Schedule of Accreditation

issued by

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Calibration and Measurement Capability (CMC)

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
CALIBRATION OF AC POWER ANALYSERS Voltage sine amplitude	1 V to 23 V 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 23 V to 45 V 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 45 V to 90 V 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 90 V to 180 V 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 180 V to 215 V 16 Hz to 850 Hz 180 V to 215 V 16 Hz to 850 Hz 215 V to 246 V 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 215 V to 246 V 16 Hz to 850 Hz 246 V to 360 V 16 Hz to 850 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 246 V to 360 V 16 Hz to 850 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 246 V to 360 V 16 Hz to 850 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 246 V to 360 V 16 Hz to 850 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz 35 Hz to 850 Hz 36 Hz 37 Hz to 850 Hz 36 Hz 37 Hz to 850 Hz 37 Hz to 850 Hz 38	(k = 2) 90 µV/V + 0.20 mV 79 µV/V + 0.20 mV 90 µV/V + 0.20 mV 86 µV/V + 0.20 mV 86 µV/V + 0.40 mV 74 µV/V + 0.40 mV 86 µV/V + 0.40 mV 85 µV/V + 0.80 mV 73 µV/V + 0.80 mV 90 µV/V + 1.6 mV 90 µV/V + 1.6 mV 90 µV/V + 1.6 mV 87 µV/V + 3.2 mV	With the exception of calorimetric measurements, the AC Power Analyser capabilities are achieved by a phantom load technique, whereby independent signals (voltage or current) are applied to each channel of the power analyser. The phase and amplitude of these signals, and of their harmonics, are varied to produce the required stimulus. Suitably modulated signals are used for flicker measurements.

Schedule of Accreditation issued by ted Kingdom Accreditation Servi

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Newtons4th Ltd

Issue No: 010

10 Issue date: 15 Janaury 2024

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
Voltage sine amplitude (continued)	360 V to 425 V 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	86 μV/V + 5.8 mV 85 μV/V + 5.8 mV 86 μV/V + 5.8 mV	
	425 V to 490 V 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	86 μV/V + 5.8 mV 75 μV/V+ 5.8 mV 86 μV/V + 5.8 mV	
	490 V to 650 V 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	86 μV/V + 5.8 mV 85 μV/V + 5.8 mV 86 μV/V + 5.8 mV	
	650 V to 1008 V 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	90 μV/V + 10 mV 90 μV/V + 10 mV 90 μV/V + 10 mV	
Voltage harmonic amplitude	0 V to 6.9 V Total rms 1 V to 23 V 16 Hz to 850 Hz 850 Hz to 6 kHz	600 μV/V + 1.0 mV 1300 μV/V + 1.0 mV	
	0 V to 13.5 V Total rms 23 V to 45 V 16 Hz to 850 Hz 850 Hz to 6 kHz	600 μV/V + 2.0 mV 1300 μV/V + 2.0 mV	
	0 V to 27 V Total rms 45 V to 90 V 16 Hz to 850 Hz 850 Hz to 6 kHz	600 μV/V + 2.2 mV 1300 μV/V + 2.2 mV	
	0 V to 54 V Total rms 90 V to 180 V 16 Hz to 850 Hz 850 Hz to 6 kHz	600 μV/V + 4.4 mV 1300 μV/V + 4.4 mV	
	0 V to 108 V Total rms 180 V to 360 V 16 Hz to 850 Hz 850 Hz to 6 kHz	600 μV/V + 12 mV 1300 μV/V + 12 mV	
	0 V to 195 V Total rms 360 V to 650 V 16 Hz to 850 Hz 850 Hz to 6 kHz	600 μV/V + 22 mV 1300 μV/V + 22 mV	
	0 V to 302 V Total rms 650 V to 1008 V 16 Hz to 850 Hz 850 Hz to 6 kHz	600 μV/V + 33 mV 1300 μV/V + 33 mV	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Newtons4th Ltd

Issue No: 010

10 Issue date: 15 Janaury 2024

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
Current sine amplitude	100 mA to 250 mA 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	110 μΑ/Α + 5.0 μΑ 100 μΑ/Α + 2.5 μΑ 110 μΑ/Α + 5.0 μΑ	
	250 mA to 500 mA 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	85 μΑ/Α + 10 μΑ 75 μΑ/Α + 5.0 μΑ 85 μΑ/Α + 10 μΑ	
	0.5 A to 1 A 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	89 μΑ/Α + 20 μΑ 80 μΑ/Α + 10 μΑ 89 μΑ/Α + 20 μΑ	
	1 A to 2 A 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	89 μΑ/Α + 40 μΑ 80 μΑ/Α + 20 μΑ 89 μΑ/Α + 40 μΑ	
	2 A to 5 A 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	88 μΑ/Α + 100 μΑ 78 μΑ/Α + 50 μΑ 88 μΑ/Α + 100 μΑ	
	5 A to 10 A 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	92 μΑ/Α + 200 μΑ 82 μΑ/Α + 100 μΑ 92 μΑ/Α + 200 μΑ	
	10 A to 21 A 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	95 μΑ/Α + 400 μΑ 82 μΑ/Α + 200 μΑ 95 μΑ/Α + 400 μΑ	
	21 A to 48 A 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 850 Hz	140 μΑ/Α + 1.0 mA 93 μΑ/Α + 0.50 mA 140 μΑ/Α + 1.0 mA	
Current harmonic amplitude	Harmonic 0 A to 75 mA Total rms 100 mA to 250 mA 16 Hz to 850 Hz 850 Hz to 6 kHz	610 μΑ/Α + 5.0 μΑ 1800 μΑ/Α + 5.0 μΑ	
	Harmonic 0 A to 150 mA Total rms 250 mA to 500 mA 16 Hz to 850 Hz 850 Hz to 6 kHz	610 μΑ/Α + 10 μΑ 1800 μΑ/Α + 10 μΑ	

Schedule of Accreditation issued by ted Kingdom Accreditation Servi

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Newtons4th Ltd

Issue No: 010

10 Issue date: 15 Janaury 2024

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
Current harmonic amplitude (continued)	Harmonic 0 A to 300 mA Total rms 500 mA to 1 A 16 Hz to 850 Hz 850 Hz to 6 kHz	610 μΑ/Α + 20 μΑ 1800 μΑ/Α + 20 μΑ	
	Harmonic 0 A to 600 mA Total rms 1 A to 2 A 16 Hz to 850 Hz 850 Hz to 6 kHz	610 μΑ/Α + 40 μΑ 1800 μΑ/Α + 40 μΑ	
	Harmonic 0 mA to 1.5 A Total rms 2 A to 5 A 16 Hz to 850 Hz 850 Hz to 6 kHz	610 μΑ/Α + 100 μΑ 1800 μΑ/Α + 100 μΑ	
	Harmonic 0 A to 3 A Total rms 5 A to 10 A 16 Hz to 850 Hz 850 Hz to 6 kHz	610 μΑ/Α + 200 μΑ 1800 μΑ/Α + 200 μΑ	
	Harmonic 0 A to 6 A Total rms 10 A to 21 A 16 Hz to 850 Hz 850 Hz to 6 kHz	610 μΑ/Α + 400 μΑ 1800 ρ μΑ/Α + 400 μΑ	
	Harmonic 0 A to 15 A Total rms 21 A to 50 A 16 Hz to 850 Hz 850 Hz to 6 kHz	610 μΑ/Α + 1.0 mA 1800 μΑ/Α + 1.0 mA	
Current to voltage phase angle	-180° to +180° 16 Hz to 45 Hz 45 Hz to 65 Hz 65 Hz to 69 Hz 69 Hz to 180 Hz 180 Hz to 450 Hz 450 Hz to 850 Hz	3.1 m° 2.4 m° 3.2 m° 7.1 m° 18 m° 33 m°	
Apparent power (VA product)	100 mVA to 48.4 kVA 16 Hz to 850 Hz	The RSS summation of the uncertainties for voltage and current.	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Newtons4th Ltd

Issue No: 010

0 Issue date: 15 Janaury 2024

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
AC Power	Harmonic 0 W to 48.4 kW 16 Hz to 850 Hz	The RSS summation of the uncertainties for voltage, current and $\cos(\phi)$.	For power factors between 0 and unity, leading or lagging. The uncertainties at low power factors may be stated in absolute terms or as a fraction of the VA product. NOTE: For typical input voltages of 115 V and 230 V, the minimum power at unity p.f. is 5.5 W and 11 W
			for these voltages can be obtained by using lower power factors.
Current harmonic amplitude to IEC61000-4-7	Harmonic 0 A to 75 mA Total rms 100 mA to 250 mA 16 Hz to 850 Hz 850 Hz to 6 kHz	0.16 % + 5.0 μA 0.47 % + 5.0 μA	
	Harmonic 0 A to 150 mA Total rms 250 mA to 500 mA 16 Hz to 850 Hz 850 Hz to 6 kHz	0.16 % + 10 μA 0.47 % + 10 μA	
	Harmonic 0 A to 300 mA Total rms 500 mA to 1 A <i>16 Hz to 850 Hz</i> <i>850 Hz to 6 kHz</i>	0.16 % + 20 μA 0.47 % + 20 μA	
	Harmonic 0 A to 600 mA Total rms 1 A to 2 A <i>16 Hz to 850 Hz</i> <i>850 Hz to 6 kHz</i>	0.16 % + 40 μA 0.47 % + 40 μA	
	Harmonic 0 mA to 1.5 A Total rms 2 A to 5 A 16 Hz to 850 Hz 850 Hz to 6 kHz	0.16 % + 100 μA 0.47 % + 100 μA	
	Harmonic 0 A to 3 A Total rms 5 A to 10 A 16 Hz to 850 Hz 850 Hz to 6 kHz	0.16 % + 200 μA 0.47 % + 200 μA	
	Harmonic 0 A to 6 A Total rms 10 A to 21 A 16 Hz to 850 Hz 850 Hz to 6 kHz	0.16 % + 400 μA 0.47 % + 400 μA	

United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Newtons4th Ltd

Issue No: 010 Is

10 Issue date: 15 Janaury 2024

Accredited to ISO/IEC 17025:2017

Measured Quantity Instrument or Gauge	Range	Expanded Measurement Uncertainty (k = 2)	Remarks
Flicker to IEC61000-4-15	Pinst (sinusoidal modulation) Pinst (rectangular modulation) fmod 0.5 Hz to 30 Hz fmod 30.5Hz fmod 31 Hz to 33.33 Hz Pst	0.36 % 0.39 % 1.0 % 0.39 % 0.25 %	
	$d_{\rm c}$ and $d_{\rm max}$ 0 % to 5 %	0.015 % of steady state	With respect to a nominal steady state of 100 V to 230 V at 50 Hz.
	T _{max}	Half cycle count	This is a counting function and therefore there is no associated uncertainty. The results may also be reported as time corresponding to the nominal frequency (1/2f).
	Frequency changes Distorted voltage with multiple zero crossings Harmonics with sidebands Phase jumps Rectangular changes with duty cycle	1.5 % 1.1 % 1.3 % 1.0 %	
CALIBRATION OF IMPEDANCE NETWORKS	16 Hz to 850 Hz:		Impedances are derived from the voltage and current signals described in Page 1.
Resistance	33 mΩ to 400 Ω	0.48 % to 0.10 %	Phase angle 0° to ±85°
Reactance	33 m Ω to 400 Ω	0.48 % to 0.10 %	Phase angle ±5° to ±90°
END			

United Kingdom Accreditation Service

2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Newtons4th Ltd

Issue No: 010

10 **Issue date:** 15 Janaury 2024

Accredited to ISO/IEC 17025:2017

7949

Calibration performed at main address only

Appendix - Calibration and Measurement Capabilities

Introduction

The definitive statement of the accreditation status of a calibration laboratory is the Accreditation Certificate and the associated Schedule of Accreditation. This Schedule of Accreditation is a critical document, as it defines the measurement capabilities, ranges and boundaries of the calibration activities for which the organisation holds accreditation.

Calibration and Measurement Capabilities (CMCs)

The capabilities provided by accredited calibration laboratories are described by the Calibration and Measurement Capability (CMC), which expresses the lowest measurement uncertainty that can be achieved during a calibration. If a particular device under calibration itself contributes significantly to the uncertainty (for example, if it has limited resolution or exhibits significant non-repeatability) then the uncertainty quoted on a calibration certificate will be increased to account for such factors.

The CMC is normally used to describe the uncertainty that appears in an accredited calibration laboratory's schedule of accreditation and is the uncertainty for which the laboratory has been accredited using the procedure that was the subject of assessment. The measurement uncertainty is calculated according to the procedures given in the GUM and is normally stated as an expanded uncertainty at a coverage probability of 95 %, which usually requires the use of a coverage factor of k = 2. An accredited laboratory is not permitted to quote an uncertainty that is smaller than the published measurement uncertainty in certificates issued under its accreditation.

Expression of CMCs - symbols and units

It should be noted that the percentage symbol (%) represents the number 0.01. In cases where the measurement uncertainty is stated as a percentage, this is to be interpreted as meaning percentage of the measurand. Thus, for example, a measurement uncertainty of 1.5 % means $1.5 \times 0.01 \times q$, where q is the quantity value.

The notation Q[a, b] stands for the root-sum-square of the terms between brackets: Q[a, b] = $[a^2 + b^2]^{1/2}$