC VOLTAGE					
NOTE: Two systems are ava sources. As two multimeters multimeter are described in the	ailable are in this se	for AC Voltage measurements. Bo general use, each resulting in diffection.	oth employ digital multimeters for the ca erent and overlapping CMCs, the capat	libration of AC Voltage pilities for each	
SYSTEM 1 - using Model 34	158A m	nultimeter			Р
	1 mV 40 H 1 kH 20 kH 100 H	' to 10 mV z to 1 kHz z to 20 kHz Hz to 100 kHz kHz to 300 kHz	0.037 % + 1.3 μV 0.046 % + 1.3 μV 0.59 % + 1.3 μV 4.7 % + 2.3 μV		
	10 m 40 H 1 kH 20 kl 100 l	V to 100 mV z to 1 kHz z to 20 kHz Hz to 100 kHz kHz to 300 kHz	0.011 % + 2.3 μV 0.018 % + 2.3 μV 0.10 % + 2.3 μV 0.35 % + 12 μV		
	100 r 40 H 1 kH 20 k 50 k 100 k 300 k	nV to 1 V z to 1 kHz z to 20 kHz Hz to 50 kHz Hz to 100 kHz kHz to 300 kHz kHz to 1 MHz	0.010 % + 0.023 mV 0.018 % + 0.023 mV 0.037 % + 0.023 mV 0.10 % + 0.023 mV 0.35 % + 0.12 mV 1.2 % + 0.12 mV		
	1 V to 40 H. 1 kH. 20 kl 50 kl 100 l 300 l	o 10 V z to 1 kHz z to 20 kHz Hz to 50 kHz Hz to 100 kHz kHz to 300 kHz kHz to 1 MHz	0.010 % + 0.23 mV 0.018 % + 0.23 mV 0.037 % + 0.23 mV 0.094 % + 0.23 mV 0.35 % + 1.2 mV 1.2 % + 1.2 mV		

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK
UKAS CALIBRATION 0126	Keysight Technologies UK Ltd Issue No: 047 Issue date: 27 March 2025
Accredited to ISO/IEC 17025:2017	
	Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty ($k = 2$)	Remarks	Location Code
AC VOLTAGE (continued)				Р
SYTEM 1 - using Model 3458A multimeter (continued)	10 V to 100 V 40 Hz to 1 kHz 1 kHz to 20 kHz 20 kHz to 50 kHz 50 kHz to 100 kHz	0.025 % + 2.3 mV 0.027 % + 2.3 mV 0.043 % + 2.3 mV 0.14 % + 2.3 mV		
	40 Hz to 1 kHz	0.050 % + 23 mV		
SYSTEM 2 - using Model 8	508A multimeter 10 mV to 200 mV 20 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 200 mV to 2 V 20 Hz to 40 Hz 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 100 kHz 100 kHz 300 kHz 300 kHz to 1 MHz 2 V to 20 V 20 Hz to 40 Hz 40 Hz to 300 kHz 10 kHz to 300 kHz 30 kHz to 100 kHz 100 kHz to 300 kHz 300 kHz to 1 MHz 20 V to 200 V 20 Hz to 40 Hz 40 Hz to 10 kHz 100 kHz to 30 kHz 300 kHz to 1 MHz 20 V to 200 V 20 Hz to 40 Hz 40 Hz to 10 kHz 10 kHz to 30 kHz 30 kHz to 10 kHz 10 kHz to 10 kHz to 10 kHz 10 kHz	$\begin{array}{l} 0.012 \% + 4.0 \ \mu\text{V} \\ 0.030 \% + 8.0 \ \mu\text{V} \\ 0.070 \% + 20 \ \mu\text{V} \\ 0.070 \% + 20 \ \mu\text{V} \\ 0.083 \% + 20 \ \mu\text{V} \\ 0.020 \% + 40 \ \mu\text{V} \\ 0.050 \% + 0.20 \ \text{mV} \\ 0.30 \% + 2.0 \ \text{mV} \\ 1.0 \% + 20 \ \text{mV} \\ 0.010 \% + 0.20 \ \text{mV} \\ 0.0083 \% + 0.20 \ \text{mV} \\ 0.020 \% + 0.40 \ \text{mV} \\ 0.020 \% + 0.40 \ \text{mV} \\ 0.050 \% + 2.0 \ \text{mV} \\ 1.0 \% + 0.20 \ \text{V} \\ 0.011 \% + 2.0 \ \text{mV} \\ 0.0090 \% + 2.0 \ \text{mV} \\ 0.020 \% + 4.0 \ \text{mV} \\ 0.050 \% + 20 \ \text{mV} \\ 0.050 \% + 20 \ \text{mV} \\ 0.050 \% + 20 \ \text{mV} \\ 0.010 \% + 21 \ \text{mV} \\ 0.021 \% + 40 \ \text{mV} \\ 0.010 \% + 21 \ \text{mV} \\ 0.021 \% + 40 \ \text{mV} \\ 0.010 \% + 21 \ \text{mV} \\ 0.021 \% + 40 \ \text{mV} \\ 0.010 \% + 21 \ \text{mV} \\ 0.021 \% + 40 \ \text{mV} \\ 0.010 \% + 21 \ \text{mV} \\ 0.010 \% + 0.000 \% + 20 \ \text{mV} \\ 0.010 \% + 0.000 \% + 0.000 \% \\ 0.000 \% + 0.000 \% + 0.000 \% \\ 0.000 \% + 0.000 \% + 0.000 \% \\ 0.000 \% + 0.000 \% \\ 0.000 \% + 0.000 \% \\ 0.000 \% + 0.000 \% \\ 0.000 \% + 0.000 \% \\ 0.000 \% + 0.000 \% \\ 0.000 \% + 0.000 \% \\ 0.$		Ρ
AC High Voltage measurements	1 kV to 30 kV 50 Hz to 60 Hz	0.42 %	Using high voltage divider.	Ρ

	United 2 Pine Trees, 0	Schedule of Accreditat issued by d Kingdom Accreditatio Chertsey Lane, Staines-upon-Tha	ion n Service _{mes, TW18 3HR,}	UK			
UKAS CALIBRATION 0126	Keysight Technologies UK Ltd Issue No: 047 Issue date: 27 March 2025						
Accredited to ISO/IEC 17025:2017							
Calibration performed by the Organisation at the locations specified							
Measured Quantity	Range	Expanded Measurement	Remarks	Locat Coc			

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	ocation Code
AC CURRENT				
Generation	20 μA to 220 μA 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 1 kHz 1 kHz to 5 kHz 5 kHz to 10 kHz	0.030 % + 0.016 μA 0.016 % + 0.010 μA 0.011 % + 0.0081 μA 0.028 % + 0.012 μA 0.11 % + 0.065 μA	Known currents for application to current measuring instruments.	Ρ
	220 μA to 2.2 mA 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 1 kHz 1 kHz to 5 kHz 5 kHz to 10 kHz	0.031 % + 0.042 μA 0.018 % + 0.037 μA 0.011 % + 0.037 μA 0.020 % + 0.11 μA 0.11 % + 0.65 μA		
	2.2 mA to 22 mA 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 1 kHz 1 kHz to 5 kHz 5 kHz to 10 kHz	0.030 % + 0.42 μA 0.017 % + 0.37 μA 0.011 % + 0.37 μA 0.020 % + 0.56 μA 0.11 % + 5.0 μA		
	22 mA to 220 mA 10 Hz to 20 Hz 20 Hz to 40 Hz 40 Hz to 1 kHz 1 kHz to 5 kHz 5 kHz to 10 kHz	0.030 % + 4.2 μA 0.016 % + 43.7 μA 0.011 % + 2.8 μA 0.020 % + 3.7 μA 0.11 % + 10 μA		
	220 mA to 2.2 A 20 Hz to 1 kHz 1 kHz to 5 kHz 5 kHz to 10 kHz	0.026 % + 37 μA 0.045 % + 81 μA 0.70 % + 160 μA		
	2.2 A to 11 A 40 Hz to 1 kHz 1 kHz to 5 kHz 5 kHz to 10 kHz	0.047 % + 0.21 mA 0.095 % + 0.40 mA 0.36 % + 0.76 mA		
	2 A to 100 A 50 Hz to 60 Hz	0.030 %	Using transconductance amplifier	Ρ
	50Hz to 60 Hz 10 mA to 5 A 5 A to 100 A 100 A to 2500 A	0.044 % + 0.58 mA 0.052 % + 0.017 A 0.44 % + 0.52 A	For the calibration of clamp-on ammeters and similar devices using multi-turn coil method.	Ρ

	S United H 2 Pine Trees, Che	chedule of Accreditat issued by Kingdom Accreditatic rtsey Lane, Staines-upon-Tha	tion on Service Imes, TW18 3HR, L	JK
O126 Accredited to ISO/IEC 17025:2017	Issu	Keysight Technologies UK e No: 047 Issue date: 27 Marc	Ltd ch 2025	
	Calibration performed by the C	Organisation at the locations specified		
Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty $(k = 2)$	Remarks	Location Code
AC CURRENT				Р
Measurement				
NOTE: Two systems are av sources. As two multimeters multimeter are described in	ailable for AC Current measurements. E s are in general use, each resulting in di this section.	l oth employ digital multimeters for the ca fferent and overlapping CMCs, the capal	l libration of AC Current pilities for each	
SYSTEM 1 - using Model 34	458A multimeter			Р
	45 Hz to 1 kHz 10 μA to 100 μA 100 μA to 1 mA 1 mA to 10 mA 10 mA to 100 mA 100 mA to 1 A	0.083 % + 0.035 μA 0.077 % + 0.23 μA 0.072 % + 2.3 μA 0.072 % + 23 μA 0.12 % + 0.23 mA		
SYSTEM 2 - using Model 85	508A multimeter			Р
	20 μA to 200 μA 55 Hz to 5 kHz 5 kHz to 10 kHz	0.035 % + 20 nA 0.047 % + 20 nA		
	200 μA to 2 mA 55 Hz to 10 kHz	0.027 % + 0.20 µA		
	2 mA to 20 mA 55Hz to 10 kHz	0.026 % + 2.0 μA		
	20 mA to 200 mA 55 Hz to 10 kHz	0.026 % + 20 µA		
	200 mA to 2 A 55 Hz to 2 kHz 2 kHz to 10 kHz	0.060 % + 0.20 mA 0.073 % + 0.20 mA		
	2 A to 20 A 10 Hz to 2 kHz 2 kHz to 10 kHz	0.11 % + 2.0 mA 0.33 % + 2.0 mA		
	<i>50 Hz to 60 Hz</i> 2 A to 100 A	0.030 %	Using transconductance amplifier	
	50Hz to 60 Hz 20 mA to 5 A 5 A to 100 A 100 A to 2500 A	0.044 % + 0.58 mA 0.052 % + 0.017 A 0.44 % + 0.52 A	For the calibration of clamp-on ammeters and similar devices using multi-turn coil method.	

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK		
0126 Accredited to ISO/IEC 17025:2017	Keysight Technologies UK Ltd Issue No: 047 Issue date: 27 March 2025		
	Calibration performed by the Organisation at the locations specified		

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
AC POWER	50 Hz to 60 Hz 50 mW to 4 kW 4 kW to 10 kW	0.052 % 0.20 %	At unity power factor, using a phantom load technique. Measurements can also be made at power factors of 0.9, 0.5, 0.1 and 0.01 but the quoted uncertainties will be increased.	Ρ
FREQUENCY				Р
Specific value	10 MHz	1.0 in 10 ¹⁰	By comparison with house standard.	
Other values	0.1 Hz to 1 Hz 1 Hz to 10 Hz 10 Hz to 100 Hz 100 Hz to 10 kHz	5.0 in 10 ⁴ 5.0 in 10 ⁵ 5.0 in 10 ⁶ 5.0 in 10 ⁷	Multi-period measurement using counter timer.	
	10 kHz to 100 kHz 100 kHz to 1 MHz 1 MHz to 10 MHz 10 MHz to 150 MHz 150 MHz to 1 GHz 1 GHz to 20 GHz	1.0 in 10 ⁶ 1.0 in 10 ⁷ 1.0 in 10 ⁸ 1.0 in 10 ⁹ 1.0 in 10 ⁹ 3.0 in 10 ¹⁰	Frequency measurement using counter timer.	
PHASE ANGLE	50 Hz to 10 kHz 0° to 360°	0.050°	Using digital phasemeter.	Р
CAPACITANCE Specific values and frequencies	100 Hz 1 nF 10 nF 100 nF 1 μF 10 μF 100 μF 1 kHz 1 pF 10 pF 100 pF 1 nF 100 nF 100 nF 1 μF 100 μF 100 μF	0.051 % 0.023 % 0.023 % 0.017 % 0.046 % 0.046 % 0.045 % 0.041 % 0.017 % 0.010 % 0.021 % 0.015 % 0.046 %	Standard capacitors available for application to capacitance measuring instruments. Calibration of capacitors by comparison with these standards can also be undertaken.	Ρ

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK
O126 Accredited to ISO/IEC 17025:2017	Keysight Technologies UK Ltd Issue No: 047 Issue date: 27 March 2025
	Calibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
CAPACITANCE (continued)	<i>10 kHz</i> 1 nF 10 nF 100 nF 1 μF <i>1 MHz</i> 1 pF 10 pF	0.017 % 0.013 % 0.028 % 0.017 % 0.27 % 0.042 %		Ρ
Other Values and Frequencies	1 nF 1 nF 1 nF to 1 μF 100 Hz to 10 kHz	0.041 % 0.048 % 0.11 %	Standard inductors	Ρ
INDUCTANCE Specific values and frequencies	100 Hz 10 μH 100 μH 1 mH 10 mH 100 mH 100 mH 1 μH 10 μH	0.41 % 0.20 % 0.11 % 0.060 % 0.11 % 0.020 % 0.38 % 0.18 % 0.020 % 0.030 % 0.080 %	Standard inductors available for application to inductance measuring instruments. Calibration of inductors by comparison with these standards can also be undertaken.	P
	100 µH 1 mH to 100 mH <i>100 Hz to 1 kHz</i> 1 H	0.18 % 0.16 % 0.080 %		

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK		
	Keysight Technologies UK Ltd		
0126	Issue No: 047 Issue date: 27 March 2025		
Accredited to ISO/IEC 17025:2017			
Calibration performed by the Organisation at the locations specified			

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty ($k = 2$)	Remarks	Location Code
ELECTRICAL SIMULATION OF TEMPERATURE				
Temperature indicator calibration			By electrical simulation.	
Base metal thermocouple indicators	-270 °C to 0 °C 0 °C to 1370 °C	0.24 °C 0.16 °C	Excluding cold junction compensation	Р
	-270 °C to 0 °C 0 °C to 1370 °C	0.26 °C 0.20 °C	Including cold junction compensation	
Noble metal thermocouple indicators	0 °C to 200 °C 200 °C to 800 °C 800 °C to 1760 °C	0.51 °C 0.50 °C 1.0 °C	Excluding cold junction compensation.	Ρ
	0 °C to 200 °C 200 °C to 800 °C 800 °C to 1760 °C	0.60 °C 0.50 °C 1.0 °C	Including cold junction compensation.	
Cold junction compensation	At ambient of 23 °C	0.10 °C	Temperature measurement at cold junction.	Ρ
RF POWER	-70 dBm to -65 dBm 10 MHz to 50 MHz 50 MHz to 3 GHz 3 GHz to 6 GHz 6 GHz to 10 GHz 10 GHz to 14 GHz 14 GHz to 18 GHz -65 dBm to -60 dBm 10 MHz to 50 MHz 50 MHz to 3 GHz 3 GHz to 6 GHz 6 GHz to 10 GHz 10 GHz to 18 GHz -60 dBm to -50 dBm 10 MHz to 50 MHz 50 MHz to 3 GHz 3 GHz to 6 GHz 6 GHz to 10 GHz 10 GHz to 10 GHz 10 GHz to 14 GHz 14 GHz to 18 GHz	16 % 15 % 15 % 19 % 18 % 15 % 7.3 % 5.8 % 7.6 % 8.1 % 7.8 % 9.0 % 5.6 % 4.4 % 4.4 % 4.4 % 4.4 %	Using RF power meter and sensor, in 50 Ω coaxial systems only.	Ρ

	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK		
UKAS CALIBRATION 0126 Accredited to ISO/IEC 17025:2017	Keysight Technologies UK Ltd Issue No: 047 Issue date: 27 March 2025		
	Calibration performed by the Organisation at the locations specified		

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
RF POWER (continued)	-50 dBm to -36 dBm 10 MHz to 50 MHz 50 MHz to 3 GHz 3 GHz to 6 GHz 6 GHz to 10 GHz 10 GHz to 14 GHz 14 GHz to 18 GHz -36 dBm to -14 dBm 10 MHz to 50 MHz 50 MHz to 3 GHz 3 GHz to 6 GHz	4.0 % 4.0 % 4.0 % 4.0 % 4.0 % 4.2 % 2.1 % 2.3 % 2.2 %		P
	6 GHz to 10 GHz 10 GHz to 14 GHz 14 GHz to 18 GHz -14 dBm to +20 dBm 10 MHz to 50 MHz 50 MHz to 3 GHz 3 GHz to 3 GHz 6 GHz to 10 GHz 10 GHz to 14 GHz 14 GHz to 18 GHz 50 MHz at 0 dBm	2.2 % 2.5 % 2.5 % 2.8 % 2.8 % 2.8 % 2.8 % 3.0 % 3.0 % 1.7 %		
RF VOLTAGE	200 μV to 10 V 9 kHz to 30 MHz 30 MHz to 100 MHz 100 MHz to 600 MHz 600 MHz to 1 GHz 1 GHz to 1.6 GHz 1.6 GHz to 2 GHz	2.8 % 2.5 % 2.5 % 2.1 % 4.2 % 6.8 %	Using RF voltmeter, in 50 Ω coaxial systems only.	Ρ
MODULATION MEASUREMENTS	20 % to 05 %		Using modulation analyser.	Р
Frequency Modulation	20 % 10 93 %	1.4 %	$f_{\rm mod}$ 30 Hz to 300 MHz $f_{\rm c}$ 50 kHz to 800 MHz $f_{\rm c}$ 50 kHz to 800 MHz	
Phase Modulation	1 radian to 200 radian	1.7 %	f _c 50 kHz to 800 MHz f _{mod} 10 Hz to 200 kHz	

	Unite 2 Pine Trees,	Schedule of Accredita issued by d Kingdom Accreditatio Chertsey Lane, Staines-upon-Tha	tion on Service ames, TW18 3HR,	UK
CALIBRATION 0126 Accredited to ISO/IEC 17025:2017		Keysight Technologies UK Ltd Issue No: 047 Issue date: 27 March 2025		
	Calibration performed by	the Organisation at the locations specified	ł	
Measured Quantity	Panaa	Expanded Measurement	Pomorko	Loca Co

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	ocation Code
VOLTAGE REFLECTION COEFFICIENT	100 kHz to 1.3 GHz 0.0 to 0.3 0.3 to 0.6 0.6 to 1.0 1.3 GHz to 3 GHz 0.0 to 0.3 0.3 to 0.6 0.6 to 1.0 0.045 GHz to 2 GHz 0.0 to 0.3 0.3 to 0.6 0.6 to 1.0 2 GHz to 18 GHz 0.0 to 0.3 0.3 to 0.6 0.6 to 1.0	0.011 to 0.012 0.012 to 0.014 0.014 to 0.019 0.011 to 0.015 0.012 to 0.016 0.016 to 0.028 0.011 to 0.012 0.012 to 0.014 0.014 to 0.019 0.011 to 0.016 0.012 to 0.020 0.016 to 0.037	Using HP8753ES Type N connectors only. Results and uncertainties may also be quoted in terms of return loss (dB) or VSWR Using HP810C. Type N Connectors only. Results and uncertainties may also be quoted in terms of return loss (dB) or VSWR.	Ρ
DIRECTIVITY of VRC bridges and couplers	16 dB to 50 dB 10 MHz to 2 GHz 2 GHz to 18 GHz	0.017 to 0.0060 0.019 to 0.010	This capability is for the measurement of directivity of 50 Ω VRC bridges and similar devices with Type N connectors. The CMCs are given in linear quantities (VRC) where the range applies to the range of measured directivity. The values and uncertainties may be reported in dB terms, calculated from the linear values and uncertainties.	Ρ
RF ATTENUATION	100 kHz to 1.3 GHz 0 dB to 30 dB 30 dB to 50 dB 50 dB to 70 dB 70 dB to 80 dB 80 dB to 84 dB 1.3 GHz to 3 GHz 0 dB to 30 dB 30 dB to 50 dB 50 dB to 70 dB 70 dB to 80 dB 80 dB to 84 dB	0.028 dB to 0.064 dB 0.064 dB to 0.13 dB 0.13 dB to 0.84 dB 0.77 dB to 2.6 dB 2.4 dB to 4.2 dB 0.036 dB to 0.068 dB 0.067 dB to 0.14 dB 0.13 dB to 0.95 dB 0.84 dB to 2.9 dB 2.6 dB to 4.7 dB	Using HP8753ES network analyser. The uncertainties quoted are for devices fitted with Type N connectors only and which present a near match to the 50 Ω measurement system. Measurement of devices presenting significant mismatch will attract larger uncertainties.	Ρ

	Sc United K 2 Pine Trees, Cher	hedule of Accreditat issued by ingdom Accreditatic tsey Lane, Staines-upon-Tha	tion on Service Imes, TW18 3HR, L	JK		
UKAS CALIBRATION 0126 Accredited to	K Issue	Keysight Technologies UK Ltd Issue No: 047 Issue date: 27 March 2025				
ISO/IEC 17025:2017						
	Calibration performed by the Or	ganisation at the locations specified	I			
Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code		

Instrument or Gauge	Kange	Uncertainty $(k = 2)$	Remains	ation de
RF ATTENUATION (continued)	45 MHz to 6 GHz 0 dB to 30 dB 30 dB to 50 dB 50 dB to 70 dB 70 dB to 80 dB 80 dB to 84 dB 6 GHz to 12 GHz 0 dB to 30 dB 30 dB to 50 dB 50 dB to 70 dB 70 dB to 84 dB 12 GHz to 18 GHz 0 dB to 50 dB 50 dB to 70 dB 70 dB to 80 dB 80 dB to 50 dB 50 dB to 70 dB 70 dB to 80 dB 80 dB to 84 dB	0.040 dB to 0.069 dB 0.069 dB to 0.14 dB 0.12 dB to 0.99 dB 0.64 dB to 3.1 dB 2.0 dB to 4.9 dB 0.072 dB to 0.073 dB 0.072 dB to 0.18 dB 0.15 dB to 1.4 dB 3.1 dB to 6.9 dB 0.056 dB to 0.081 dB 0.081 dB to 1.4 dB 1.4 dB to 1.4 dB 1.4 dB to 4.4 dB	Using HP8510C network analyser. The uncertainties quoted are for devices fitted with Type N connectors only and which present a near match to the 50 Ω measurement system. Measurement of devices presenting significant mismatch will attract larger uncertainties.	Ρ
DIMENSIONAL MEASUREMENTS	All units for dimensional measurements are presented in millimetres unless otherwise stated.	All Dimensional uncertainties are presented in micrometres unless otherwise stated.	NOTES 1 The uncertainty quoted is for the departure from flatness, straightness, or squareness, ie, the distance separating the two parallel planes which just enclose the surface under consideration.	
Length				Р
Thread measuring cylinders	As BS 5590:1978 0.1 to 3 diameter 3 to 5	0.60 0.90	Calibration as BS 5590:1978 using a length measuring machine	Ρ
Plain plug gauges (parallel), cylindrical setting standards and rollers	0.1 to 3 diameter 3 to 100 100 to 150	0.60 1.0 1.5	Calibration using a length measuring machine	Ρ
Length gauges (Flat and Spherical)	25 to 600 Measured length: Parallelism:	1.0 + (5.0 x length in m) 0.52	Calibration using a length measuring machine	Ρ

UKAS CALIBRATION 0126	Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK					
	Keysight Technologies UK Ltd Issue No: 047 Issue date: 27 March 2025					
Accredited to ISO/IEC 17025:2017						
Calibration performed by the Organisation at the locations specified						

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code
DIMENSIONAL MEASUREMENTS (continued)				
Plain ring gauges (parallel)	2 to 25 25 to 50 50 to 100 100 to 150 150 to 200	1.0 1.2 1.7 2.3 2.9	Calibration using a length measuring machine	Ρ
Angle		2.0		Р
Squares Blade type	As BS 939:2007 50 to 450	5.0	See note 1. Calibration as BS 939:2007	
Block	As BS 939:2007 50 to 450	5.0	Calibration as BS 939:2007	
Angle plates and box angle plates	As BS 5535:1978 50 to 450	Squareness: 4.2 + (1.0 per 100 mm) Parallelism: 1.0 + (1.0 per 100 mm)	See note 1. Calibration as BS 5535:1978	Ρ
Form				
Surface plates Granite and Cast Iron	BS 817:2008 160 x 100 to 4000 x 6000		See note 1. Calibration as BS 817:2008	P & S
	Flatness of working surface (Note 1):	1.7 + (0.8 x diagonal in m)		
	Local variation of working surface:	2.4		
Measuring machines and instruments			Instrument entries in this section of the schedule also cover digital and dial type gauges which are calibrated based on the quoted standards.	
Micrometers				Ρ
External micrometer	BS 870:2008 0 to 450 (Zero) Setting, 0 to 25: (Zero) Setting, 25 to 1000: Flatness of anvils: Parallelism of anvils: Spindle alignment:	2.0 between any two points 1.0 1.0 + (7.0 x length in m) 0.44 1.0 7.0	Calibration as BS 870:2008	
Internal	As BS 959:2008 0 to 450	Heads: 2.0 between any two points Setting and extension rods: 1.0 + (5.0 x length in m)	Calibration as BS 959:2008	
Depth	As BS 6468:2008 0 to 450	Heads: 2.0 between any two points Setting and extension rods: 1.0 + (5.0 x length in m)	Calibration as BS 6468:2008	

C ¹ O	Schedule of Accreditation
APPER A	issued by
	United Kingdom Accreditation Service
	2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK
	Keysight Technologies UK Ltd
0126	Issue No: 047 Issue date: 27 March 2025
Accredited to ISO/IEC 17025:2017	
С	alibration performed by the Organisation at the locations specified

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks	Location Code			
DIMENSIONAL MEASUREMENTS (continued)							
Micrometer heads	As BS 1734:1951 0 to 100	1.3	Calibration as BS 1734:1951	Р			
Height setting micrometer	0 to 300	Heads: 2.0 between any two points Stepped column: 2.0	By comparison with end standards	Р			
		Overall performance: 3.0					
Riser blocks for above	150 300 600	1.3 2.3 4.3	By comparison with end standards	Р			
Vernier gauges							
Caliper	As BS 887:2008 0 to 1000	10 + (30 x length in m)	Calibration as BS 887:2008	Р			
Height	As BS 1643:2008 0 to 1000	10 + (30 x length in m)	Calibration as BS 1643:2008				
Depth	As BS 6365:2008 0 to 600 Overall performance: Flatness: Straightness: Parallelism:	10 + (30 x length in m) 2.3 2.3 2.3	Calibration as BS 6365:2008				
Dial gauges and dial test indicators	As BS 907:2008 and BS 2795:1981 0 to 50	1.0	Calibration as BS 907:2008 and BS 2795:1981	Р			
Comparators (external)	As BS 1054:1975 250 to 10,000 magnification Scale accuracy: Flatness: Parallelism: Consistency of reading:	1.0 % of range, Minimum 0.20 0.44 1.8 0.22	Calibration as BS 1054:1975	Ρ			
Feeler gauges	As BS 957:2008	3.0	Calibration as BS 957:2008	Р			
Steel rules	BS 4372:1968 0 to 1000 Straightness: Parallelism: Squareness:	10.0 + (15 x length in m) 25 25 15	Calibration as BS 4372:1968	Ρ			
END							

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest uncertainty of measurement that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors. The CIPM-ILAC definition of the CMC is as follows:

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the CMC is stated only as a percentage, this is to be interpreted as meaning percentage of the measurand.

Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \cdot 0.01 \cdot q$, where q is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$