Schedule of Accreditation

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

10039

Accredited to ISO/IEC 17025:2017

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Unit 8

New Vision Business Park

Glascoed Road

St Asaph **LL17 0LP** **Contact: Ms Farhana Khan** Tel: +44 (0)1492 643 060

E-Mail: Farhana.Khan@TestEquity.com

Website: www.TestEquity.co.uk

Calibration performed at the above address only

Calibration and Measurement Capability (CMC)

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
		of both measurement instruments an ess otherwise stated in the remarks of	
ELECTRICAL	ı	1	
DC Voltage			
Generation	0 V to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V 330 V to 1020 V	16 μV/V + 3.2 μV 9 μV/V + 15 μV 9 μV/V + 180 μV 14 μV/V + 2.4 mV 14 μV/V + 8.1 mV	These values can be generated for the calibration of measuring instruments
Measurement	0 V to 100 mV 100 mV to 1 V 1 V to 10 V 10 V to 100 V 100 V to 1000 V	70 μV/V + 16 μV 67 μV/V + 15 μV 67 μV/V + 21 μV 67 μV/V + 34 mV 70 μV/V + 2.0 mV	Outputs of instruments within these values can be measured to the listed uncertainties
Resistance			
Generation	0 Ω to 11 Ω 11 Ω to 33 Ω 33 Ω to 110 Ω 110 Ω to 330 Ω 330 Ω to 1.1 kΩ 1.1 kΩ to 3.3 kΩ 3.3 kΩ to 11 kΩ 11 kΩ to 33 kΩ 33 kΩ to 110 kΩ 110 kΩ to 330 kΩ 330 kΩ to 1.1 MΩ 1.1 MΩ to 3.3 MΩ 3.3 MΩ to 11 MΩ 1.1 MΩ to 3.3 MΩ 3.3 MΩ to 11 MΩ 1.1 MΩ to 3.3 MΩ 3.3 MΩ to 110 MΩ	46 $\mu\Omega/\Omega$ + 5.6 $m\Omega$ 35 $\mu\Omega/\Omega$ + 3.1 $m\Omega$ 33 $\mu\Omega/\Omega$ + 3.7 $m\Omega$ 33 $\mu\Omega/\Omega$ + 3.7 $m\Omega$ 33 $\mu\Omega/\Omega$ + 470 $m\Omega$ 33 $\mu\Omega/\Omega$ + 470 $m\Omega$ 33 $\mu\Omega/\Omega$ + 430 $m\Omega$ 33 $\mu\Omega/\Omega$ + 1.8 Ω 33 $\mu\Omega/\Omega$ + 1.7 Ω 37 $\mu\Omega/\Omega$ + 6.2 Ω 37 $\mu\Omega/\Omega$ + 5.7 $k\Omega$ 151 $\mu\Omega/\Omega$ + 3.0 $k\Omega$ 290 $\mu\Omega/\Omega$ + 7.3 $k\Omega$ 580 $\mu\Omega/\Omega$ + 16 $k\Omega$	These values can be generated for the calibration of measuring instruments

Assessment Manager JW7 Page 1 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
Resistance (continued) Measurement	0 Ω to 1 Ω 1 Ω to 10 Ω 10 Ω to 100 Ω 100 Ω to 1 k Ω 1 k Ω to 10 k Ω 10 k Ω to 100 k Ω 100 k Ω to 1 M Ω 1 M Ω to 10 M Ω 10 M Ω to 100 M Ω	$\begin{array}{c} 38 \; \mu\Omega/\Omega \; + 22 \; \mu\Omega \\ 40 \; \mu\Omega/\Omega \; + 60 \; \mu\Omega \\ 40 \; \mu\Omega/\Omega \; + 380 \; \mu\Omega \\ 40 \; \mu\Omega/\Omega \; + 3.0 \; m\Omega \\ 40 \; \mu\Omega/\Omega \; + 36 \; m\Omega \\ 40 \; \mu\Omega/\Omega \; + 400 \; m\Omega \\ 40 \; \mu\Omega/\Omega \; + 1.0 \; \Omega \\ 40 \; \mu\Omega/\Omega \; + 15 \; \Omega \\ 0.12 \; \% \; + 5.1 \; k\Omega \end{array}$	Outputs of instruments within these values can be measured to the listed uncertainties
DC Current			
Generation	0 A to 330 μA 330 μA to 3.3 mA 3.3 mA to 33 mA 33 mA to 330 mA 330 mA to 3.3 A 3.3 A to 11 A 11 A to 20 A	116 μA/A + 20 nA 78 μA/A + 90 nA 115 μA/A + 800 nA 80 μA/A + 8 μA 290 μA/A + 251 μA 400 μA/A + 1.0 mA 0.12 % + 2.5 mA	These values can be generated for the calibration of measuring instruments
Measurement	0 A to 20 mA 20 mA to 100 mA 100 mA to 1 A 1 A to 3 A	250 μA/A + 2.0 μA 250 μA/A + 45 μA 0.04 % + 200 μA 0.06 % + 0.40 mA	Outputs of instruments within these values can be measured to the listed uncertainties
AC Voltage			
Generation	10 Hz to 45 Hz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V	0.060 % + 5.3 μV 0.023 % + 14 μV 0.020 % + 103 μV 0.020 % + 1.3 mV	These values can be generated for the calibration of measuring instruments
	33 V to 330 V 330 V to 1 kV	0.015 % + 12 mV 0.023 % + 30 mV	
	45 Hz to 10 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V	0.010 % + 5.2 μV 0.011 % + 12 μV 0.012% +132 μV 0.012 % + 1.5 mV	
	33 V to 330 V	0.015 % + 11 mV	

Assessment Manager: JW7 Page 2 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
AC Voltage (continued)	10 kHz to 20 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V	0.020 % + 5.2 μV 0.012 % + 11 μV 0.015 % +100 μV 0.020 % + 1.1 mV 0.020 % + 10 mV	These values can be generated for the calibration of measuring instruments
	20 kHz to 50 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V	0.080 % + 6.4 μV 0.030 % + 11 μV 0.023 % +96 μV 0.027 % + 1.0 mV 0.023 % + 10 mV	
	50 kHz to 100 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V 3.3 V to 33 V 33 V to 330 V	0.27 % + 10 μV 0.062 % + 27 μV 0.054 % + 0.13 mV 0.070 % + 1.7 mV 0.15 % + 41 mV	
	100 kHz to 500 kHz 30 μV to 33 mV 33 mV to 330 mV 330 mV to 3.3 V	0.62 % + 39 μV 0.15 % + 60 μV 0.19 % + 0.55 mV	
VRMS Measurement	10 Hz to 20 kHz 10 mV to 100 mV 100 mV to 1 V 1 V to 10 V 10 V to 100 V	0.10 % + 35 μV 0.10 % + 110 μV 0.10 % + 12 mV 0.10 % + 35 mV	Outputs of instruments within these values can be measured to the listed uncertainties
	10 Hz to 1 kHz 100 V to 750 V	0.10 % + 87 mV	
	20 kHz to 50 kHz 10 mV to 100 mV 100 mV to 1 V 1 V to 10 V 10 V to 100 V	0.20 % + 65 μV 0.20 % + 525 μV 0.20 % + 5.5mV 0.20 % + 60 mV	
	50 kHz to 100 kHz 100 mV to 1 V 1 V to 10 V	0.85 % + 870 μV 0.95 % + 9.0 mV	
	100 kHz to 300 kHz 1 V to 10 V	6.0 % + 55 mV	

Assessment Manager: JW7 Page 3 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
AC Current			
Generation	45 Hz to 1 kHz 30 μA to 3.3 mA 3.3 mA to 33 mA 33 mA to 330 mA 330 mA to 1.1 A 1.1 A to 3.3 A	0.140 % + 700 nA 0.06 % + 3.3 μA 0.06 % + 27 μA 0.08 % + 0.17 mA 0.24 % + 0.20 mA	These values can be generated for the calibration of measuring instruments
	1 kHz to 5 kHz 30 μA to 3.3 mA 3.3 mA to 33 mA 33 mA to 330 mA 330 mA to 1.1 A 1.1 A to 3.3 A	0.29 % + 3.3 μA 0.12 % + 2.8 μA 0.14 % + 60 μA 0.15 % + 230 μA 0.87 % + 1.2 mA	
	5 kHz to 10 kHz 30 μA to 3.3 mA 3.3 mA to 33 mA 33 mA to 330 mA 330 mA to 1.1 A 1.1 A to 3.3 A	0.72 % + 3.2 µA 0.30 % + 5.8 µA 0.30 % + 0.13 mA 3.6 % + 6.0 mA 3.6 % + 6.0 mA	
	10 kHz to 30 kHz 30 μA to 3.3 mA 3.3 mA to 33 mA 33 mA to 330 mA 330 mA to 1.1 A	1.5 % + 4.0 μA 0.60 % + 6.6 μA 0.60 % + 240 μA 3.5 % + 6.0 mA	
	3.3 A to 11 A 45 Hz to 100 Hz 100 Hz to 1 kHz 1 kHz to 5 kHz	0.087 % + 3.7 mA 0.15 % + 3.8 mA 4.3 % + 4.6 mA	
	11 A to 20.5 A 45 Hz to 100 Hz 100 Hz to 1 kHz 1 kHz to 5 kHz	0.17 % + 8.3 mA 0.22 % + 8.4 mA 4.4 % + 8.4 mA	
	10 Hz to 3 kHz 100 mA to 1 A 1 A to 3 A	0.08 % + 0.5 mA 0.15 % + 1.7 mA	Outputs of instruments within these values can be measured to the listed uncertainties
	3 kHz to 5 kHz 1 A to 3 A	0.15 % + 1.5 mA	

Assessment Manager: JW7 Page 4 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
AC Power			
Unity PF to 0.25 PF			
	45 Hz to 65 Hz 10 mV to 1 kV		
	3.3 mA to 20.5 A	0.50 %	
Capacitance			
Sourcing by simulation	1.1 nF to 3.3 nF 3.3 nF to 11 nF 11 nF to 33 nF 33 nF to 110 nF 110 nF to 330 nF 330 nF to 1.1 µF 1.1 µF to 3.3 µF 3.3 µF to 110 µF 110 µF to 330 µF 330 µF to 1.1 mF 1.1 mF to 3.3 mF 3.3 mF to 11 mF 11 mF to 33 mF	0.39 % + 8 pF 0.19 % + 12 pF 0.19 % + 112 pF 0.29 % + 0.40 nF 0.19 % + 3.3 nF 0.19 % + 3.3 nF 0.19 % + 48 nF 0.35 % + 127 nF 0.35 % + 0.25 μF 0.35 % + 2.5 μF 0.52 % + 12 μF 0.58 % + 25 μF	These values can be simulated for the calibration of measuring instruments

Assessment Manager: JW7 Page 5 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

0 V to 25 mV 25 mV to 110 mV 110 mV to 2.2 V 2.2 V to 11 V 11 V to 130 V	0.040 % + 31 μV 0.039 % + 31 μV 0.039 % + 120 μV 0.039 % + 200 μV 0.039 % + 2.0 mV	Into 1 MΩ
0 V to 25 mV 25 mV to 110 mV 110 mV to 2.2 V 2.2 V to 6 V	0.19 % + 31 µV 0.19 % + 33 µV 0.19 % + 26 µV 0.19 % + 26 mV	Into 50 Ω
0 V to 25 mV 25 mV to 110 mV 110 mV to 2.2 V 2.2 V to 6 V	0.19 % + 62 μV 0.19 % + 224 μV 0.19 % + 4.4 mV 0.19 % + 9.8 mV	Into 50 Ω
Ref set point 5 mV to 5.5 V 50 kHz to 300 MHz 100 kHz to 600 MHz	3.9 % 3.9 %	
250 ps 5 mV to 2.5 V peak	78 ps	
40 Ω to 60 Ω 500 k Ω to 1.5 M Ω	0.077 % + 10 m Ω 0.077 % + 100 m Ω	
2 ns to 5 ns 5 ns to 20 ns 20 ns to 50 ns 50 ns to 20 ms 20 ms to 100 ms 100 ms to 1 s 1 s to 5 s	11 fs 44 fs 110 fs 44 ns 12 µs 0.80 ms 19 ms	
5 pF to 50 pF	3.9 % + 0.47 pF	
	25 mV to 110 mV 110 mV to 2.2 V 2.2 V to 11 V 11 V to 130 V 0 V to 25 mV 25 mV 25 mV to 110 mV 110 mV to 2.2 V 2.2 V to 6 V 0 V to 25 mV 25 mV 25 mV to 110 mV 110 mV to 110 mV 10 mV to 110 mV 110 mV to 110 mV 110 mV 10 mV to 5.5 V 50 kHz to 300 MHz 100 kHz to 600 MHz 250 ps 5 mV to 2.5 V peak 40 Ω to 60 Ω 500 k Ω to 1.5 M Ω 2 ns to 5 ns 5 ns to 20 ns 20 ns to 50 ns to 20 ms 20 ms to 100 ms 100 ms to 1 s 1 s to 5 s	25 mV to 110 mV to 2.2 V 110 mV to 2.2 V 2.2 V to 11 V 11 V to 130 V 0.039 % + 200 μV 0.039 % + 2.0 mV 0.039 % + 2.0 mV 0.039 % + 2.0 mV 0.039 % + 2.0 mV 0.039 % + 2.0 mV 0.039 % + 2.0 mV 0.039 % + 2.0 mV 0.039 % + 2.0 mV 0.039 % + 2.0 mV 0.039 % + 2.0 mV 0.039 % + 200 μV 0.019 % + 31 μV 0.19 % + 31 μV 0.19 % + 26 μV 0.19 % + 26 μV 0.19 % + 224 μV 0.19 % + 20 mV 0.19 % + 20

Assessment Manager: JW7 Page 6 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (<i>k</i> = 2)	Remarks
Insulation Testers			
Continuity	0 Ω to 100 m Ω 100 m Ω to 500 m Ω 0.5 Ω to 1 Ω 1 Ω to 5 Ω 5 Ω to 200 Ω 200 Ω to 10 k Ω	$4.5 \text{ m}\Omega$ $6.5 \text{ m}\Omega$ $8.0 \text{ m}\Omega$ $25 \text{ m}\Omega$ 0.80Ω	
High Resistance	10 kΩ to 1 MΩ 1 MΩ to 10 MΩ 10 MΩ to 1 GΩ 1 GΩ to 10 GΩ	0.20 % 0.30 % 0.65 % 1.0 %	Uncertainty Increases by 0.10 % per 200 V above 500 V
Test Voltage Measurement	0 V to 2 kV DC 10 kΩ to 1 MΩ 1 MΩ to 10 GΩ	0.8 % + 2.6 V 0.8 % + 4.5 V	
Line / Loop Impedance Testers			
Resistance Nominal values	25 mΩ 50 mΩ 100 mΩ 330 mΩ 500 mΩ 1 Ω 1.8 Ω 5 Ω 10 Ω 18 Ω 50 Ω 100 Ω 180 Ω 500 Ω 1 kΩ 1.8 kΩ 0.05 A 0.5 A 3.2 A 10 A 20 A	4.0 mΩ 4.5 mΩ 4.0 mΩ 5.5 mΩ 6.5 mΩ 8.0 mΩ 15.5 mΩ 25 mΩ 50 mΩ 80 mΩ 0.25 Ω 0.40 Ω 0.80 Ω 2.0 Ω 4.0 Ω 8.0 Ω 1.2 % + 2.0 mA 1.2 % + 11 mA 1.2 % + 55 mA 1.2 % + 0.16 A 1.2 % + 0.30 A	Outputs of instruments within these values can be measured to the listed uncertainties

Assessment Manager: JW7 Page 7 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
RCD Testers			
Timing	10 ms to 5 s	0.02 % + 2.7 ms	
Current			
0.5 x I and 1 x I Mode	3 mA to 30 mA 30 mA to 300 mA 300 mA to 3000 mA	0.80 % + 60 µA 0.80 % + 0.60 mA 0.80 % + 6.0 mA	
1.4 x I and 2 x I Mode	3 mA to 30 mA 30 mA to 300 mA 300 mA to 1500 mA	1.6 % + 60 µA 1.6 % + 0.60 mA 1.6 % + 6.0 mA	
5 x I Mode	3 mA to 30 mA 30 mA to 300 mA 300 mA to 600 mA	4.0 % + 60 μA 4.0 % + 0.60 mA 4.0 % + 6.0 mA	
Leakage Testers			
Current			
Passive/Differential/Substitute Modes	0.1 mA to 30 mA	0.30 % + 2 μA (ac + dc) rms	
Active Mode	0.1 mA to 30 mA	0.30 % + 1.3 μA (ac + dc) rms	
Touch Voltage	250 V Range	5.0 % + 3.0 V	
Portable Appliance Testers			
Earth / Ground Bond Resistance. Nominal values At 50 Hz to 60 Hz	$\begin{array}{c} 25 \text{ m}\Omega \\ 50 \text{ m}\Omega \\ 100 \text{ m}\Omega \\ 330 \text{ m}\Omega \\ 500 \text{ m}\Omega \\ 1 \Omega \\ 1.8 \Omega \\ 5 \Omega \\ 10 \Omega \\ 18 \Omega \\ 50 \Omega \\ 100 \Omega \\ 188 \Omega \\ 500 \Omega \\ 1088 \Omega \\ 108$	$4.0 \text{ m}\Omega$ $4.5 \text{ m}\Omega$ $4.0 \text{ m}\Omega$ $5.5 \text{ m}\Omega$ $6.5 \text{ m}\Omega$ $8.0 \text{ m}\Omega$ $16 \text{ m}\Omega$ $25 \text{ m}\Omega$ $47 \text{ m}\Omega$ $80 \text{ m}\Omega$ 0.25Ω 0.40Ω 0.80Ω 0.80Ω 0.80Ω 0.80Ω	

Assessment Manager: JW7 Page 8 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
Earth / Ground Bonding Current At 50 Hz to 60 Hz	0.05 A 0.5 A 3.2 A 10 A 20 A	1.2 % + 1.7 mA 1.2 % + 11 mA 1.2 % + 55 mA 1.2 % + 0.12 A 1.2 % + 0.28 A	
Insulation Resistance	10 kΩ to 1 MΩ 1 MΩ to 10 MΩ 10 MΩ to 1 GΩ 1 GΩ to 10 GΩ	0.16 % 0.27 % 0.62 % 0.95 %	Uncertainty Increases by 0.10 % per 200 V above 500 V
Test Voltage	0 V to 2 kV DC 10 kΩ to 1 MΩ 1 MΩ to 10 GΩ	0.80 % + 2.6 V 0.80 % + 4.5 V	
Continuity	100 m Ω to 500 m Ω 0.5 Ω to 1 Ω 1 Ω to 5 Ω 5 Ω to 200 Ω 200 Ω to 10 k Ω	6.5 mΩ 8.0 mΩ 25 mΩ 0.78 Ω 7.8 Ω	
HIPOT/HV TESTERS			
HVDC Voltage	0.1 kV to 1.0 kV	0.23 % + 4.5 V	
HVAC Peak Voltage	50 Hz to 60 Hz 0.1 kV to 1.0 kV	0.40 % + 4 V	
DC Leakage Current	0 A to 300 µA 0.3 mA to 3 mA 3 mA to 30 mA 30 mA to 300 mA	0.23 % + 0.20 μA 0.16 % + 1.3 μA 0.16 % + 12 μA 0.16 % + 120 μA	
AC Leakage Current	20 Hz to 400 Hz 0 A to 300 µA 0.3 mA to 3 mA 3 mA to 30 mA 30 mA to 300 mA	0.23 % + 0.34 μA 0.16 % + 1.5 μA 0.16 % + 18 μA 0.16 % + 130 μA	

Assessment Manager: JW7 Page 9 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
RF MEASUREMENTS Voltage Reflection Coefficient	1.0 to 0.1		All RF measurements are for a well matched 50 Ω source or load unless otherwise stated. Uncertainties apply to precision
	10 MHz to 6 GHz 6 GHz to 15 GHz 15 GHz to 18 GHz	0.020 0.030 0.040	connectors.
Frequency			May be reported as time (1/f) for repetitive events.
Generation Specific Value	10 MHz	6.0 in 10 ¹²	GPS Time and frequency Reference Receiver
Measurement		0.01.4012	
Specific Value Other Values	10 MHz 1 Hz to 10 Hz 10 Hz to 100 Hz 100 Hz to 1 kHz 1 kHz to 10 kHz 10 kHz to 100 kHz 100 MHz to 160 MHz 160 MHz to 1.3 GHz 1.3 GHz to 10 GHz 10 GHz to 18 GHz 18 GHz to 26.5 GHz	6.9 in 10 ¹² 2.2 in 10 ⁷ 1.4 in 10 ⁷ 1.5 in 10 ⁸ 3.8 in 10 ⁹ 1.0 in 10 ¹⁰ 3.0 in 10 ¹⁰ 7.5 in 10 ¹⁰ 1.4 in 10 ⁹ 4.7 in 10 ⁹	
Power			
I mW reference	1 mW at 50 MHz	0.004 mW	
Ranges	9 kHz to 6 GHz 200 pW to 40 μW 20 nW to 4 mW 2 μW to 200 mW 10 MHz to 18 GHz 2 nW to 40 μW	1.5 % 1.4 % 1.4 %	
	2 HW to 40 μW 200 nW to 40 mW 2 μW to 2 W	2.2 % 2.4 %	
Attenuation	0 dB to 90 dB 50 MHz to 18 GHz	0.10 dB	

Assessment Manager: JW7 Page 10 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
RF MEASUREMENTS Continued			
Calibration Factor			
	75 % to 110 %		
	9 kHz 1MHz	0.62 % (Cal Factor)	For power sensor range of 9
	1 MHz to 1 GHz	0.64 %	kHz to 6KHz
	1 GHz to 6 GHz	0.84 %	
	75 % to 110 %		
	10 MHz to 1 GHz	0.66 %	For power sensor range of 10
	1 GHz to 6 GHz	0.85 %	MHz to 18 GHz
	6 GHz to 12 GHz	0.98 %	
	12 GHZ to 18 GHz	1.5 %	
Amplitude			
Modulation (AM)	10 Hz to 10 kHz		
	150 kHz to 10 MHz	2.4 % of reading	
	50 Hz to 50 kHz		
	10 MHz to 1300 MHz	1.4 % of reading	
AM Distortion			
	10 Hz to 50 kHz		
	150 kHz to 1300 MHz	0.50 %	
Frequency			
Modulation (FM)	20 Hz to 10 kHz		Frequency Modulation -
	250 kHz to 10 MHz	2.4 % + 40 Hz	Carrier frequency range 10 MHz to 1300 MHz
	50 Hz to 100 kHz		Modulation frequency range
	10 MHz to 1300 MHz	1.2 % + 17 Hz	10 Hz to 100 kHz
FM Distortion			
	20 Hz to 100 kHz		
	150 kHz to 1300 MHz	0.20 %	
Harmonic Content	Carrier Frequency		Maximum CW amplitude
	1 MHz to 13 GHz		+15 dBm; minimum harmonic
	Harmonic Frequency		level -80 dBc
	2 MHz to 26 GHz	0.62 dB	

END

Assessment Manager: JW7 Page 11 of 12

Schedule of Accreditation issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MCS Test Equipment Limited

Issue No: 009 Issue date: 31 August 2023

Calibration performed at main address only

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where q is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$

Assessment Manager: JW7 Page 12 of 12